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Abstract  

The world crude oil prices have dropped dramatically, and consequently the oil market has become very volatile 

and risky in the last several years. Since energy markets play very important roles in the international economy 

and have led several global economic crises, risk management of energy products prices becomes very important 

for both academicians and market participants. Schwartz and Smith’s model (2000) is applied to calculate risk 

measures of Brent oil futures contracts and light sweet crude oil (WTI) futures contracts. The model includes a 

long-term factor and a short-term factor. We show that the two factors explain the Samuelson effect well and the 

model present well goodness of fit. Our back testing results demonstrate that the models provide satisfactory risk 
measures for listed crude oil futures contracts.  

JEL classifications: C58; G13; G32 

Keywords: factor model; value-at-risk; exceedances 

1. Introduction 

The world crude oil prices have dropped dramatically, and consequently the oil market has become very volatile 

and risky in the last several years. Moreover, energy markets play very important roles in the international 

economy and have led several global economic crises, for example the 1973 oil crisis. Therefore, risk 

management of energy products prices becomes very important for both academicians and market participants, 

and many risk measurement tools have been proposed in the literature. A non-exhausted list includes: Cabedo 

and Moya (2003), Costello, Asem and Gardner (2008), Krehbiel and Adkins (2005), Marimoutou, Raggad and 

Trabelsi (2009), Kang and Yoon (2013), Youssef, Belkacem, and Mokni (2015), and Fiano and Grossi (2015). 

These papers employ a widely-used risk measure, Value-at-Risk (VaR) originally proposed by J.P. Morgan in 

1994 (see Duffie and Pan, 1997, for a discussion of this measure), but differ in the model assumptions. 

Nevertheless, all the above literature employs a reduced-form approach and calculates VaRs directly from 

modeling prices returns (for example, fitting the entire returns samples into a certain distribution, or the tail 

returns samples into the extreme value distributions), and thus the models cannot provide useful information 
about the spot or the futures price fluctuations. 

Recently, stochastic models of commodity futures prices have been frequently employed in modeling 

commodity-related securities among academics and practitioners, such as Schwartz (1997), Schwartz and Smith 

(2000), Sorensen (2002), Cortazar and Schwartz (2003), Mirantes, Poblacion and Serna (2012), Carmona and 

Coulon (2014), and et al.. A detailed survey of these types of models is written by Pirrong (2011). Most of the 

papers employ the stochastic multi-factor models for explaining futures prices fluctuations, and not directly from 

a risk management perspective. In this paper, we illustrate that by employing the Monte Carlo methods the 

stochastic multi-factor models are also powerful in calculating risk measures, such as Value at Risk or expected 

shortfall. Compared with other approaches focusing on either cash contract or one single future contract, our 
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approach has the advantage in calculating the VaRs for the whole forward curve simultaneously. By assuming 

the forward curve is driven by several core factors, our approach could account for intrinsic correlations among 

contracts with different tenors without using other tools, such as multivariate distributions or copulas which are 
commonly used to model the correlations of multi-variables in the literature.  

Our model is a two-factor model. The model has become a benchmark for modeling the stochastic behavior of 

crude oil futures prices. The multi-factor models evaluate futures prices as risk-adjusted expected values of spot 

price and assume that the spot price is sum of the short- and the long-term components. To model the long-term 

price dynamics the long-term factor is assumed to evolve according to geometric Brownian motion, and the drift 

of the model reflects expectations of the exhaustion of existing supply, improving technology for the production 

and the discovery of the commodity, inflation, as well as political and regulatory effects. To model the short-term 

price deviation to its long-term dynamics, the short-term factor is assumed to follow a mean-reverting process 

and reflects short-term changes in demand or supply, for instance, resulting from variations in the weather or 

intermittent supply disruptions. In this paper, we show that Schwartz and Smith’s model could provide 
satisfactory risk measures for Brent crude oil futures and light sweet crude oil futures. 

The remainder of the paper is organized as follows. Section 2 describes the futures data and several stylized facts 

of the data. In Section 3, we introduce Schwartz and Smith’s model. The estimation method and results are in 
Section 4. In Section 5, we summarize the backtesting results of the two models. Section 6 conc ludes.  

2. Empirical Data Analysis 

In this section, we briefly summarize the basic features of futures price data and show the a stylized fact, the 

Samuelson effect, for all the commodities. We collect futures price data from Bloomberg for Brent crude oil and 

light sweet crude oil (WTI). The time periods span from February 14, 2005 to March 28, 2014 for Brent crude 

oil and from February 23, 2005 to March 11, 2014 for light sweet crude oil (WTI). All the time periods reflect 
the longest time periods available for the authors. The descriptive statistics of the data is provided in Table 1. 

Table 1. Descriptive statistics of futures prices for all the eight commodities. 

Commodity Observations Mean Standard Deviation Unit 

Brent crude oil 141399 86.73 18.07 dollars per barrel 
WTI 152262 83.96 15.46 dollars per barrel 

Table 2–3 provides detailed summary statistics with respect to the involved futures contracts for the eight 

commodities respectively. We group futures prices according two criteria: grouped into expiration months and 

grouped into time to maturity. The futures contracts for all the eight commodities have twelve expiration months, 

and in Panel A of all the tables we present the summary results for futures contracts maturing in the odd months. 

In Panel B of all the tables we present the summary results for futures contracts grouped into time to maturity. 

The terminology “1.closest maturity” is used as notation for the futures contracts that have the shortest time to 

maturity at a given date; the “2.closest maturity” represents the futures contract with the second shortest time to 

maturity; and so on. To illustrate futures price fluctuations, we calculate futures returns as log returns of the time 

series. The tables indicate at least one basic feature of futures prices of the two commodities that the variations of 

distant maturity futures prices and futures returns are lower than nearby futures prices and futures returns – the 
Samuelson effect. 

Samuelson (1965) first investigates the relationship between futures price volatility and contract maturity and 

proposes the hypothesis that the volatility of futures price changes should increase as the delivery date nears. To 

exclude the case that the small standard deviations for the longest maturities to some extent merely reflect that 

the data for these contracts are sampled only over short continuous time periods, we compare the maturities 

which have the same number of observations. In Panel Bs of Table 2–3, we see the Samuelson effect not only of 
futures price volatility but also of futures return volatility for all the commodities. 

Figure 1 and 2 further illustrate the time series aspects of the data. The figures graph the time-series of futures 

prices and futures returns for the 1.closest maturity and the 23.closest maturity. The 1.closest maturity and the 

23.closest maturity represent the contract series maturing next month and right after two years respectively. A 

visual inspection of the figures suggests that the time series for the 1.closest maturity is more volatile than the 

23.closest maturity time series. Again, this is in line with the “Samuelson hypothesis”. This feature of the energy 

commodity futures prices will be captured in Schwartz and Smith’s model by including a mean-reverting 
component.  

 

 



http://ibr.ccsenet.org     International Business Research                    Vol. 10, No. 9; 2017 

52 
 

Table 2. Summary Statistics for Brent Crude Oil Futures. Futures prices are in dollars per barrel. The dataset 
consists of 2350 daily observations from 02/14/2005 to 03/28/2014 

Futures Contracts Observations Mean Standard Deviation 
Panel A: Grouped into expiration months 

 
Futures prices 

Jan 10827 86.72 18.15 
Mar 11149 86.70 18.07 
May 11522 86.68 18.18 
July 11866 86.71 18.16 
Sep 12225 86.78 18.10 
Nov 12565 86.84 17.83 
All 141399 86.73 18.07 

 
Futures returns 

 Jan 10813 0.025% 1.53% 
Mar 11135 0.026% 1.52% 
May 11507 0.034% 1.51% 
July 11851 0.034% 1.50% 
Sep 12210 0.035% 1.49% 
Nov 12550 0.028% 1.48% 
All 141222 0.030% 1.50% 

Panel B: Grouped into time to maturity 

 
Futures prices 

1. closest 2350 86.39 24.04 
5. closest 2350 87.06 22.30 

9. closest 2350 87.19 21.21 
13. closest 2350 87.02 20.37 
17. closest 2350 86.66 19.68 
21. closest 2350 86.21 19.12 

 
Futures returns 

1. closest 2349 0.037% 2.05% 

5. closest 2349 0.037% 1.84% 
9. closest 2349 0.037% 1.71% 
13. closest 2349 0.038% 1.63% 
17. closest 2349 0.038% 1.55% 
21. closest 2349 0.038% 1.49% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Futures prices with different time to maturity 

 

 

 

 

 

14-Feb-2005 04-Mar-2008 15-Mar-2011 28-Mar-2014
0

50

100

150

Date

D
o

ll
a

r
s

Brent Crude Oil

 

 

1. closest

23. closest

23-Feb-2005 29-Feb-2008 04-Mar-2011 11-Mar-2014
0

50

100

150

Date

D
o

ll
a

r
s

Sweet Crude Oil

 

 

1. closest

23. closest

25-Feb-2005 07-Mar-2008 17-Mar-2011 27-Mar-2014
0

5

10

15

20

Date

D
o

ll
a

r
s

Natural Gas

 

 

1. closest

23. closest

20-Apr-2007 28-Jul-2009 02-Nov-2011 12-Feb-2014
0

500

1000

1500

Date

D
o

ll
a

r
s

Gasoil

 

 

1. closest

23. closest

16-Apr-2007 20-Apr-2009 25-Apr-2011 27-Mar-2014
100

200

300

400

500

Date

D
o

ll
a

r
s

Heating Oil

 

 

1. closest

23. closest

01-Mar-2007 29-May-2009 23-Dec-2011 28-Mar-2014
0

100

200

300

400

Date

D
o

ll
a

r
s

Gasoline RBOB

 

 

1. closest

23. closest

02-Dec-2010 21-Dec-2011 28-Jan-2013 27-Feb-2014
0

50

100

150

200

Date

D
o

ll
a

r
s

Peak Electricity

 

 

1. closest

23. closest

01-Dec-2010 21-Dec-2011 28-Jan-2013 27-Feb-2014
20

40

60

80

100

Date

D
o

ll
a

r
s

Off-Peak Electricity

 

 

1. closest

23. closest



http://ibr.ccsenet.org     International Business Research                    Vol. 10, No. 9; 2017 

53 
 

Table 3. Summary Statistics for Light Sweet Crude Oil (WTI) Futures. Futures prices are in dollars per barrel. 
The dataset consists of 2278 daily observations from 02/23/2005 to 03/11/2014 

Futures Contracts Observations Mean Standard Deviation 
Panel A: Grouped into expiration months 

 
Futures prices 

Jan 10911 83.84 15.27 
Mar 11283 83.68 15.29 
May 11604 83.73 15.34 
July 11933 83.81 15.43 
Sep 12317 83.86 15.47 
Nov 12637 84.01 15.19 
All 152262 83.96 15.46 

 
Futures returns 

Jan 10897 0.011% 1.59% 
Mar 11269 0.015% 1.59% 
May 11589 0.021% 1.57% 
July 11918 0.022% 1.55% 
Sep 12302 0.023% 1.54% 
Nov 12622 0.017% 1.54% 
All 152085 0.020% 1.56% 

Panel B: Grouped into time to maturity 

 
Futures prices 

1. closest 2278 81.37 19.81 
5. closest 2278 83.05 18.32 

9. closest 2278 83.43 17.52 
13. closest 2278 83.41 16.91 
17. closest 2278 83.18 16.42 
21. closest 2278 82.89 16.10 

 
Futures returns 

1. closest 2277 0.029% 2.34% 

5. closest 2277 0.028% 1.95% 
9. closest 2277 0.029% 1.81% 
13. closest 2277 0.029% 1.71% 
17. closest 2277 0.029% 1.63% 
21. closest 2277 0.029% 1.57% 

 
Figure 2. Futures returns with different time to maturity 

3. The Models 

In this section, we present Schwartz and Smith’s model (2000) for Brent crude oil futures and light sweet crude 
oil futures (WTI).  
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2

( )
2

x
t x xtdx dt dw


    ,                        (3.1) 

and the short-term deviation
tz follows a mean-reverting process 

t t z ztdz z dt dw    .                             (3.2) 

Both
xtdw

 
and 

ztdw are standard Brownian motion processes with constant correlation coefficient , and it is 

assumed that the standard filtration generated by the two-dimensional ( , )xt ztw w  describes all the information 
available in the economy.  and x z 

 
indicate volatilities of the innovations.  

Under the so called equivalent martingale measure, which is relevant for pricing and denoted here by Q , the 
dynamics of the two factors 

tx  and 
tz  are described by 

                             

2

( )
2

Qx
t x xtdx dt dw


   

                              

(3.3) 

and 

( ) Q

t z t z ztdz z dt dw      ,                        (3.4) 

where x     , and 
x  and 

z  are constant market prices of risk associated with 
tx  and 

tz , 

respectively. Moreover, 
Q

xtw and 
Q

ztw  describes the martingale under Q .  Let ( )tF   denotes the future 
price at time t  on a futures contract that expires at time . By taking the relevant expectations, 

                         
( )

1( ) exp( ( ))t

t t tF x z e A t       ,                        (3.5) 

where
2

1 1 2 3( ) (1 ) (1 )T TA T b e b e b T       , and 

2

1
2

zb



  , 2

z x zb
  




   ,and 

3 xb    . Here the logarithm of the futures prices is an affine function of the two factors tx and tz . Since our 

interest is in risk management of futures contracts, it is sufficient to only estimate 1 2 3,  ,  ,  and b b b  and leave 

other parameters unknown in our application. 

4. Model Estimation 

We write the above model in a discrete state-space form. The state space representation consists of a transition 

equation and a measurement equation. The transition equation describes the stochastic evolvement of an 

unobserved vector of state-variables, and the measurement equation relates the unobserved state-variables to a 

vector of observables. We sample the data at equidistant time points 
, 1,...,nt n N

 and in this paper 

1n nt t  
 denotes one day.  

Let ( , ) '
n nn t tX x z  denote the unobserved state-vector at time nt . Formally, the transition equation has the 

following form:  

                                      1n n nX a AX                                  (4.1) 
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where ,  1,...,n n N  are serially uncorrelated with zero mean-vector and covariance matrix 
2 2  and  

2

1 0( )
 and 2

0
0

x

a A
e 




 

 
          

 

. 

We define

2

4
2

xb


 @ . Let ( ) log ( )t tf F  and 
1( ( ),..., ( )) 'n

n n

M

n t n t nZ f f   denote the set of log 

futures prices observed at time 
nt and with maturities

1 2 ... nM

n n n     . The measurement equation has the 

following form:  

n n n n nZ c C X    ,                              (4.2) 

where ,  1,...,n n N  are serially independently distributed with zero mean-vector and covariance matrix 

n nM MH 
, 

 

1( )1

1

( )
1

( ) 1

,  and        

( ) 1

n n

Mnn
n n

t

n n

n n

M
t

n n

A t e

c C

A t e

 

 





 

 

  
  

    
     

M MM . 

The estimation method is essentially a two-step least square estimation method. The minimization problem can 

be expressed as  

1 1
1 2 3 4

2 2

41{ , , , , }
min [( ) ( ) ]

n n n n

N

t t t tnb b b b
x b x z e z

  

 


                (4.3) 

s.t. 

2
( ) 2 ( ) ( )

1 2 31
,

{ , } arg min [ ( ) (1 ) (1 ) ( )] .
i i i

n n n n n n n

n n n n n

t tn n

M t t ti i

t t t n t t n ni
x z

x z f x z e b e b e b t
           


        

In implementation, one could calculate vector nX  through the constraint condition first as 

1( '* ) [ '*( )]n n n n n nX C C C Z c                                (4.4) 

Then, we plug the vector nX  into (4.3) to solve the global minimization. Our method differs from Cortazar and 

Schwartz mainly through the constraint condition. In Cortazar and Schwartz, the vector nX   is calculated 

through the transition equation, Equation (4.1), while our method calculates the vector nX  through the forward 

curve, Equation (3.5), at time n. Our practice indicates minimizing Equation (3.5) instead of Equation (4.1) 
improves numerical stability and quick convergence.  
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5. Estimation Results 

5.1 Estimation Results of the Whole Sample 

Table 4. Models estimation results. * and ** denote statistic significant at the 5% and 1% level respectively 

  Brent Oil WTI 
obs. 141399 152262 

1b  0.306** 0.132** 

2b  -0.350** -0.144** 

3b  0.010* 0.004* 

6b  0.099** 0.075** 

  0.541** 0.468** 

Std. of prices 0.214 0.185 
RMSE 0.010 0.012 

In this section, we first estimate our model by using the whole sample. Our estimation uses daily observations 

and thus 1/ 252  . The parameters estimations are in Table 4. We plot the demeaned estimated two factors in 

Figure 3. The correlation coefficients of the two factors of all the eight commodities are small positive numbers, 

ranging from 0.10 to 0.30. In Table 4, we also summarize the errors in the model fit for futures prices. In general, 

the models perform well in explaining futures price variations. The model explains around 95.3% and 93.5% of 

futures price variations for Brent Oil and WTI futures price variations respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Latent factors – Xt and Zt (demeaned) 
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scenario is calculated using equation (4.2). Each theoretical price scenario corresponds to one theoretical profit 

& loss scenario. The projected VaR estimates are the quantiles of the simulated profit & loss scenarios. Then, we 

compare actual profits & losses with projected VaR estimates. In Panel A of Table 5 we summarize the daily 

exceedances over 95%, 97.5%, 99%, and 99.5% for both a long and a short positions. Most of the Kupiec’s test 

(1995) results show that one could not reject the models proposed for risk measures calculation, especially for 
short positions. 

Table 5. Backtesting and coverage. * and ** denote statistic significant for the Kupiec’s test at the 5% and 1% 
level respectively. 

  Brent Oil WTI 

Panel A: Exceedances 
VaR95long 5.96%* 5.35% 
VaR95short 5.45% 4.44% 

VaR975long 3.23%* 3.37%** 
VaR975short 2.61% 2.08% 
VaR99long 1.83%** 1.66%** 

VaR99short 1.18% 0.97% 
VaR995long 1.08%** 1.03%** 
VaR995short 0.72% 0.56% 

Panel B: Coverage 
CoverLong 5.17% 5.51% 
CoverShort 5.59% 5.95% 
Aug-9-2011: Front Contract  
CoverLong 8.92% 9.99% 
CoverShort 9.86% 11.35% 
Aug-9-2011: One-year Contract 

 CoverLong 7.29% 8.19% 
CoverShort 7.90% 8.91% 
a
 On August 8, 2011, SPX 500 moves down by 6.90 percent. 

5.2 Coverage 

It is interesting to investigate how the models perform in a commercial environment, such as in margin 

requirements calculation. As the practice of some clearing houses, we define the margin requirements as the 

weighted sum of expected shortfall at 99.00% and 99.50% levels  

99% 99.5%Margin 0.75 0.25ES ES@
.                       (5.1) 

We are interested in the magnitude of coverage the models produce, since it indicates the margin requirements 

that futures contract holders will have to supply. The coverage is calculated as a percentage of the positions 

market value. Coverage varies greatly between contracts and between days so we examine the coverage 

distributions. Figure 4 and 5 show histograms of the estimated coverage. Summary statistics of the coverage are 

in Panel B of Table 5. The average coverage of long and short positions for all the commodities are slightly 
higher than 5%, and short contracts have higher margin requirements than long positions.  

 

 

 

 

 

 

 

 

Figure 4. Coverage – Long Contract 
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Figure 5. Coverage – Short Contract 

In Panel B of Table 5, we also report the coverage of the front and 12.closest long and short contracts on August 

9, 2011 for both of the commodities. On August 8, 2011, SPX 500 moves down by 6.90% because of fears of 

contagion of the European sovereign debt crisis to Spain and Italy. The coverage of futures contracts increases 
slightly to the sharp market movement.  

6. Conclusion 

We present the crucial empirical fact of energy commodity futures prices that a successful model must account 

for: the Samuelson effect. We then apply Schwartz and Smith’s model (2000) to account for Brent crude oil 

futures price dynamics and sweet crude oil futures price dynamics. Our estimation and backtesting results show 
that the two models provide satisfactory risk measures for the listed energy commodity futures contracts.  

There might be several directions for future research. First, it might be interesting to allow non-constant 

volatilities of shocks of n  in our setting and take account of some stylized facts commonly observed in 

finance data, such as volatility clustering and fat tails as in Guo (2017a, 2017b). Second, to simply our 

simulation we fixed parameter and obviously this simplification could be relaxed. Third, we only consider the 

US data, and it is interesting to consider data from other countries, especially from the emerging countries. 

Finally, to facilitate practical application, it would be helpful to discuss the finite sample performance as in 
Shintani and Guo (2016). These extensions are left for future research.  
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