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Abstract 

The object of this paper is to analyse the ability of the Information Criterion in selecting the best copula model. 

For this study, we carry out a simulation exercise considering five one-parameter copula families: Normal, 

Student-t with ν degree freedom, Clayton, Gumbel and Frank. For each family copulas, three degrees of 

dependence and three size samples. The Information Criterion included in the comparison are AIC, BIC, HQIC, 

SIC. The results obtained are as follow; (i) we find that for a high dependence level (0.9) the reliability of the 

Information Criterion (IC) is quite good, but it reduces with the dependence level; (ii) the performance of the IC 

not only depends on the dependence degree but the size sample. In the case of considering negative dependence 

the reliability of the IC does not depend on the dependence degree but the size sample. As the size sample reduce 

the performed of the IC reduce. To last, in a comparison among the IC considered, we find that the BIC criterion 

is the most reliable follow by SIC. AIC and HQIC reaps similar results.  

Keywords: Copula, dependence, information criterion, Kendal tau 

1. Introduction 

A copula is the joint distribution function of random vectors with standard uniform marginal distributions
1
. 

Copula analysis appropriately describes the dependence structure between random variables so that it has been 

applied with success in different fields:  actuarial science, (Frees & Valdez, 1998; Otani & Imai, 2013) public 

health and medical (Winkelmann, 2012), hydrology (Genest, Favre, Béliveau & Jacques, 2007) and finance 

(Nikoloulopoulos, Joe & Li, 2012; Jondeau & Rockinger, 2006; Embrechts, McNeil & Liu, 2002). In this last 

field, the copula models have many applications, as for instance in the area of risk aggregation 

(Chavez-Demoulin, Embrechts & Nešlehová, 2006; Embrechts & Puccetti, 2006; Fantazzini, Dalla-Valle & 

Giudici, 2008) and the study of the contagion effect (Cambriles & Benito, 2023; Rajwani, & Kumar, 2019 and 

Hussain & Li, 2018). Besides, copula analysis can also be used for analysing the properties of an asset as a 

diversifier and risk hedge (Kliber, Marszałek, Musiałkowska & Świerczyńska, 2019; Kang, Mclver, & Arreola, 

2019 and Feng, Wang, & Zhang, 2018). 

As the copula analysis has growth in popularity the number of papers publish in this field has increased 

enormously, proposing: (i) new parametric copula model (Nelsen, 2007; McNeil & Nešlehová, 2009) (ii) new 

methods for parameter copula estimation (Joe, 1997; Tsukahara, 2005) or (iii) some goodness-of fit test for 

selecting copula model (Dobrić & Schmid, 2007; Genest & Rémillard, 2008; Genest, Quessy & Rémillard, 2006; 

Breymann Dias, & Embrechts, 2003; Genest & Rivest, 1993).  

The problem of estimating copula parameter has been largely studied, however, as point Fang, Madsen and Liu 

(2014) selecting the functional form for copula is an open question in literature. To select the best copula model, 

it is very important as not all of them impose the same dependency structure between variables. For example, the 

Gaussian copula imposes a fixed dependency ratio. Other copulas allow us to model changes in this relationship 

of dependence. Thus, the election of the copula is a crucial issue. 

                                                        
1
 For a thorough literature review of copula, see Nelsen (2007) 
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A typical problem that arises when fitting copulas to a set of data is how to decide for the best fitting model. To 

that, different tools can be used such as: (i) graphic methods; (ii) information criterions and (iii) the goodness of 

fit tests. The problem associated with the GoF test is that they do not provide a ranking of the estimated models. 

The essence the GoF test is checking whether the unknown copula actually belongs to the chosen parametric 

copula family or not. Thus, they are only used to check whether we should reject or fail to reject the chosen 

copula. As a consequence, we cannot use the GoF test to choose the parametric copula that fit the best the data 

(Fang et al., 2014). Unlike the GoF test the information criterion can be used to select the best copula from a 

group of copula family.  

Although the existing literature on the performance of the information criteria for the selection of a statistical 

model is quite extensive, in the particular case of copula models it is very limited or practically non-existent. To 

cover this gap, we carry out an experimental design with the porpoise of studying how accurate are the 

information criterion for choosing the true copula when we know that the truce copula exists, and it is among the 

candidates.  

For this study the Information Criterion considered are: Akaike information criterion [AIC] (Akaike, 1974, 

1976), Bayesian information criterion [BIC] (Schwarz, 1978), Hannan-Quinn information criterion [HQIC] 

(Hannan & Quinn, 1979), and Shibata information criterion [SIC] (Shibata, 1976, 1980). To assess the 

performance of these tools we conduct a simulation study comparing the performance of these criterions.  

The remainder of the paper is organized as follow. Section II presents a review of the analysis of copula theory, 

estimation and information criterion. Section III describes the simulation exercise for assessing the performance 

of the IC. Section IV presents the results and Section IV offers some concluding remarks. 

2. A Brief Literature Reviewed on Copula Analysis in the Area of Finance 

In the area of finance, copula analysis has many applications. For instance, it is very useful for risk aggregation. 

In this area, copula analysis can be used for aggregating risks of different nature, as credit risk, exchange rate 

risk and market risk (see Embrechts, Puccetti, & Rüschendorf, 2013; SyuhadaI & Hakim, 2020; and Bolancé, 

Guillén & Padilla, 2015). A European investor may have an asset portfolio composed by USA stocks. This 

portfolio would be affected by two types of risk: market risk and exchange rate risk. To quantify the global risk 

of the portfolio, both risks must be taken into account. Traditionally, this risk has been calculated as the sum of 

both, the Value at Risk (VaR) of the portfolio
2
 and the VaR of the exchange rate

3
. By doing this, it is assumed 

that both sources of risk are perfectly correlated. If this assumption fails, the global risk of the portfolio would be 

overestimated. Copula models, let us to estimate the aggregate risk of a portfolio without assuming a perfect 

correlation between markets which is pretty usual in practice.  

Copula analysis is also applied in the area of operational risk. Operational risk represents the risk of losses arising 

from the materialization of a wide variety of events, including fraud, thief, computer hacking, loss of key staff 

members, lawsuits, loss of information, terrorism, vandalism and natural disasters. The risk management group 

(RMG) of the Basel Committee and industry representatives have agreed on a standardized definition of 

operational risk (BCBS, 2004): i.e. ―the risk arising from inadequate or failed internal processes, people and 

systems or from external events‖ (see Benito & López-Martín, 2018). 

An important issue in this area has to do with the aggregation of operational losses across business units and 

event types to obtain a global Operational Value at risk (OpVaR) measure
4
. A simplistic approach involves the 

estimation of OpVaR measures for each business line and type of risk independently and then adding them up to 

produce the aggregate measure of bank risk. 

As indicated before, calculating global OpVaR by adding the losses from each business line and type of risk 

                                                        
2
 Value at Risk (VaR) of a portfolio asset tell us the maximum amount of an investor may loss over a given time 

horizon a with a given probability.  Formally speaking, the VaR of a portfolio at    probability is given by the 

percentile    of the probability distribution of the return portfolio.  

3
 The VaR of the exchange rate informs us about the minimum price that a currency could reach in a given period 

and with a given probability. At    probability, this measure is given by the percentile    of the probability 

distribution of the exchange appreciation rate. 

4
 In the context of the Actuarial approach, operational risk losses are measured by a high quantile of the loss 

distribution. By similitude with market risk measure —Value at Risk (VaR)—this measure is called Operational 

Value at Risk (OpVaR).  
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involves an assumption of perfect dependence among the different losses
5
. Some empirical papers show that the 

correlation between the severity data from different types of risk and business line is very small in some cases; 

hence, calculating the OpVaR of the company by adding the OpVaR of different business lines and risk types 

may overestimate the risk. Applications of copula model in this field can be found in Chavez-Demoulin et al. 

(2006), Embrechts and Puccetti (2006), Chapelle, Crama, Hubner & Peters, (2005) and Fantazzini et al. (2008).  

Copula analysis can also be applied for studding the contagion effect between financial markets. Forbes and 

Rigobon (2002) define contagion as the significant increase in cross-market correlations between any two 

markets from pre-crisis period to crisis period. To assess this subject, correlation analysis and Dynamic 

Conditional Correlation (DCC) has been traditionally used. Both methods allow us to identify dependence and 

contagion effect when there exists linear relationship between the marginals or series under the study. However, 

when the relationship between marginals is non-linear these models will not be able to reap correct results. To 

overcome these limitations a copula analysis has been proposed. Application of copula analysis for analyzing 

contagion effect can be found in Rajwani and Kumar (2019), Wang and Liu (2011), Horta, Mendes and Vieira 

(2010), Hussain and Li (2018), Weng, Wei and Huang (2012), Nguyen, Ishac and Henri (2017) and more recently 

in Cambriles and Benito (2023).  

To last, copula analysis can also be used for analyzing the properties of an asset as diversifier and risk hedge. In 

this field, recently studies use copula models for studying the ability of Bitcoin to act as a diversification asset 

and hedge against stock assets risk, see for instance, García-Jorcano and Benito (2020), Kliber et al. (2019), 

Kang et al. (2019), Klein, Thu, & Walther (2018) and Feng et al. (2018) among others. The motivation for these 

studies is that, as the literature points out, stock markets are exposed to factors that are different from those of 

Bitcoin. While the traditional stock markets depend on macroeconomic variables, such as the government's fiscal 

or monetary policy, Bitcoin depends more on speculative factors and supply and demand. This fact opens the 

possibility that the Bitcoin market is a source of diversification against the risk of the stock markets 

(García-Jorcano & Benito, 2020). The results obtained in the papers aforementioned, offer positive evidence to 

this regard.  

3. Copula Theory 

3.1 Copula Basics 

Let            be a set of random variables with a marginal distribution function given by 𝐹    ), where 

𝐹    )          ) for 𝑖       . A copula is a function that joins (or couples) the univariate distribution 

functions to a multivariate distribution function  𝐹), as denoted by   in the equation: 

𝐻           )    𝐹    ) 𝐹    )   𝐹    )) (1) 

Alternatively, a copula can be defined as the multivariate distribution,  , of a vector of random variables with 

uniformly distributed marginal      ) 

  𝑢  𝑢   𝑢 )  𝐻 𝐹 
−  𝑢 ) 𝐹 

−  𝑢 )   𝐹 
−  𝑢 )) (2) 

where the  𝑢  𝐹   )  and  𝐹 
− ’s are the quantile functions of the marginals. A copula extracts the 

dependence structure from the joint distribution, independent of marginal distributions.  

The copula density is given by
6
 

𝑐 𝑢  𝑢   𝑢 )   𝐹 
−  𝑢 ) 𝐹 

−  𝑢 )   𝐹 
−  𝑢 ))∏ 𝑓  𝐹 

−  𝑢 ))
 

 = 
 (3) 

where 𝑓  𝐹 
−  𝑢 )) is the probability density function (pdf) for the variable   

−    ) and   ) is the join pdf 

for multivariate vector: 𝐹 
−  𝑢 ) 𝐹 

−  𝑢 )   𝐹 
−  𝑢 ).  

                                                        
5
 Let      ; it can be shown that if the correlation coefficient between   and   is equal to 1, then 

      )        )        ).  

6
 𝑐 𝑢  𝑢     𝑢 )  

𝜕𝑐 𝑢1 𝑢2    𝑢𝑑)

𝜕𝑢1𝜕𝑢2    𝜕𝑢𝑑
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Table 1 displays the functional forms of the five copulas used in this paper: (i) Gaussian, (ii) Student-t, (iii) 

Clayton, (iv) Gumbel and (v) Frank. The two first below the elliptical copula family and the rest to the 

Archimedean copula family.  

Table 1. Functional forms for elliptical and archimedean copulas 

Elliptical copulas 

  Functional form of copula Density copula 

Gaussian 

copula 

  𝑢  𝑢 ;  𝜌)  ɸ  ɸ
−  𝑢 ) ɸ

−  𝑢 )) 
𝑐 𝑢  𝑢 ;  𝜌) = 

 

√ − 2
    ( 

 

   − 2)
   

   𝜌       
 )) 

Student-t 

copula 
  𝑢  𝑢 ; 𝜌)        1

−  𝑢 )   2

−  𝑢 )) 

𝑐 𝑢  𝑢 ;  𝜌) =
𝐾

√ − 2
*  

 

   − 2)
   

   𝜌     

  
 )+

𝑣+2

2 [   𝑣−   
 )   𝑣−   

 )]
𝑣+2

2  

Archimedean copulas 

  Functional form of copula Density copula 

Clayton 

copula 
  𝑢  𝑢 ;  )   𝑢 

−  𝑢 
−   )−    𝑐 𝑢  𝑢 ;   )      ) 𝑢 

−  𝑢 
−   )−

 
 
−   𝑢 𝑢 )

− −  

Gumbel 

copula 

  𝑢  𝑢 ;  )        (      𝑢 ))
 

       𝑢 ))
 )

   
  

𝑐 𝑢  𝑢 ;  )

     

  )  −       )  𝑢 𝑢 )
−     𝑢 )

 −     𝑢 )
 −  

Frank  

copula 

  𝑢  𝑢 ; 𝜃)

   
 

𝜃
 𝑙𝑛 ( 

 
 𝑒 −𝜃𝑢1)   ) 𝑒 −𝜃𝑢2)   )

𝑒 −𝜃)   
) 

𝑐(𝑢  𝑢 ; 𝜃)

 
𝜃[        𝜃)]      𝜃𝑢 𝑢 )

([        𝜃)]           𝜃𝑢 ))         𝜃𝑢 ))
  

Note:  ɸ  is the standard bivariate normal; 𝜌 is simply the linear correlation coefficient;  ɸ−  is the inverse of the 

standard univariate Gaussian;    is the standard bivariate Student-t with 𝑣 degrees freedom;    

−  is the inverse of the 

standard univariate Student-t with 𝑣  degree of freedom. In copula Clayton the dependence is measure by   parameter.   

denotes de dependence parameter in copula Gumbel and 𝜃 is the dependence parameter in copula Frank. In addition, 

   (
 

 
)  (

   

 
)
− 

 (
 

 
  );   [    𝑢 )

     𝑢 )
 ]

   
 

3.2 Estimation 

In the experimental design we use the inference in margins (IFM) estimation method for estimating copula 

parameter
7
. This method is known as a two-step maximum likelihood method. In the first step, the marginal 

distributions are fitted by any fitting method of univariate probability distribution for each random variable. In 

the second step, the parameter of the copula model is estimated by maximizing the likelihood function 𝐿 𝜃) 

                                  𝜃     𝑚   𝐿 𝜃)  

𝜃     𝑚  ∑ 𝑙𝑛 𝑐(𝑢      𝑢   ; 𝜃)
 

 = 
 (4) 

where 𝑐𝜃 is the density function of the parametric copula  𝜃      and 𝑢  𝐹 (  ). For practical reasons, the 

parameter 𝜃 is estimated by maximizing 

                                                        
7 Joe (1997) demonstrates that under standard regularity conditions, this two-stage estimation is consistent, and 

the parameter estimated are asymptotically efficient.  
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𝜃     𝑚  ∑ 𝑙𝑛 𝑐(�̂�      �̂�   ; 𝜃)
 

 = 
 (5) 

the symbol ∑  of equations 4 and 5 does not look good  

where �̂�   �̂�      �̂�     are the pseudo-observations
8
 which can be calculated as       : 

 

 

�̂�    (
𝑛

𝑛   
)𝑢    (6) 

  

As for copula selection, we are only interested in the fit of the copula, we do not wish to introduce any 

distributional assumption for the margins so that we use the empirical margins to transform the data set into the 

observed copula. Thus, 𝑢    will be calculated using the empirical distribution of the    for 𝑗      .  

 

3.3 Information Criterion 

Four different, popularly known, methods are used for our purpose. The one most popular is Akaike’s (1974) 

information criterion. The Akaike Information Criterion (AIC) has commonly been used and significantly known 

method in the model selection for decades in a wide variety of fields for analyzing actual data. AIC is calculated 

as follow:  

 𝐼             𝐿  𝜃)    𝑘 

where     𝐿  𝜃)  the log likelihood and 𝑘 is the number of parameters. AIC has a strong theoretical 

underpinning, based Kullback-Leibler information
9
. In AIC, the estimation is divided into two sets and the 

compromise takes place between the log maximized likelihood i.e.,       𝐿  𝜃) (the lack of fit component) and 

𝑘 (the penalty component) which increases with the number of parameters, and it is used to prevent overfitting. 

Penalizing likelihood in the model is an attempt to select a more parsimonious model.  

The advantages of this criterion are: (i) does not require the assumption that one of the candidate models is 

the ‖true‖ or ‖correct‖ model; (ii) all the models are treated symmetrically, unlike hypothesis testing; (iii) can be 

used to compare nested as well as non-nested models; (iv) can also be used to compare models based on different 

families of probability distributions.  

By other hand, existing studies showed that AIC is not consistent and hence does not lead to the choice of the 

correct model, with high probability, in large samples. Shibata (1976) showed through empirical evidence that 

AIC has the tendency to choose models which are over-parameterized. Various modifications have been 

produced to overcome this lack of consistency. Schwarz (1978) developed a consistent criterion for models 

defined in terms of their posterior probability (Bayesian approach) which is given as: 

 𝐼           𝐿  𝜃)    𝑘  𝑙𝑜𝑔 𝑛) 

                                                        
8 The scaling factor  𝑛  𝑛   )) is only introduced to avoid potential problems with  𝜃 

 blowing up at the 

boundary of [   ] . 

9 For a density   that represents the true model and a density 𝑔 of the model that is going to prove, the relative 

entropy of Kullback-Leibler can be written as: 

𝐷𝐾𝑙  ∑𝑓  )    
𝑓  )

𝑔  )
 𝐸 [    𝑓  )     𝑔  )]

 𝜖𝑋

 

Assuming that the true model is unknown but constant the previous expression is simplified: 

𝐷𝐾𝑙    𝐸𝑓[   𝑔  )] 

where   is a constant. The idea is to find the model 𝑔 to minimize the loss with respect to the true ƒ. By 

minimizing the expected value of the information loss given by 𝐷𝐾𝑙 , the Akaike criterion expression is derived 

       𝐿  𝜃)    𝑘.  
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where 𝑛 is the sample size. Some characteristics of BIC are: (i) consistent unlike AIC; (ii) like AIC, the models 

need not be nested to use BIC; and (iii) AIC penalizes free parameters less strongly than does the BIC. 

Hannan-Quinn (1979) proposed another consistent criterion based on law of iterated logarithm, which has the 

quality for penalty function to decrease as fast as possible for a strongly consistent estimator, as the sample size 

increases. The criterion is given by:  

𝐻 𝐼             𝐿  𝜃)     𝑘  𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)) 

Similar to AIC, the HQC introduces a penalty term for the number of parameters in the model, but the penalty is 

larger than one in the AIC. HQC, like BIC, but unlike AIC, is not asymptotically efficient.  

To last information criterion used is the proposed by Shibata [ SIC] (Shibata, 1976, 1980). This criterion is 

defined as follows 

 𝐼             𝐿  𝜃)   𝑙𝑜𝑔 𝑛    𝑘) 

where 𝑛 is the number of data, and 𝑘 is the number of parameters used in the model Thus, one should select the 

model that yields the smallest value of AIC, BIC, HQIC, and SIC, because this model is estimated to be 

―closest" to the unknown truth, among the candidate models considered 

4. Experimental Design 

A large-scale Monte Carlo experiment was conducted to compare the ability of the information criterions (IC) in 

order to choose the true copula from a series of given candidate families where the true copula is included.  

In this experimental design, five one-parameter copula families were considered: Normal, Student-t with 𝑣 

degree freedom, Clayton, Gumbel and Frank. They are abbreviated as  ,      𝐺 and 𝐹, respectively, in the 

forthcoming tables. For each family copulas, three degrees of dependence, were considered both positive and 

negative                ) and three size samples  𝑛              ). In addition, for the elliptic copulas 

and the Frank copula, three negative degrees of dependence have been taken into account (τ = −0.9, −0.5, −0.1). 

To last, to curtail the computational effort, the comparison was limited to the bivariate case.  

For each copula family and fixed value of  , 1.000 bivariate random samples of size 𝑛 were simulated. These 

simulations were used to study the performance of the information criterion. In particular, for the 1000 bivariate 

samples, we calculate the percentage of times that the candidate copulas are pointed as the best in fitting data for 

each criterion. The information criterion considered in this study are AIC, BIC, HQIC and SIC. 

The procedure for studying the performance of the Information Criterion is as follow:  

Step 1: Set        and repeat the following steps for every             

1.1 For a given copula family considered (N,   , C, G and F) we generate a bivariate random sample 

   {    
      

  , 𝑖         𝑛 where 𝑛 is the size sample.   

1.2 Assuming that the marginal follows a student-t distribution with 𝑣  and 𝑣  degrees freedom respectively 

we get a random sample of    {    
      

  , 𝑖         𝑛. 

1.3 For each simulated sample    we calculate the pseud-observations  ̂  { ̂   
   ̂   

  , fit the candidate 

copulas (N,   , C, G and F) and calculate the Information Criterion (IC). After, we find out for the copula 

that provide the lowest information criteria 𝐼     𝐼   𝐼   𝐻𝐼   𝐼  .  

Step 2: We calculate the percentage of times that each 𝐼     𝐼   𝐼   𝐻𝐼   𝐼   point to candidate copulas 

as the best in fitting data.  

In this simulation, one of the interest is to check whether the true copula used to generate the random sample 

gives the highest proportions of least IC.  

5. Results 

In this section we report the results obtained in the experimental design. First, we analyse the performance of the 

information criterion in fitting copula simulated data when we consider positive dependence    (0.9, 0.5 and 0.1) 

and three sample size 𝑛 (1000, 500, 100). Then, we report the results for the case of negative dependence.  

5.1 Performance of the Information Criterion with Positive Dependence 

For different dependence degree τ (0.9, 0.5 and 0.1) and three sample size n (1000, 500, 100), Table 2 reports the 

percentage of times that each information criterion (IC) points the candidate copulas as the best in fitting data, 

knowing that the best copula is that that reap the least IC. As an example, Table 2 shows that when the true 

copula is the Normal copula with a dependence level of 0.9 and a sample size of 1,000, the AIC criterion point to 
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the Normal copula as the best in fitting data the 89,6% of the times. In this table we show in bold the cases in 

which the candidate copula is the true copula.  

For tree of the copula family considered, the Normal, Student-t and Frank, it is observed that, for a fixed sample 

size, the accurate of the information criterion is high for a medium and high level of dependence. However, the 

accurate of these criterions is reduced as the level of dependency decreases. Figure 1 (Panel (a)) illustrates this 

result for the AIC information criterion. For example, when the true copula is the Frank copula with a 

dependence level of 0.1 and n = 1000, the AIC criterion points this copula as the best in fitting data the 47.7% of 

the times and the 100% of the times for dependence levels of 0.5 and 0.9. When the true copula is the 

Student-t(ν), the effectiveness of this criterion is: 75.9%, 85.0% and 99.9% for dependence level of 0.1, 0.5, and 

0.9 respectively. In the case of Gumbel and Clayton, the accurate of the information criterion is high for all 

dependence levels
10

.  

Moreover, we notice that the smaller the sample size, the lowest is the accurate of the information criterion. 

Panel (b) of Figure 1 illustrate these results for AIC information criterion. For example, when the true copula is 

the Normal copula with a dependence level of 0.9 and 𝑛      , 𝑛      and 𝑛      the AIC criterion 

points this copula as the best in fitting data the 89.9%, 84,4% and 50.3% respectively. When the true copula is 

the Student-t(𝑣), the effectiveness of this criterion for a dependence level of 0.5 is: 85.0%, 64.0% and 52.9% for 

a sample size of  1000, 500, and 100 respectively. In the case of Gumbel and Clayton, the accurate of the 

information criterion is high for all dependence levels
11

.  

Table 3, which is a sub table of Table 2, reports the percentage of times that each information criterion (IC) 

points the candidate copulas as the best in fitting data, when the candidate copula is true. In this table we shade 

in grey the IC that reap best results, it is to say, the best accurate.  

We observed that the BIC criterion reaps better results in 34 of the 42 cases analysed, followed by the SIC 

criterion with 20, and 13 both, the AIC criterion and the HQIC criterion. Although the SIC criterion performs the 

best after BIC, it shows a somewhat erratic behaviour, which is reflected in a greater variance of the percentages 

offered by the information criteria, when the SIC criterion is included in the comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
10

 Note that Clayton copula for       could not be estimated for any sample size.  
11

 Note that Clayton copula for       could not be estimated for any sample size.  
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Table 2. Proportion of the least IC obtained from 1,000 repetitions 

T 

 

True 

Copula 

Kendall’s 

τ 

Proportion of the least AIC Proportion of the least BIC Proportion of the least HQIC Proportion of the least SIC 

N t C G F N t C G F N t C G F N t C G F 

1000 

 

N 

 

0.1 65.9 4.1 -- 8.8 21.2 68.9 0.3 -- 8.8 22 68.1 1.4 -- 8.8 21.7 0 82.3 -- 4.8 12.9 

0.5 90.3 9.5 0.2 0 0 99.2 0.6 0.2 0 0 97.2 2.6 0.2 0 0 0 99.8 0.2 0 0 

0.9 89.6 10.4 0 0 0 99.0 1.0 0 0 0 95.2 4.8 0 0 0 23.4 76.6 0 0 0 

 t 

 

0.1 7.6 75.9 0 16.2 0.3 8.1 74 0 17.6 0.3 7.8 75.2 0 16.7 0.3 7.3 77.3 0 15.1 0.3 

 
0.5 4.7 85.0 0 10.1 0.2 4.9 84.7 0 10.2 0.2 4.8 84.8 0 10.2 0.2 4.6 85.1 0 10.1 0.2 

 
0.9 0.1 99.9 0 0 0 0.2 99.8 0 0 0 0.1 99.9 0 0 0 0.1 99.9 0 0 0 

 C 

 

0.1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

 
0.5 0 0 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100 0 0 

 
0.9 0 0 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100 0 0 

 
G 

 

0.1 0 0.3 -- 99.7 0 0.1 0.1 -- 99.8 0 0 0.3 -- 99.7 0 0 0.5 -- 99.5 0 

 
0.5 0 0.1 0 99.9 0 0 0 0 100 0 0 0.1 0 99.9 0 0 0.2 0 99.8 0 

 
0.9 0 0.1 0 99.9 0 0 0.1 0 99.9 0 0 0.1 0 99.9 0 0 0.1 0 99.9 0 

 F 

 

0.1 12.7 37.5 -- 2.1 47.7 15.2 25.6 -- 2.9 56.3 14 33.4 -- 2.3 50.3 11.4 44.8 -- 1.6 42.2 

 
0.5 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100 

 
0.9 0 0 -- 0 100 0 0 -- 0 100 0 0 -- 0 100 0 0 -- 0 100 

500 

 

N 

 

0.1 55.0 4 -- 16.7 24.3 56.9 0.8 -- 17.6 24.7 56.5 1.8 -- 17 24.3 37.5 28.3 -- 13.4 20.8 

0.5 90.4 8.6 0 0.8 0.2 98.2 0.7 0 0.9 0.2 95.8 3.2 0 0.8 0.2 50.6 48.5 0 0.7 0.2 

0.9 84.4 15.5 0 0.1 0 98.6 1.3 0 0.1 0 94.2 5.7 0 0.1 0 51.9 48 0 0.1 0 

 t 

 

0.1 0 96.1 -- 3.9 0 0.5 88.1 -- 10.7 0.7 0 93.8 -- 5.7 0.5 0 97.6 -- 2.4 0 

 
0.5 13.2 64.4 0.1 21.6 0.7 14.3 62.1 0.1 22.8 0.7 13.7 63.7 0.1 21.8 0.7 12.5 66.1 0.1 20.7 0.6 

 
0.9 0.3 99.5 0 0.2 0 1.2 98.3 0 0.5 0 0.4 99.4 0 0.2 0 0.1 99.7 0 0.2 0 

 C 

 

0.1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

 
0.5 0 0 100 0 0 0 0 100 0 0 0 0 100 0 0 0 0 100 0 0 

 
0.9 0 -- 100 0 0 0 -- 100 0 0 0 -- 100 0 0 0 -- 100 0 0 

 G 

 

0.1 1.2 1.3 -- 96.8 0.7 1.4 0.1 -- 97.5 1 1.3 0.6 -- 97.3 0.8 0.6 2.5 -- 96.3 0.6 

 
0.5 0.2 1.2 0 98.6 0 0.3 0.5 0 99.2 0 0.3 1 0 98.7 0 0 1.9 0 98.1 0 

 
0.9 0.5 0 0 99.5 0 0.5 0 0 99.5 0 0.5 0 0 99.5 0 0.5 0 0 99.5 0 

 F 

 

0.1 15.5 36.3 -- 7.1 41.1 20 20.1 -- 8.7 51.2 17.4 29.3 -- 7.8 45.4 13.4 46.3 -- 5.6 34.7 

 
0.5 4.6 0.2 0 0.1 95.1 4.6 0 0 0.1 95.3 4.6 0.1 0 0.1 95.2 4.5 0.7 0 0.1 94.7 

 
0.9 0 0 -- 0 100 0 0 -- 0 100 0 0 -- 0 100 0 0 -- 0 100 

100 

 

N 

 

0.1 35.3 5.9 -- 24.7 34.1 36.9 0.6 -- 26.9 35.6 36.5 2.5 -- 26 35 34.9 7.2 -- 24.2 33.7 

0.5 66.7 7.3 3.2 14.8 8 71.8 0.1 3.3 16.5 8.3 71.2 1.3 3.2 16 8.3 64.7 9.5 3.1 14.7 8 

0.9 50.3 39.5 -- 7.7 2.5 55,4 25.2 -- 14.8 4.6 53.0 33.1 -- 10.7 3.2 49,9 40.1 -- 7.6 2.4 

 t 

 

0.1 10.5 49.8 -- 30.5 9.2 16.2 28.3 -- 41.7 13.9 12.7 40.5 -- 34.8 11.9 3.7 78.9 -- 14 3.4 

 
0.5 11.1 52.9 -- 26.4 9.6 18.4 23.4 -- 42.7 15.5 14.3 39.9 -- 33 12.8 4.1 81.6 -- 10.8 3.5 

 
0.9 0.1 99.7 0 0.2 0 0.1 99.7 0 0.2 0 0.1 99.7 0 0.2 0 0.1 99.7 0 0.2 0 

 C 

 

0.1 -- -- -- -- -- -- -- -- -- -- 2 -- -- -- -- -- -- -- -- -- 

 
0.5 1.5 3.7 93.6 0 1.2 1.8 2.8 94.1 0 1.3 1.8 3 93.9 0 1.3 1 5.3 92.6 0 1.1 

 
0.9 0.3 -- 96.9 0 2.8 0.3 -- 96.9 0 2.8 0.3 -- 96.9 0 2.8 0.3 -- 96.9 0 2.8 

 G 

 

0.1 10.9 10.4 -- 76.4 2.3 11 8.8 -- 77.5 2.7 10.9 10.2 -- 76.6 2.3 10.9 10.4 -- 76.4 2.3 

 
0.5 8.86 13.29 0.10 75.73 2.01 10.47 8.96 0.10 78.35 2.11 9.67 10.78 0.10 77.34 2.11 5.84 21.55 0.10 70.59 1.91 

 
0.9 0.00 0.00 99.89 0.11 0.00 0.00 0.00 99.89 0.11 0.00 0.00 0.00 99.89 0.11 0.00 0.00 0.00 99.89 0.11 0.00 

 
F 

 

0.1 41.1 4.7 -- 17.7 36.4 43.1 1.2 -- 18.3 37.3 42.5 3 -- 17.8 36.6 26.5 24.9 -- 15.6 32.9 

 
0.5 26.9 28.3 1 3.3 40.5 29.1 23.5 1.1 3.5 42.8 28 26.5 1 3.4 41.1 26.1 31.9 0.8 3.2 38.0 

  0.9 2.5 0.6 -- 0.6 96.3 2.7 0.2 -- 0.7 96.4 2.6 0.4 -- 0.7 96.3 1.2 2.3 -- 0.5 96.0 
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Panel (a): Fixed a sample size 

 

Panel (b): Fixed a dependence level 

 

 

  

  
Figure 1. Accurate of AIC information criterion 
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Table 3. Percentage of times that the true copula reaps the least IC 

  True Copula τ AIC BIC HQIC SIC 

1000 N 0.1 65.9 68.9 68.1 0.0 

    0.5 90.3 99.2 97.2 0.0 

    0.9 89.6 99.0 95.2 76.6 

  t 0.1 75.9 74.0 75.2 77.3 

    0.5 85.0 84.7 84.8 85.1 

    0.9 99.9 99.8 99.9 99.9 

  C 0.1 -- -- -- -- 

    0.5 100 100 100 100 

    0.9 100 100 100 100 

  G 0.1 99.7 99.8 99.7 99.5 

    0.5 99.9 100 99.9 99.8 

    0.9 99.9 99.9 99.9 99.9 

  F 0.1 47.7 56.3 50.3 42.2 

    0.5 100 100 100 100 

    0.9 100 100 100 100 

500 N 0.1 55 56.9 56.5 37.5 

    0.5 90.4 98.2 95.8 50.6 

    0.9 84.4 98.6 94.2 51.9 

  t 0.1 96.1 88.1 93.8 97.6 

    0.5 64.4 62.1 63.7 66.1 

    0.9 99.5 98.3 99.4 99.7 

  C 0.1 -- -- -- -- 

    0.5 100 100 100 100 

    0.9 100 100 100 100 

  G 0.1 96.8 97.5 97.3 96.3 

    0.5 98.6 99.2 98.7 98.1 

    0.9 99.5 99.5 99.5 99.5 

  F 0.1 41.1 51.2 45.4 34.7 

    0.5 95.1 95.3 95.2 94.7 

    0.9 100 100 100 100 

100 N 0.1 35.3 36.9 36.5 34.9 

    0.5 66.7 71.8 71.2 64.7 

    0.9 50.3 55.4 53 49.9 

  t 0.1 49.8 28.3 40.5 78.9 

    0.5 52.9 23.4 39.9 81.6 

    0.9 99.7 99.7 99.7 99.7 

  C 0.1 -- -- -- -- 

    0.5 93.6 94.1 93.9 92.6 

    0.9 96.9 96.9 96.9 96.9 

  G 0.1 76.4 77.5 76.6 76.4 

    0.5 75.73 78.35 77.34 70.59 

    0.9 0.11 0.11 0.11 0.11 

  F 0.1 36.4 37.3 36.6 32.9 

    0.5 40.5 42.8 41.1 38.0 

    0.9 96.3 96.4 96.3 96.0 

This table reports the percentage of times that the IC point the true copula as the best in fitting 
data. For instance, being Normal copula the true copula for a size sample of 1000 and a 
dependence degree of 0.1 AIC point to the Normal copula as the best in the 65,9% of the 
sample analysed.  

 

5.2 Performance of the Information Criterion with Negative Dependence 

As the Clayton and Gumbel copula do not permit the estimation of negative dependence, this study has been 

done just only for Normal, Student -t and Frank copula.  

Table 4 reports -for different dependence degree (  =-0.9, -0.5 and -0.1) and three sample size (n=1000, 500, 

100), the percentage of times that each information criterion (IC) points to the three candidate copulas as the best 

in fitting data. 

As the results obtained in the case of positive dependence, we find that the performance of the IC reduces as the 

size sample reduces. However, in the case the dependence degree does not affect the performance of the IC. Just 

only in the Normal copula, the accurate of the IC reduce with the dependence degree.  

Table 5, which is a sub table of Table 4, reports the percentage of times that each information criterion (IC) 

points the candidate copulas as the best in fitting data, when the candidate copula is true. In this table we shade 

in grey the IC that reap best results, it is to say, the best accurate.  
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We observed that the BIC criterion reaps better results in 21 of the 27 cases analysed, followed by the SIC 

criterion with 8, HQIC with 4 and AIC 2. Thus, again we find that BIC perform the best in selecting the true 

copula model between the candidates. 

Table 4. Proportion of the least IC obtained from 1,000 repetitions 

  
 Proportion of the least AIC 

Proportion of the least 

BIC 

Proportion of the least 

HQIC 

Proportion of the least 

SIC 

 
N t F N t F N t F N t F 

1000 

 

N 

 

-0.1 73.3 5.9 20.8 78.2 0.1 21.7 77.4 1.0 21.6 42.3 39.1 18.6 

-0.5 62.3 37.6 0.1 66.7 33.2 0.1 64.1 35.8 0.1 49.3 50.3 0.1 

-0.9 86.8 0.5 0 99.5 4.4 0.0 95.6 4.4 0 53.7 46.3 0. 

 t 

 

-0.1 0 100 0 0 100 0 0 100 0 0 100 0 

 
-0.5 17.9 82 0.1 18.6 81.3 0.1 18.6 81.3 0.1 17 82.9 0 

 
-0.9 0 100 0 0 100 0 0 100 0 0 100 0 

 F 

 

-0.1 3.9 0.5 95.6 4 0 96 2.2 3.6 94.2 2.2 3.6 94.2 

 
-0.5 1.1 96.3 2.6 3.1 90.2 6.7 1.9 93.7 4.4 0.4 98.7 0.9 

 
-0.9 6.1 2.3 91.6 7.1 0.7 92.2 6.8 1 92.2 4.1 5.2 90.7 

500 

 

N 

 

-0.1 63.3 7.4 29.3 68.7 1 30.3 67.5 2.7 29.8 37.7 37.3 25.0 

-0.5 79.1 20.6 0.3 86.1 13.5 0.3 83.4 16.2 0.4 48.7 51.2 0.1 

-0.9 74.6 25.4 0.0 85.5 14.5 0 81.4 18.6 0 49.3 50.7 0 

 t 

-0.1 0 99.9 0.1 1.4 97.3 1.3 0.3 99.5 0.2 0 100 0 

-0.5 17.9 82 0.1 19.9 80 0.1 18.6 81.3 0.1 17 82.9 0 

-0.9 0.7 99.3 0 1.8 98.2 0 0.9 99.1 0 0.5 99.5 0 

 F 

 

-0.1 14.7 7.8 77.5 15.6 5.3 79.1 15.3 6 78.7 8.5 17.8 73.7 

 
-0.5 11.4 2.2 86.4 12.2 0.4 87.4 12.1 0.8 87.1 6.4 10.5 83.1 

 
-0.9 7 1.1 91.9 7.4 0.5 92.1 7.3 0.7 92 4.3 5.3 90.4 

100 

 

N 

 

-0.1 52.6 7.0 40.4 56.4 1.0 42.6 55.0 3.5 41.5 33.8 35.0 31.2 

-0.5 81.3 8.5 10.2 87.4 1.9 10.7 84.6 4.9 10.7 46.9 44.2 8.9 

-0.9 68.0 26.31 5.7 82.0 2.0 6.0 75.0 19.3 5.7 37.7 57.4 4.9 

 t 

 

-0.1 27.4 66.3 24.1 39.2 45 33.6 33.1 55.7 29 18.6 82.3 8.9 

 
-0.5 21.9 70.2 7.9 38 49.9 12.2 28.2 62.1 9.7 4.6 90.2 0 

 
-0.9 32.2 5.6 69.2 31.9 7 68.1 32 6.4 68.6 32.5 5.1 3.5 

 F 

 

-0.1 20.9 4 75.1 22.3 1.1 76.6 21.8 2.3 75.9 13.3 16.3 70.4 

 
-0.5 21.2 3.6 75.2 22.4 1 76.6 22 2.1 75.9 13.7 15.7 70.6 

  -0.9 18.4 3.6 78 19.1 1.2 79.7 18.9 2.1 79 11.5 15.3 73.2 

Table 5. Percentage of times that the true copula reaps the least IC 

  True Copula τ AIC BIC HQIC SIC 
1000 N 

  
  

-0.1 73.3 78.2 77.4 42.3 
  -0.5 62.3 66.7 64.1 49.3 
  -0.9 86.8 99.5 95.5 53.7 
  t -0.1 100 100 100 100 
    -0.5 82 81.3 81.3 82.9 
    -0.9 100 100 100 100 
  F -0.1 95.6 96 94.2 94.2 
    -0.5 2.6 6.7 4.4 0.9 
    -0.9 91.6 92.2 92.2 90,7 

500 N -0.1 63.3 68.7 67.5 37.7 
    -0.5 79.1 86.1 83.4 48.7 
    -0.9 74.6 85.5 81.4 49.3 
  t -0.1 99.9 97.3 99.5 100 
    -0.5 82 80 80.3 100 
    -0.9 99.3 98.2 99.1 99.5 
  F -0.1 77.5 79.1 78.7 73.7 
    -0.5 86.4 87.4 87.1 83.1 
    -0.9 91.9 92.1 92 90.4 

100 N -0.1 52.6 56.4 55.0 33.8 
    -0.5 81.3 87.4 84.6 46.9 
    -0.9 68.0 82.0 75.0 37.7 
  t -0.1 66.3 45 55.7 82.3 
    -0.5 70.2 49.9 62.1 90.2 
    -0.9 5.6 7 6.4 5.1 
  F -0.1 75.1 76.6 75.9 70.4 
    -0.5 75.2 76.6 75.9 70.6 
    -0.9 78 79.7 79 73.2 

This table reports the percentage of times that the IC point the true copula as the best in fitting data. For 
instance, being Normal copula the true copula for a size sample of 1000 and a dependence degree of -0.1, 
AIC point to the Normal copula as the best in the 73.3% of the sample analysed.  
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6. Conclusions 

Copula analysis outperforms traditional linear correlation analysis and the Dynamic Conditional Correlation 

(DCC) model in describing the dependence structure between random variables. Because of this the use of 

copula models has become very popular during the last years specially in the financial field.  

As the copula analysis has growth in popularity the number of papers publish in this field has increased 

enormously, proposing new copulas and new methods for parameter copula estimation. A typical problem that 

arises when fitting copulas to data is how to decide for the best fitting model. Meanwhile the problem associated 

with the parameter copula estimation has been large study in the literature selecting the functional form for 

copula is still an open question in literature. To cover this gap, in this paper we assess the ability of the 

Information Criterion for choosing the best copula model when we know that the true copula exists, and it is 

among the candidates.  

To assess the performance of the Information Criterion we conduct a simulation study. In this study, five 

one-parameter copula families were considered: Normal, Student-t with v degree freedom, Clayton, Gumbel and 

Frank. For each family copulas three degrees of dependence, were considered (0.9, 0.5, 0.1) and three size 

samples (1000,500,100). In addition, for the elliptical copulas and the Frank copula have been taken into account 

three negative degrees of dependence (−0.9, −0.5, −0.1).  

The results obtained are as follow: First, we find that for a high dependence level (0.9) the reliability of the 

Information Criterion (IC) is quite good. Overall, all the IC point the true copula as the best in fitting data in around 

the 90% of the cases (size sample equal to 1000). Second, as the dependence decreases the performance of the IC 

decreases. Thus, for a dependence level of 0.1 and a size sample of 1000 the percentage of success reduce to 50% in 

many cases. Third, the performance of the IC not only depend on the dependence degree but the size sample. To 

this respect we find that, as the size sample reduces, the reliability of the IC reduces. Thus, for a size sample 100 

and 0.1 dependence level, the success percentage of the IC reduce to 35% in same cases. In the case of considering 

negative dependence the reliability of the IC does not depend on the dependence degree but the size sample. As the 

size sample reduce the performed of the IC reduce. To last, in a comparison among the IC considered, we find that 

the BIC criterion is the most reliable follow by SIC. The AIC and HQIC reaps similar results. 

The results aforementioned suggest that to use IC for choosing the best copula model when the dependence degree 

between the variables is potentially low and the sample size is reduced, may not be appropriate, as the probability of 

failing in choosing the best copula model is very high. The problem has to do with the fact that not all copula 

models impose the same dependency structure. For instance, Gaussian copula is symmetric and does not exhibit tail 

independence; the Student-t copula has symmetric but nonzero tail dependence; Clayton copula has asymmetric tail 

dependence being positive in lower tail and zero in upper tail; the same as the Gumbel copula but in reverse. Thus, 

to study dependence using the inappropriate copula could lead us to draw erroneous conclusions.  

The same problem may appear when we analyse the properties of an asset as diversifier and hedge risk, where 

the dependence between variable is potentially low. In these cases, to use goodness of fit copula test may be 

preferred. As far as we know, this is the first study that highlight the limitations of Information Criterion in 

choosing copula model.  

In the same line of this paper, for future research it would be interesting to evaluate the performance of the 

goodness of fit copula test and to analyse if -as in the case of the Information Criterion- it depends on the 

dependence degree of the variables analysed.  It would be even more interesting to compare the reliability of 

the information criteria - which are very easy to implement- with some of the tests developed for the selection of 

copulas. As the computational cost of analysing the performance of these tests is very high, we have considered 

it convenient to leave this task for future research. 

Acknowledgements 

The work was supported by Universidad Nacional de Educación a Distancia (UNED) [076-044355 ENER-UK] 

and the Spanish Ministry of Science and Innovation [PID2020-113367RBI00]. 

References 

Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19, 

716-723. https://doi.org/10.1109/TAC.1974.1100705 

Akaike, H. (1976). Canonical correlation analysis of time series and the use of an information criterion. 

Mathematics in Science and Engineering, 126, 27-96. https://doi.org/10.1016/S0076-5392(08)60869-3 

BCBS. (2004). International convergence of capital measurement and capital standards. www.BIS.org 

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1016/S0076-5392(08)60869-3
http://www.bis.org/


http://ibr.ccsenet.org     International Business Research                    Vol. 16, No. 4; 2023 

13 

 

Benito, S., & López-Martín C. (2018). A Review of the State of Art in Quantifying Operational Risk. Journal of 

Operational Risk, 13(4), 89-129. http://doi.org/10.21314/JOP.2018.214 

Bolancé Losilla, C., Guillén, M., & Padilla Barreto, A. E. (2015). Estimación del riesgo mediante el ajuste de 

cópulas. UB Riskcenter Working Paper Series, 18. http://hdl.handle.net/2445/97564 

Breymann, W., Dias, A., & Embrechts, P. (2003). Dependence structures for multivariate high-frequency data in 

finance. Quantitative finance, 3(1) 1. https://doi.org/10.1088/1469-7688/3/1/301 

Cambriles, A., & Benito, S. (2023). Assessing the structure dependence between the Spanish stock market and 

some international financial markets. A time-varying copula analysis. Cuadernos de Economía (in-press).  

Chapelle, A., Crama Y., G. Hubner & Peters, J. P. (2005). Measuring and managing operational risk in the 

financial sector: an integrated framework. https://doi.org/10.2139/ssrn.675186 

Chavez-Demoulin, V., Embrechts, P., & Nešlehová, J. (2006). Quantitative models for operational risk: extremes, 

dependence and aggregation’. Journal of Banking & Finance, 30(10), 2635-2658.  

https://doi.org/10.1016/j.jbankfin.2005.11.008 

Dobrić, J., & Schmid, F. (2007). A goodness of fit test for copulas based on Rosenblatt’s transformation. 

Computational Statistics & Data Analysis, 51, 4633-4642. https://doi.org/10.1016/j.csda.2006.08.012 

Embrechts P., Puccetti G., & Rüschendorf L. (2013). Model uncertainty and VaR aggregation. Journal of 

Banking and Finance, 37, 2750-2764. https://doi.org/10.1016/j.jbankfin.2013.03.014 

Embrechts, P., & Puccetti G. (2006). Aggregating risk capital, with an application to operational risk. The 

Geneva Risk and Insurance Review, 31(2), 71-90. https://doi.org/10.1007/s10713-006-0556-6 

Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: properties 

and pitfalls. Risk management: value at risk and beyond 1, 176-223.  

https://doi.org/10.1017/CBO9780511615337.008 

Fang, Y., Madsen, L., & Liu, L. (2014). Comparison of Two Methods to Check Copula Fitting. IAENG 

International Journal of Applied Mathematics, 44(1). Retrieved from  

https://www.iaeng.org/IJAM/issues_v44/issue_1/IJAM_44_1_07.pdf 

Fantazzini, D., Dalla-Valle, L., & P. Giudici, (2008). Copulae and operational risk. International Journal of Risk 

Assesment and Management, 9(3), 238-257. https://doi.org/10.1504/IJRAM.2008.019743 

Feng, W., Wang, Y., & Zhang, Z. (2018). Can cryptocurrencies be a safe haven: a tail risk perspective analysis. 

Applied Economics, 50(44), 4745-4762. https://doi.org/10.1080/00036846.2018.1466993 

Forbes, K., & Rigobon, R. (2002). No contagion, only interdependence: measuring stock market comovements, 

The Journal of Finance, 57(5), 2223-2261. https://doi.org/10.1111/0022-1082.00494 

Frees, E. W., & Valdez, E. A. (1998). Understanding relationships using copulas. North American Actuarial 

Journal, 2, 1-25. https://doi.org/10.1080/10920277.1998.10595667 

Garcia-Jorcano, L., & Benito, S. (2020). Studying the properties of the bitcoin as a diversifying and hedging 

asset through a copula analysis: Constant and time-varying. Research in International Business and Finance, 

101300. https://doi.org/10.1016/j.ribaf.2020.101300 

Genest, C., & Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in 

semiparametric models. Annales de l’IHP Probabilités et Statistiques, pp. 1096–1127.  

https://doi.org/10.1214/07-AIHP148 

Genest, C., & Rivest, L. P. (1993). Statistical inference procedures for bivariate archimedean copulas. Journal of 

the American Statistical Association, 88, 1034-1043. https://doi.org/10.1080/01621459.1993.10476372 

Genest, C., Favre, A. C., Béliveau, J., & Jacques, C. (2007). Metaelliptical copulas and their use in frequency 

analysis of multivariate hydrological data. Water Resources Research, 43.  

https://doi.org/10.1029/2006WR005275 

Genest, C., Quessy, J. F., & Rémillard, B. (2006). Goodness-of-fit procedures for copula models based on the 

probability integral transformation. Scandinavian Journal of Statistics, 33, 337-366.  

https://doi.org/10.1111/j.1467-9469.2006.00470.x 

Hannan, E. J., & Quinn, B. G. (1979). The determination of the order of an autoregression. Journal of the Royal 

Statistical Society: Series B (Methodological) 41, 190-195.  

https://doi.org/10.1111/j.2517-6161.1979.tb01072.x 

Horta, P., Mendes, C., & Vieira, I. (2010). Contagion effects of the subprime crisis in the European NYSE 

Euronext markets. Portuguese Economic Journal, 9, 115-140. https://doi.org/10.1007/s10258-010-0056-6 

http://doi.org/10.21314/JOP.2018.214
http://hdl.handle.net/2445/97564
https://doi.org/10.1088/1469-7688/3/1/301
https://doi.org/10.1016/j.jbankfin.2005.11.008
https://doi.org/10.1016/j.csda.2006.08.012
https://doi.org/10.1016/j.jbankfin.2013.03.014
https://doi.org/10.1007/s10713-006-0556-6
https://www.iaeng.org/IJAM/issues_v44/issue_1/IJAM_44_1_07.pdf
https://doi.org/10.1504/IJRAM.2008.019743
https://doi.org/10.1080/00036846.2018.1466993
https://doi.org/10.1111/0022-1082.00494
https://doi.org/10.1080/10920277.1998.10595667
https://doi.org/10.1016/j.ribaf.2020.101300
https://doi.org/10.1214/07-AIHP148
https://doi.org/10.1080/01621459.1993.10476372
https://doi.org/10.1029/2006WR005275
https://doi.org/10.1111/j.1467-9469.2006.00470.x
https://doi.org/10.1111/j.2517-6161.1979.tb01072.x
https://doi.org/10.1007/s10258-010-0056-6


http://ibr.ccsenet.org     International Business Research                    Vol. 16, No. 4; 2023 

14 

 

Hussain, S. I., & Li, S. (2018). The dependence structure between Chinese and other major stock markets using 

extreme values and copulas. International Review of Economics & Finance, 56, 421-437. 

https://doi.org/10.1016/j.iref.2017.12.002 

Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press.  

https://doi.org/10.1201/b13150 

Jondeau, E., & Rockinger, M. (2006). The copula-garch model of conditional dependencies: An international 

stock market application. Journal of International Money and Finance, 25, 827-853.  

https://doi.org/10.1016/j.jimonfin.2006.04.007 

Kang, S. H., Mclver, R. P., & Arreola, J. (2019). Co-movements between Bitcoin and Gold: a wavelet coherence 

analysis. Physica A: Statistical Mechanics and its Applications, 536, 1-9.  

https://doi.org/10.1016/j.physa.2019.04.124 

Klein, T., Thu, H. P., & Walther, T. (2018). Bitcoin is not the New Gold – a comparison of volatility, correlation, 

and portfolio performance. International Review of Financial Analysis, 59, 105-116.  

https://doi.org/10.1016/j.irfa.2018.07.010 

Kliber, A., Marszałek, P., Musiałkowska, I., & Świerczyńska, K. (2019). Bitcoin: safe haven, hedge or diversifier? 

Perception of bitcoin in the context of a country’s economic situation – a stochastic volatility approach. 

Physica A: Statistical Mechanics and its Applications, 524, 246-257.  

https://doi.org/10.1016/j.physa.2019.04.145 

McNeil, A. J., & Nešlehová, J. (2009). Multivariate archimedean copulas, d-monotone functions and 1-norm 

symmetric distributions. The Annals of Statistics, 37, 3059-3097. https://doi.org/10.1214/07-AOS556 

Nelsen, R. B. (2007). An introduction to copulas. Springer, New York.  

Nguyen, C., Ishac, B. M., & Henri, D. (2017). Are Vietnam and Chinese stock markets out of the US contagion 

effect in extreme events?  Physica A: Statistical Mechanics and its Applications, 480(15), 10-21. 

https://doi.org/10.1016/j.physa.2017.02.045 

Nikoloulopoulos, A. K., Joe, H., & Li, H. (2012). Vine copulas with asymmetric tail dependence and 

applications to financial return data. Computational Statistics & Data Analysis, 56, 3659-3673. 

https://doi.org/10.1016/j.csda.2010.07.016 

Otani, Y., & Imai, J. (2013). Pricing portfolio credit derivatives with stochastic recovery and systematic factor. 

International Journal of Applied Mathematics, 43. 

Rajwani, S., & Kumar, D. (2019). Measuring Dependence Between the USA and the Asian Economies: A 

Time-varying Copula Approach. Global Business Review, 20, 4. https://doi.org/10.1177/0972150919845240 

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 461-464.  

https://doi.org/10.1214/aos/1176344136 

Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike’s information criterion. 

Biometrika, 63, 117-126. https://doi.org/10.1093/biomet/63.1.117 

Shibata, R. (1980). Asymptotically efficient selection of the order of the model for estimating parameters of a 

linear process. The Annals of Statistics, 147-164. Retrieved from https://www.jstor.org/stable/2240749 

Syuhada, K., & Hakim, A. (2020). Modeling risk dependence and portfolio VaR forecast through vine copula for 

cryptocurrencies. PLoS One, 15(12), e0242102. https://doi.org/10.1371/journal.pone.0242102 

Tsukahara, H. (2005). Semiparametric estimation in copula models. Canadian Journal of Statistics, 33, 357-375. 

https://doi.org/10.1002/cjs.5540330304 

Wang, Y. Q., & Liu, S. W. (2011). Financial market openness and risk contagion:A time-varying Copula 

approach. College of Finance, Zhejiang Gongshang University, 31(4), 778-784. 

Weng, X., Wei, Y., & Huang, D., (2012). Measuring contagion between energy market and stock market during 

financial crisis: A copula approach. Energy Economics, 34(5), 1435-1446.  

https://doi.org/10.1016/j.eneco.2012.06.021 

Winkelmann, R. (2012). Copula bivariate probit models: with an application to medical expenditures. Health 

Economics, 21, 1444-1455. https://doi.org/10.1002/hec.1801 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 

license (http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.1016/j.iref.2017.12.002
https://doi.org/10.1016/j.jimonfin.2006.04.007
https://doi.org/10.1016/j.physa.2019.04.124
https://doi.org/10.1016/j.irfa.2018.07.010
https://doi.org/10.1016/j.physa.2019.04.145
https://doi.org/10.1214/07-AOS556
https://doi.org/10.1016/j.physa.2017.02.045
https://doi.org/10.1016/j.csda.2010.07.016
https://doi.org/10.1177/0972150919845240
https://doi.org/10.1093/biomet/63.1.117
https://www.jstor.org/stable/2240749
https://doi.org/10.1371/journal.pone.0242102
https://doi.org/10.1002/cjs.5540330304
https://doi.org/10.1016/j.eneco.2012.06.021
https://doi.org/10.1002/hec.1801

