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Abstract 

Due to an increasing economic instability worldwide, financial institutions are demanding more robust and 

powerful methodologies of credit risk modeling in order to ensure their financial health. The statistical model 

CreditRisk+, developed by Credit Suisse Financial Products (CSFP), is widely spread in the insurance market 

since it is not necessary to make assumptions. This is because the model is based on the default risk, that is, 

non-payment risk. The main goal of the above-mentioned model is to measure expected and non-expected losses 

in a credit portfolio. In order to measure default events, the model suggests grouping the debtors in exposure 

ranges so that the loss distribution can be approached to a Poisson. In the basic model, the default rates are fixed. 

To portray reality, we propose a new modeling in which the uncertainties and volatilities of default rates are 

incorporated. In this case, a new model which assumes a Gamma distribution in association with these 

uncertainties is defined. From the obtained distribution, not only is it possible to calculate the credit VaR 

(Value-at-Risk) but also the loss distribution and some point estimates, such as the expected loss in a certain 

period of time and the economic capital allocation. The main goal of this article is the CreditRisk+ model 

application with uncertainties in a segment of Brazilian industry. The economic capital allocation, that is, the 

difference between VaR and the expected deprival value is always higher, depending on the proposed modeling 

(with the incorporation of uncertainties, volatilities and the default rates). Our result is important, since financial 

institutions can be underestimating their losses in stressful moments. 

Keywords: CreditRisk+, CBrazilian market, credit risk, value-at-risk 

1. Introduction 

Credit risk is in direct association to the core activity of financial institutions, which is resource trading among 

agents. Measuring credit risk requires assessing liabilities’ degree of value fluctuation. Assaf Neto and Silva 

(1997) defines credit as trading spot assets/goods for future assets/goods. Credit operations might be seen as the 

exchange contracts of present values for future payments. Default occurs when the operation counterpart dos not 

complies with contract terms, failing at one of the payments due date (CHAIA; A.J., 2003).  

Credit operations involve an expected default value. Frota (2015) defines credit risk as the non-expected default 

events due to estimation errors in calculating default probability. Part of financial institutions activity refers to 

monitoring credit recovery as debtors carry out contractual payments period by period.  

The main goal of the calculation of credit risk is to correct estimate the loss distribution in a loan portfolio. Loss 

distribution allows to estimate the expected loss, which is the natural loss within bank transactions and the 

unexpected loss value at a certain confidence level, or VaR (Value at Risk).  

The New Basel Capital Accord (2004) defined that the VaR should be provisioned as collateral until the end of 

the process. This agreement is intended to avoid bankruptcies of financial institutions. Since the basis of the 

credit market is the intermediation of available resources, the VaR calculation must be done accurately so that 

financial institutions do not take unnecessary provisioning of resources. Therefore, a good analysis of credit risk 

is essential. Due to the importance of VaR measurement, several commercial models that calculate the portfolio’s 

credit risk were developed in the 1990s, such as CreditMetrics, CreditRisk+ and KMV (CHAIA, A.J., 2003).  
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CreditRisk+ is a model introduced by Credit Suisse Financial Products (1997). The purpose of this model is to 

find expected portfolio losses and unexpected losses for capital allocation purposes. According to Mileo et al 

CreditRisk + is a unique model for the modeling of credit portfolios considering that it applies actuarial 

mathematical techniques to estimate the distribution of losses in a credit portfolio.  

According to Sanfins and Clark (2010) CreditRisk+ considers the default rates as continuous random variables, 

assuming the variation of the rates in the analysis in order to incorporate the uncertainty of the variables. 

Burgisser et al. (1999) point out that CreditRisk+ is easy to implement in practice due to the low number of 

assumptions, the transparency on the implementation (based on widely known concepts in insurance companies) 

and has a fairly simple estimation of loss distribution through the use of an iterative procedure.  

CreditRisk + methodology is highly used in financial institutions, due to its high sensitivity and, as previously 

mentioned, the low number of assumptions.  

Therefore, the main objective of this work is to perform an application of the CreditRisk + methodology in the 

data of a Brazilian holding company of the Asphalt Pavement Sector. The sector in question is directly linked to 

the infrastructure of road transport and productive paving chains. According to data from 2016 published by the 

Brazilian Institute of Geography and Statistics (IBGE) almost two-thirds of the asphalt consumed by Brazilian 

construction companies was directed to road works and urban infrastructure. According to data published in the 

Brazilian Statistical Yearbook for Petroleum, Natural Gas and Biofuels (2018), in 2016 Brazil produced 2, 152, 

075m3 of asphalt, a 6.9 % growth in relation to 2015. Considering the 16 years spam time (2000 to 2016), 

asphalt consumption grew by 0.9 % per year. This evolution was accompanied by the production of asphalt, 

which grew in the same proportion in the accumulated period. (FIESP, 2017)  

Finally, the secondary objective of the article is to obtain the same distribution of Portfolio Loss using Bayesian 

Inference tools.  

The next section will present a brief overview of credit risk models. In the 3 section the CreditRisk+ model and 

some concepts necessary for the application of the method will be presented. In the section ?? the results of the 

calculation of Credit Risk on credit portfolio will be presented. Finally, the last section presents conclusions and 

final considerations on the application of the Credit Risk calculation using the CreditRisk+ model. 

2. Credit Risk Models 

2.1 CreditMetrics 

CreditMetrics created by Morgan (1997) is a method that is based on the risk assessment of a credit portfolio due 

to a change in the credit rating of the debtors. The application of Creditmetrics requires available data on the 

debtor’s credit rating to calculate the market value of the loan and its volatility.  

According to the report published in April 1991 by J.P. Morgan, CreditMetrics is a useful method for all the 

companies in the world that carry credit risk in the course of their business. The resource provides a 

methodology for quantifying credit risk across a wide range of instruments, including traditional loans, 

commitments and letters of credit; fixed income instruments; commercial contracts such as trade credits and 

accounts receivable; instruments such as swaps, forwards and derivatives.  

According to Clark (2013), the CreditMetrics method can be summarized in 3 macro steps. Step 1 - Estimate the 

exposure value of each debtor in the portfolio. The intent of this step, according to the author, is to analyze the 

debtor’s credit rating together with the likelihood that his rating will be changed to minimize credit risk. This 

step is critical to a good calculation of credit risk and a point of attention is to observe if the data is biased. Step 2 

- Calculate the volatility of the exposure value due to the migration of the debtors classification. The calculations 

of this second step require the probabilities of changes in the credit ratings of the debtor over time and according 

to the level of the spreads. According to Clark (2013), this debtor rating can undergo upgrades and downgrades. 

From this information, the volatility of the market value is calculated, that is, the VaR (Value at Risk) of a 

borrower belonging to a credit portfolio can be calculated. Finally, Step 3, which consists in calculating the 

correlation between the debtors’ ratings and the risk calculation of the portfolio. According to Stolf (2008), the 

correlation between ratings is calculated through the information from rating agencies. If the portfolio is 

considerably large you will need help from the computer to perform the calculations. With correlations estimates 

it is possible to perform simulations on the probability of migration of the debtor and his payments, thus we have 

the portfolio loss distribution function (Clark; T.M., 2013). 

2.2 KMV Model 

Developed by the KMV Corporation, the KMV Model is based on the Merton model (1974). The Merton Model 



http://ibr.ccsenet.org     International Business Research                    Vol. 13, No. 1; 2020 

42 

 

considers the company’s capital as a call option on the underlying value of the company, with an exercise price 

equal to the nominal value of the company’s debt. This method, according to Chen and Chu (2014), introduced 

the idea of using stock price variation to estimate the probability of default of the company. One of the 

assumptions of the model is that macroeconomic information is implicit in the company’s stock price movement, 

and this feature made the Merton model a practical and dynamic method when compared to conventional 

methods. Subsequently, Vasicek and McQuown upgraded Merton’s model by building an information database 

that includes more than 3,400 listed companies and more than 40,000 unlisted companies. Based on this database, 

the authors discarded the assumption of normal distribution.  

The KMV model uses option pricing and does not use rating agency data to calculate the default probabilities as 

the CreditMetrics model methodology (Stolf, W.A., 2008). The basis for the estimation of the default on the 

KMV model is the market value of assets.  

For KMV, the modeling process can be divided into three stages.  

● Step 1 - Estimate of market value and volatility of company assets. The variables of the model: value of 

firm’s assets, distribution of assets, volatility of assets and point of default. The KMV model assumes 

that asset values follow a log-normal distribution. The company is considered in default when the value 

of the assets is at a lower level than the default point.  

● Step 2 - Calculating the default distance to ensure accuracy in valuation of assets, the KMV calculates 

the distance to default before calculating default probabilities. Its distance is calculated by the formula: 

𝐷 =
𝑙𝑛 (

𝑉(𝑎)
𝑑

) + (𝜇 − 0,5𝑡𝜎2)

𝜎√𝑡
 

(1) 

Were V(a) is the asset’s market value, d the default point defined in the previous step, µ the expected 

return on firm value, also calculated in the previous step and σ the firm value volatility. The default 

distance represents the number of standard deviations between the average of the asset price distribution 

and the default point.  

● Step 3 - Calculating default probabilities. In the final step, the KMV model performs a study to segment 

the companies that have the same distance to the default and observes how many were defaulted within 

the time interval evaluated. From the estimated model, matrices to observe and evaluate the probability 

of a debtor switching rating are constructed, considering a certain time interval. The model calculates 

the portfolio credit VaR with these estimates. Cash flows are discounted by the risk neutral probabilities 

obtained by each borrower’s formula given below: 

 

𝑉𝑝 =
𝑉𝑠(1 − 𝐿𝐺𝐷) + 𝑉𝑓(𝐿𝐺𝐷)(1 − 𝑞)

1 + 𝑖
 (2) 

 

Where Vf is the cash flow, LGD the losses from default, q the probability of default and i a risk-free discount rate. 

The loss function is estimated by the approximation of a Log Normal distribution, and then we will have as a 

result the value at credit risk (Stolf; W. A., 2008). 

3. CreditRisk+ 

The model developed by Credit Suisse Financial Products (1997) is very widespread in the market due to its 

simplicity, since it disregards the assumptions about the default event and it is not possible to determine the exact 

moment of default. The CreditRisk+ model considers payment or default to be an event observed only on the due 

date. Therefore, only two statuses are possible for each individual: defaulter or not default. To measure the 

default events the model suggests grouping debtors into exposure ranges (L). In addition, one should know or 

calculate the Loss Given Default (LGD), the loan value that is lost at the time of default. The model exists in two 

forms, with fixed and variable default rates.  

CreditRisk+ fixed rate is a simpler model because it assumes that the individual has a constant probability of 

defaulting over time. However, if we add interference resulting from economic factors at the fixed rate, it 

becomes variable reflecting the uncertainties of these factors. In the next sections we will present the 

CreditRisk+ fixed rate model, the way uncertainty is added to the rate, the variable rate model, the use of 

grouping by sectors and, finally, the calculation of the loss distribution. 
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3.1 Default Events Analysis 

Let N be a random variable defined as the total default loss on the credit portfolio. For the analysis of the loss 

distribution on the credit portfolio with n debtors, the probability-generating function (PGF) on the auxiliary 

variable z, is given by equation 3. 

𝐹𝑁(𝑧)  =  ∑𝑝(𝑁 = 𝑛)𝑧𝑛

∞

𝑛=0

 

 

(3) 

Let X1 a random variable representing debtor 1 on the credit portfolio. In the case of default event, the variable 

assumes the value 0, otherwise it assumes 1: 

 

𝑋1 = {
0, 𝑖𝑛 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑒𝑣𝑒𝑛𝑡 
1, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 𝑐𝑎𝑠𝑒

} 

 

Thus, 𝑋𝑖 ∼ 𝐵(𝑝𝑖) and 𝑝𝑖 is the probability of default from debtor 𝑖. 

𝑃(𝑋1 = 1) = 𝑃𝑋1
 

𝑃(𝑋1 = 0) = 1 − 𝑃𝑋1
 

 

The PGF of each debtor can be defined as: 

 

𝐹𝑋1
(𝑧) = 1 − 𝑃𝑋1

+ 𝑃𝑋1
𝑧 = 1 + (𝑧 − 1)𝑃𝑋1

 (4) 

 

Constant default rates indicate that such events are independent, which leads to: 

 

𝐹𝑁(𝑧) = ∏𝐹𝑋1
(𝑧)

𝑛

𝑖=1

= ∏(1 + (𝑧 − 1)𝑃𝑥𝑖
)

𝑛

𝑖=1

 (5) 

 

Taking the logarithm of equation 5: 

 

𝑙𝑛 𝑙𝑛 (𝐹𝑁(𝑧))  = 𝑙𝑛 (∏𝐹𝑋1
(𝑧))

𝑛

𝑖=1

= ∑𝑙𝑛 (1 + (𝑧 − 1)𝑃𝑥𝑖
)

𝑛

𝑖=1

 (6) 

 

Thus, assuming 𝑃𝑋1
 close to zero, we have: 

 

𝑙𝑛 𝑙𝑛 (𝐹𝑁(𝑧))  = ∑(𝑧 − 1)𝑃𝑥𝑖

𝑛

𝑖=1

→ 𝐹𝑁(𝑧) =𝑒𝑥𝑝 𝑒𝑥𝑝 (∑(𝑧 − 1)𝑃𝑥𝑖

𝑛

𝑖=1

→) = 𝑒𝜇(𝑧−1) (7) 

 

In which 𝜇 = ∑𝑃𝑥𝑖
. 

 

The Moments Generating Function (MGF) of a random variable with Poisson(µ) distribution as shown in the 

equation 8 
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𝐸(𝑍𝑥) = ∑
𝑍𝑘𝑒−𝜇𝜇𝑘

𝑘!

∞

𝑛=0

= 𝑒−𝜇 ∑(𝑧𝜇)𝑘
∞

𝑛=0

= 𝑒−𝜇𝑒𝑧𝜇 = 𝑒𝜇(𝑧−1) (8) 

 

Thus, N ∼Poisson(µ), that is 

 

𝑃(𝑁 = 𝑛) =
𝑒−𝜇𝜇𝑛

𝑛!
 (9) 

 

Therefore, as can be seen in equation 9, the variable that represents the default number has Poisson distribution 

(µ). 

3.2 CreditRisk+ with Fixed Default Rates 

The first step in obtaining the distribution of losses is to group the exposures of the portfolio into ranges. For this 

type of model, we will use the following notations: 

 

Reference Notation 

Debtor 𝑋𝑖  

Debtor exposure  𝑋𝑖 𝐿 𝑋𝑖
 

Default probability from  𝑋𝑖 𝑃 𝑋𝑖
 

Expected Loss from  𝑋𝑖   𝑋𝑖
 

 

Besides, we will define the following auxiliary values for each 𝑋𝑖, where 𝐿 is the Exposure at Default from the 

portfolio. 

𝑣𝑋𝑖
=

𝐿𝑋𝑖

𝐿
 𝑒 휀𝑋𝑖

=
 𝑋𝑖

𝐿
 

 

The main step is to round each 𝑣𝑋𝑖
to the nearest integer and most often multiple of 10 or 100, reducing the 

possible number of exposures between debtors. Thus, the portfolio is divided into m exposure ranges, 

identified by the j index. With respect to each track, we will use the following notations: 

 

Reference Notation 

Default exposure at range j 𝑣  

Expected Loss at range j 휀  

Expected default events at range j 𝜇  

 

From this we have  

휀 = 𝑣 𝜇 ⟹ 𝜇 =
휀 
𝑣 

 = ∑
휀𝑥𝑖

𝑣𝑥𝑖𝑋𝑖𝜖 𝑠𝑒𝑐𝑡𝑜𝑟 

 

 

Taking µ as the total number of expected events of default in portfolio, we can define: 
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µ = ∑µ 

𝑚

 =1

  (10) 

After analyzing the distribution of the loss events, we will proceed to the calculation of the Loss distribution. Let 

G(𝑧) be the moment-generating function of the losses, expressed as a multiple of the exposure unit (𝑛𝐿). 

 

𝐺(𝑧) = ∑𝑝 (𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑛𝐿)𝑧𝑛

∞

𝑛=0

 (11) 

 

From the assumption of independent portfolio ranges, we have: 

 

𝐺(𝑧) = ∏𝐺  (𝑧)

𝑚

 =1

 (12) 

 

Considering each range as a portfolio, the result of nL might be seen as the number of default events (𝑛) 

multiplied by the range exposure (𝑣 ). In this form we have: 

 

𝐺  (𝑧) =  ∑𝑝 (𝑛 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠)𝑧𝑛𝑣𝑗 

∞

𝑛=0

= ∑
𝑒−µµ𝑛

𝑛!
𝑧𝑛𝑣𝑗

∞

𝑛=0

 

=𝑒𝑥𝑝 𝑒𝑥𝑝 (−µ + µ 𝑧
𝑣𝑗)  

(13) 

Thus:  

 

𝐺(𝑧) = ∏𝑒𝑥𝑝 𝑒𝑥𝑝 (−µ + µ 𝑧
𝑣𝑗)

𝑚

 =1

 =𝑒𝑥𝑝 𝑒𝑥𝑝 (−∑µ 

𝑚

 =1

+∑µ 𝑧
𝑣𝑗

𝑚

 =1

)  (14) 

 

Finally, the recursive relation for the distribution of losses is calculated. Given an integer 𝑛, let 𝐴𝑛 be the 

probability of a loss of 𝑛𝐿. By Taylor's expansion to 𝐺, the result is: 

 

𝑝(𝑙𝑜𝑠𝑠 = 𝑛𝐿) = 𝐴𝑛 =
1

𝑛!

𝑑𝑛𝐺(𝑧)

𝑑𝑧
(0)                            (15)           

             

But considering that: 

𝐺′(𝑧) =
𝑑

𝑑𝑧
(−∑ 𝜇 

𝑚
 =1 + ∑ 𝜇 𝑧

𝑣𝑗𝑚
 =1 ) 𝐺(𝑧)                         (16) 

 

Which give us: 

 

1

𝑛!

𝑑𝑛𝐺(𝑧)

𝑑𝑧𝑛
(0) =

1

𝑛!

𝑑𝑛−1𝐾(𝑧)𝐺(𝑧)

𝑑𝑧𝑛−1 (0), 𝑤𝑖𝑡 𝐾(𝑧) =
𝑑

𝑑𝑧
(∑ 𝜇 𝑧

𝑣𝑗𝑚
 =1 )      (17) 

Using Leibniz for derivative calculation, we have: 
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1

𝑛!

𝑑𝑑𝑛𝐺(𝑧)

𝑑𝑧𝑑𝑧𝑛
(0) =

1

𝑛!
.∑ .

𝑛−1

𝑘
/
𝑑𝑛−𝑘−1𝐺(𝑧)

𝑑𝑧𝑛−𝑘−1

𝑑𝑘𝐾(𝑧)

𝑑𝑧𝑘
𝑛−1
𝑘=0 / (0)           (18) 

 

But considering that: 

 

𝑑𝑘𝐾(𝑧)

𝑑𝑧𝑘
(0) =

𝑑𝑘+1

𝑑𝑧𝑘+1 (∑ 𝜇 𝑧
𝑣𝑗𝑚

 =1 )(0)                             (19) 

 

This is only nonzero if 𝑘 = 𝑣 − 1 for some 𝑗. In this case, this term will have 

𝜇 (𝑘 + 1)!. By definition, we have: 

 

𝑑𝑛−𝑘−1𝐺(𝑧)

𝑑𝑧𝑛−𝑘−1 (0) = (𝑛 − 𝑘 − 1)! 𝐴𝑛−𝑘−1                               (20) 

 

Thereby: 

 

𝐴𝑛 = ∑
1

𝑛!
.
𝑛−1

𝑘
/ (𝑘 + 1)! (𝑛 − 𝑘 − 1)! 𝐴𝑛−𝑘−1𝜇 𝑘≤𝑛−1;𝑘=𝑣𝑗−1           (21) 

 

= ∑
𝑣𝑗𝜇𝑗

𝑛
𝐴𝑛−𝑣𝑗 |𝑣𝑗≤𝑛 = ∑

𝜀𝑗

𝑛
𝐴𝑛−𝑣𝑗 |𝑣𝑗≤𝑛                          (22) 

 

The recurrence formula is complete when: 

 

𝐴0 = 𝐺(0) = 𝑒−𝜇                                (23) 

 

3.3 Uncertainty at Default Rates and Variable Rate Events 

Uncertainty at default rates According to historical data, default rates are not fixed, and vary over time (See 

Clark (2013)). The variability of these rates may be associated with the change of some related variable to those 

rates. The states of the economy or even a change on some economic factor can affect a large number of debtors 

in a similar way. For measuring changing and effects, from a given factor over the portfolio, we need to identify 

how is that factor influences borrowers. The division of the portfolio into sectors occurs by grouping the debtors 

according to factors of influence that are common among them. The model considers each sector as a subset of 

the total number of debtors, which is driven by a major factor and in turn will be associated with uncertainty 

about default rates of the respective debtors. By dividing into sectors, we think of each sector as a portfolio by 

itself. Thus, we will group them into ranges (within each sector), as we did in the fixed rate model.  

We define: 

 

𝑣 
𝑘 =

𝐿𝑗
𝑘

𝐿
 𝑒 휀 

𝑘 =
𝜆𝑗
𝑘

𝐿
                             (24) 

 

Where 1 ≤ 𝑘 ≤ 𝑛 e 1 ≤ 𝑗 ≤ 𝑚(𝑘) 

And 𝑚(𝑘) is the number of ranges from sector 𝑘. 

The average 𝜇𝑘 in this case is the expected loss, and from that: 
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𝜇𝑘 = ∑
𝜀𝑗
𝑘

𝑣𝑗
𝑘 

𝑚(𝑘)
 =1                                   (25) 

 

Events with variable default At this point we are interested in finding the distribution of the default events, and 

for this we will use the Probability Generating Function. Then, we will define the following family of random 

variables. 

 

𝑌𝑘  =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑒𝑐𝑡𝑜𝑟 𝑘 

 

The number of default events in the portfolio will be given by equation 26 

 

𝑌 = ∑ 𝑌𝑘
𝑛
𝑘=1                                   (26) 

 

From the definition of the Probability Generating Function, we have: 

 

𝐹(𝑧) = ∑ 𝑝(𝑌 = 𝑛)𝑧𝑛 ∞
𝑛=0                             (27) 

 

Each sector, by definition, is influenced by distinct and disjointed factors. 

Thus, it is reasonable to assume independence between sectors. This allows us to write: 

 

𝐹(𝑧) = ∏ 𝐹𝑘(𝑧)
𝑛
𝑘=1                                (28) 

 

Hence, we will focus on the analysis of one of the sectors, which will lead us to find what we want. Based on the 

result we have in the fixed rate model and from the definition of 𝐹𝑘(𝑧) comes: 

 

𝐹𝑘(𝑧)|(𝑋𝑘 = 𝑥) = 𝑒𝑥(𝑧−1)                          (29) 

 

Assuming that the density of 𝑋𝑘 is 𝑓𝑘, and from the Bayes' Theorem, we have: 

 

𝐹(𝑧) = ∑ 𝑧𝑛∞
𝑛=0 ∫ 𝑃(𝑌 = 𝑛|𝑋𝑘 = 𝑥)𝑓𝑘(𝑥𝑘)𝑑𝑥𝑘    

∞

0
                   (30) 

Rearranging the calculation, we have: 

 

𝐹(𝑧) = ∫ ,∑ 𝑧𝑛𝑃(𝑌 = 𝑛|𝑋𝑘 = 𝑥)∞
𝑛=0 -𝑓𝑘(𝑥𝑘)𝑑𝑥𝑘 

∞

0
                     (31) 

 

It give us: 

𝐹(𝑧) = ∫ 𝐹𝑘(𝑧)|(𝑋𝑘 = 𝑥)𝑓𝑘(𝑥𝑘)𝑑𝑥𝑘
∞

0
                     (32) 

 

𝐹(𝑧) = ∫ 𝑒𝑥(𝑧−1)𝑓𝑘(𝑥𝑘)𝑑𝑥𝑘
∞

0
                         (33) 
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To find an explicit form for our PGF, we will need to appropriately choose a distribution for 𝑋𝑘 that has mean 

𝜇𝑘 and variance 𝜎𝑘. The model suggests that we choose the gamma, its Probability Density Function is 

represented in the equation 34 

 

𝑓(𝑥) =
1

𝛽𝛼𝛤(𝛼)
𝑒

−𝑥

𝛽 𝑥𝛼−1                              (34) 

 

The parameters (mean and variance) of the selected distribution are: 

 

𝜇 = 𝛼𝛽      𝜎2 = 𝛼𝛽2 

 

Gamma function: 

𝛤(𝛼) = ∫ 𝑒−𝑥𝑥𝛼−1∞

0
                                (35) 

Sectoral Analysis Conclusion By looking at each sector 𝑘 from the solution for the system, we get: 

 

𝛼𝑘 =
𝜇𝑘
2

𝜎𝑘
2       𝛽𝑘 =

𝜎𝑘
2

𝜇𝑘
 

 

Then, substituting the expression of the density of the Gamma (Equation 34), we have: 

𝐹(𝑧) = ∫ 𝑒𝑥𝑘(𝑧−1) 1

𝛽𝑘

𝛼𝑘𝛤(𝛼𝑘)
𝑒

−𝑥𝑘
𝛽𝑘 𝑥𝑘

𝛼𝑘−1
𝑑𝑥𝑘

∞

0
                    (36) 

 

=
1

𝛽𝑘

𝛼𝑘𝛤(𝛼𝑘)
∫ 𝑒

𝑥𝑘(
1

𝛽𝑘
+1−𝑧)

𝑥𝑘
𝛼𝑘−1

𝑑𝑥𝑘
∞

0
                      (37) 

 

Making 𝑦 = 𝑥𝑘(
1

𝛽𝑘
+ 1 − 𝑧), we get: 

=
1

𝛽𝑘

𝛼𝑘𝛤(𝛼𝑘)
∫ 𝑒−𝑦  (

𝑦
1

𝛽𝑘
+1−𝑧

)

𝛼𝑘−1
𝑑𝑦

(
1

𝛽𝑘
+1−𝑧)

 
∞

0
                       (38) 

 

Making the appropriate adjustments in this calculation, we will obtain: 

𝐹𝑘(𝑧) = .
1−𝑝𝑘

1−𝑝𝑘𝑧
/
𝛼𝑘

                                (39) 

In which: 𝑝𝑘 = .
𝛽𝑘

1+𝛽𝑘
/ 

Probability Generating Function Calculation Now that we have analyzed the distribution of default events, 

we will proceed to calculate the loss distribution. Let 𝐺(𝑧) be the PGF of the losses, expressed as a multiple of 

the Base exposure (nL). We have: 

 

𝐺(𝑧) = ∑ 𝑝(𝑙𝑜𝑠𝑠 = 𝑛𝐿)𝑧𝑛∞
𝑛=0                          (40) 
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Since the sectors in which we divided the portfolio were assumed to be independent, it follows that: 

 

𝐺(𝑧) = ∏ 𝐺𝑘(𝑧)
𝑛
𝑘=1                              (41) 

 

Let 𝐺 (𝑧) be the PGF of losses from sector 𝑘. 

We need to calculate the PGF for each sector. From the Total Probability Theorem, it follows that: 

 

𝐺𝑘(𝑧) = ∑ 𝑧𝑛∞
𝑛=0 ∫ 𝑃(𝑙𝑜𝑠𝑠 = 𝑛𝐿|𝑋𝑘 = 𝑥)𝑓𝑘(𝑥𝑘)𝑑𝑥𝑘

+∞

0
                (42) 

 

If default average value is known, from the model with fixed rates we have: 

 

∑ 𝑃(𝑙𝑜𝑠𝑠 = 𝑛𝐿|𝑋𝑘 = 𝑥)𝑧𝑛∞
𝑛=0 = 𝑒𝑥𝑝 {−∑ 𝜇 

𝑘𝑚(𝑘)
 =1 + ∑

𝜀𝑗
𝑘

𝑣𝑗
𝑘 𝑧

𝑣𝑗
𝑘𝑚(𝑘)

 =1 } = 𝑒(𝑥𝑘(𝑅𝑘(𝑧)−1))     (43) 

 

Where: 

𝑥𝑘 = ∑ 𝜇 
𝑘𝑚(𝑘)

 =1                                   (44) 

Additionally, a polynomial family is defined as: 

𝑅𝜅(𝑧) =
1

𝜇𝑘
∑

휀 
𝑘

𝜐 
𝑘 
𝑧𝑣𝑗

𝑘

𝑚( 𝑘 )

 =1

  
 

(45) 

Which give us:  

𝐺𝑘(𝑧)  = ∫ 𝑒𝑥𝑘(𝑅𝑘(𝑧)−1)𝑓𝑘(𝑥𝑘) 𝑑𝑥𝑘

+∞

0

 
 

(46) 

With integral 𝑥𝑘, give us: 

𝐺𝑘(𝑧) = 𝐹𝑘(𝑅𝑘(𝑧)) = (
1 − 𝑝𝑘

1 − 𝑝𝑘𝑅𝑘(𝑧)
)
𝛼𝑘

 

(47) 

From this, we conclude that the distribution of loss per range of exposure is given by the equation 48. It is worth 

noting that the generating function corresponds to the loss distribution is nothing less than the product of 

Probability Generating functions of a known distribution, that is, of a Binomial-Negative distribution.  

𝐺𝑘(𝑧) =  ∏(
1 − 𝑝𝑘

1 − 𝑝𝑘𝑅𝑘(𝑧)
)
𝛼𝑘

𝑛

𝑘=1

 

(48) 

General Recurrence Relation In the previous section, the loss distribution function per exposure range was 

obtained. However, since each range have different parameters, to obtain the portfolio loss distribution it is 

necessary to apply the function at point zero, through the recursive method presented below. Assuming the series 

expansion G, we have:  
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𝐺𝐺(𝑧)𝐴(𝑧)𝑘(𝑧) = ∑𝐴𝑛𝑧
𝑛

∞

𝑛=0

 
 

(49) 

We want to find the coefficients 𝐴𝑛. In these sense, we will assume𝐺(𝑧) such that:  

 

𝑑(𝑙𝑜𝑔(𝐺(𝑧)))

𝑑𝑧
=

𝐺′(𝑧)

𝐺(𝑧)
=

𝐴(𝑧)

𝐵(𝑧)
 

 

(50) 

In which A and B are polynomials. This makes sense since the denominator of the fraction representing G(z) is a 

polynomial. We will take A and B as follows:  

𝐴(𝑧) = 𝑎0 + 𝑎1𝑧+. . . +𝑎𝑟𝑧
𝑟 

𝐵(𝑧) = 𝑏0 + 𝑏1𝑧+. . . +𝑏𝑠𝑧
𝑠 

Assuming this, we can write: 

𝐵(𝑧)𝐺′(𝑧) = 𝐺(𝑧)𝐴(𝑧) 

(51) 

Deriving𝐺, and substituting the terms, we will have the following equality presented in the equation 52. 

(∑𝑏 𝑧
 

𝑠

 =0

)(∑(𝑛 + 1)𝐴𝑛+1𝑧
𝑛

∞

𝑛=0

) = (∑𝑎𝑖𝑧
𝑖

𝑟

𝑖=0

)(∑𝐴𝑛𝑧
𝑛

∞

𝑛=0

) 
 

(52) 

If we make the product on both sides of the equation, we get two power series in 𝑧. Then, since the 

coefficients on both sides of 𝑧𝑛 must be equal, whatever 𝑛, we have: 

∑ 𝑏 (𝑛− +1)𝐴𝑛− +1

𝑚𝑖𝑛(𝑠,𝑛)

 =0

= ∑ 𝑎𝑖𝐴𝑛−𝑖

𝑚𝑖𝑛(𝑟,𝑛)

𝑖=0

 
 

(53) 

Opening and organizing the expression we will have: 

𝑏0(𝑛 + 1)𝐴𝑛+1 + ∑ 𝑏 (𝑛− +1)𝐴𝑛− +1

𝑚𝑖𝑛(𝑠,𝑛)

 =1

= ∑ 𝑎𝑖𝐴𝑛−𝑖

𝑚𝑖𝑛(𝑟,𝑛)

𝑖=0

 
 

(54) 

Which give us 

𝐴𝑛+1 =
1

𝑏0(𝑛 + 1)
* ∑ 𝑎𝑖𝐴𝑛−𝑖

𝑚𝑖𝑛(𝑟,𝑠)

𝑖=0

 −  ∑ 𝑏 (𝑛 − 𝑗 + 1)𝐴𝑛− +1

𝑚𝑖𝑛(𝑠,𝑛)

 =1

+ 
 

(55) 

The recurrence relation is complete when we note that: 

𝐴0 = 𝐺(0) = ∏(1 − 𝑝𝑘)
𝛼𝑘

𝑛

𝑘=0

 
 

(56) 



http://ibr.ccsenet.org     International Business Research                    Vol. 13, No. 1; 2020 

51 

 

4. Convergence of Variable Rates to Fixed Rates 

Although CreditRisk+ is designed to incorporate the effects of variability into the average default rates, there is a 

circumstance in which the model behaves as if the default rates were corrected. What we are going to show in 

this section is that when the standard deviation of the average default rate for each sector tends to zero, 

convergence occurs between the variable rate model and the fixed rate model. Our discussion will consist of 

demonstrating that the probability-generating function we find in the case of variable rates converges to the PGF 

found in the case where the rates are fixed. Recall that the PGF found in the case of variable rates is: 

𝐺(𝑧) = ∏𝐺(𝑧)

𝑛

𝑘=1

= ∏(
1 − 𝑝𝑘

1 − 𝑝𝑘𝑅𝑘(𝑧)
)
𝛼𝑘

𝑛

𝑘=1

 
 

(57) 

Where: 

𝛼𝑘 =
𝜇𝑘

2

𝜎𝑘
2 ,  𝛽𝑘 =

𝜎𝑘
2

𝜇𝑘
, 𝑝𝑘 =

𝛽𝑘

1+𝛽𝑘
,  𝜇𝑘 = ∑ 𝜇 

𝑘 𝑚(𝑘)
 =1 , 𝜇 

𝑘 = 
𝜀𝑗

𝑘

𝜐𝑗
𝑘  , 𝑅𝑘(𝑧) =

1

𝜇𝑘
∑

𝜀𝑗
𝑘

𝜐𝑗
𝑘  𝑧

𝜐𝑗
𝑘𝑚(𝑘)

 =1    

We should observe that when 𝜎𝑘 → 0 we will have 𝛽𝑘 → 0. In addition, as 𝑝𝑘 =
𝛽𝑘

1+𝛽𝑘
, we might see that 

𝑙𝑖𝑚
𝛽𝑘→0

𝑝𝑘

𝛽𝑘
= 1. Taking the limit of 𝛽𝑘 → 0, we might make a proxy of 𝑝𝑘. To prove the results, according to these 

observations, we need to calculate 𝑙𝑖𝑚
𝛽𝑘→0

𝐺𝑘(𝑧). 

According to Credit Suisse Bank (1997), when the standard deviation of the average default rate, for each sector, 

tends to zero, the probability-generating function of the losses in the variable rate model converges to that of the 

fixed rate model. Proof: 

𝑙𝑖𝑚
𝛽𝑘→0

𝐺𝑘(𝑧) = 𝑙𝑖𝑚
𝛽𝑘→0

(
1 − 𝑝𝑘

1 − 𝑝𝑘𝑅𝑘(𝑧)
)
𝛼𝑘 

 =  𝑙𝑖𝑚
𝛽𝑘→0

(
1 − 𝑝𝑘

1 − 𝑝𝑘𝑅𝑘(𝑧)
)

𝜇𝑘
𝛽𝑘

 = 𝑙𝑖𝑚
𝛽𝑘→0

 (
1 − 𝛽𝑘

1 − 𝛽𝑘𝑅𝑘(𝑧)
)

𝜇𝑘
𝛽𝑘

= ( 𝑙𝑖𝑚
𝛽𝑘→0

(
1 − 𝛽𝑘

1 − 𝛽𝑘𝑅𝑘(𝑧)
)

1
𝛽𝑘

)

𝜇𝑘

= ( 𝑙𝑖𝑚
𝛽𝑘→0

(1 − 𝛽𝑘)
1
𝛽𝑘)

𝜇𝑘

× ( 𝑙𝑖𝑚
𝛽𝑘→0

(1 − 𝛽𝑘𝑅𝑘(𝑧))
1
𝛽𝑘)

−𝜇𝑘

 

 

(58) 

Note that 𝑅𝑘(𝑧) does not depend on 𝛽𝑘. Using the exponential fundamental limit, we have: 

𝑙𝑖𝑚
𝛽𝑘→0

𝐺𝑘(𝑧) =  𝑒−𝜇𝑘 × 𝑒𝜇𝑘𝑅𝑘(𝑧) =  𝑒𝑥𝑝(−∑ ∑
휀 

𝑘

𝜐 
𝑘

𝑚(𝑘)

 =1

𝑛

𝑘=1

 +  ∑ ∑
휀 

𝑘

𝜐 
𝑘
𝑧𝜐𝑗

𝑘

𝑚(𝑘)

 =1

𝑛

𝑘=1

) 
(59) 

𝑙𝑖𝑚
𝛽𝑘→0

𝐺𝑘(𝑧) =  𝑒−𝜇𝑘 × 𝑒𝜇𝑘𝑅𝑘(𝑧) =  𝑒𝑥𝑝(−∑ ∑
휀 

𝑘

𝜐 
𝑘

𝑚(𝑘)

 =1

𝑛

𝑘=1

 +  ∑ ∑
휀 

𝑘

𝜐 
𝑘
𝑧𝜐𝑗

𝑘

𝑚(𝑘)

 =1

𝑛

𝑘=1

) 
 

(60) 

As ranges are given by the same exposure base unit, regardless of sector, equation (3.61) will allow us to group 

the debtors of different sectors, belonging to the same range. Thus, the sum of k disappears. Our expression, then, 

will be summarized as follows: 
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𝐺(𝑧) =  𝑒𝑥𝑝(−∑
휀 
𝜐 

𝑚

 =1

+∑
휀 
𝜐 

𝑧𝜐𝑗

𝑚

 =1

) 
 

(61) 

This expression is exactly what we find for the PGF of losses in the case of fixed rates. This point ends our 

demonstration. 

5. Generalizing Sectors Analysis 

Our analysis so far assumed that the debtors were affected by only one major factor, which determined the 

sectors in which we would split our portfolio. We will now make a generalized analysis, which considers a 

debtor being affected by more than one factor. 

𝐺(𝑧) = ∏∫ 𝑒𝑥𝑘(𝑅𝑘(𝑧)−1)𝑓𝑘(𝑥𝑘)𝑑𝑥𝑘

∞

0

𝑛

 =1

 
 

(62) 

If we look at equation (3.63) as a multiple integral we will have: 

𝐺(𝑧) = ∫ ∫ . . . ∫ 𝑒𝑥𝑝
+∞

𝑥𝑛=0

(∑𝑥𝑘(𝑅𝑘(𝑧) − 1)

𝑛

𝑘=1

)∏𝑓𝑘(𝑥𝑘)𝑑𝑥𝑘

𝑛

𝑘=1

+∞

𝑥2=0

+∞

𝑥1=0

 
 

(63) 

We can redefine 𝑅𝑘(𝑧) as the sum in sector debtors 𝑘: 

𝑅𝑘(𝑧) =
1

𝜇𝑘
∑

휀𝑥𝑖

𝜐𝑥𝑖

𝑧𝜐𝑥𝑖

𝑥𝑖∈𝑘

 
 

(64) 

With this information, we can write: 

∑𝑥𝑘(𝑅𝑘(𝑧) − 1)

𝑛

𝑘=1

= ∑ ∑
𝑥𝑘
𝜇𝑘

휀𝑥𝑖

𝜐𝑥𝑖

(𝑧𝜐𝑥𝑖 − 1)

𝑥𝑖𝜖𝑘

𝑛

𝑘=1

= ∑ 𝛿𝑥𝑖𝑘

𝑥𝑘
𝜇𝑘

휀𝑥𝑖

𝜐𝑥𝑖

(𝑧𝜐𝑥𝑖 − 1)

𝑥𝑖𝜖𝑘

 
 

(65) 

Where 𝛿𝐴𝑘 is given by: 

       𝛿𝑥𝑖𝑘 = *0 𝑖𝑓 𝑥𝑖 ∉  𝑘 ;  1 𝑖𝑓 𝑥𝑖 ∈  𝑘  + 

 

In order to generalize the sector concept, the function δ is changed by a number 𝜃𝑥𝑖𝑘 which represents how 

much the sector’s main factor 𝑘affects the debtor 𝑥𝑖. We will just require that ∑ 𝑛𝑥𝑖𝑘𝑘=1 = 1. Note that the 

above case is a particular version of the above relation in which we have𝜃𝑥𝑖𝑘 = 𝑥𝑖𝑘. With this, in this more 

general case, we have: 

∑𝑥𝑘(𝑅𝑧(𝑧) − 1)

𝑛

𝑖=1

= ∑𝜃𝑥𝑖𝑘

𝑥𝑘
𝜇𝑘

휀𝑥𝑖

𝑣𝑥𝑖

(𝑧𝑣𝑥𝑖) − 1

𝑥𝑖,𝑘

 

 

 

 (66) 
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If we redefine the expected value of the losses in the sector 𝑘 as 𝜇𝑘 =  ∑ 𝜃𝑥𝑖𝑘

𝜀𝑥𝑖
𝑣𝑥𝑖

 𝑥𝑖
 . Thus, our 𝑅𝑘(𝑧) 

will be rewritten as follows: 𝑅𝑘(𝑧) =
1

𝜇𝑘
∑ 𝜃𝑥𝑖𝑘

𝜀𝑥𝑖
𝑣𝑥𝑖

𝑧𝑣𝑥𝑖𝑥𝑖
. Operating with this new polynomial, we will get 

the PGF of the losses in a way identical to the particular case that we had seen.  

 

6. Loss Distribution Analysis - Applying Bayesian Theory 

Bayesian theory is an important statistical tool, widely used in finance and economics. In the Bayesian approach, 

the parameters of the probabilistic model are treated as random variables, modeled by a prior probabilities 

distribution, formulated according to some previous and subjective knowledge regarding the problem studied.  

According to Timpani and Nascimento (2015), the essential characteristic of Bayesian inference is the use of 

probability to quantify the uncertainties, that is, the degree of confidence that the researcher has about the value 

of the parameter. Note that 𝑌 is the random variable that represents the number of defaults in a portfolio, and 

𝑌|𝜇(𝜇). Thus, we assign a prior distribution Gamma (𝛼, 𝛽) for this 𝜇 parameter. An important point to note is 

that the Binomial Negative distribution we obtained earlier is nothing more than the predictive distribution of 𝜇. 

 

Theorem 6.1 Let Y be a random variable such that Y |µ poisson (µ). Suppose that the prior distribution of the µ 

parameter is Gamma (α, β). Then, the predictive distribution of Y is binomial negative. 

 

Proof: By Bayes theorem, we know that: 

 

𝑓(𝑦) = ∫ 𝑓(𝜇)𝑔(𝜇) 𝑑𝜇
∞

0

= ∫
𝑒−𝜇

𝑦!

1

𝛽𝛼𝛤(𝛼)
𝑒
−
𝜇
𝛽𝜇𝛼−1𝑑𝜇

∞

0

= 
1

𝛽𝛼𝛤(𝛼)𝑦!
∫ 𝑒

−𝜇−
𝜇
𝛽𝜇𝑦+𝛼−1

∞

0

 

 

Changing the variable 𝜇(1 − 𝛽−1) = 𝑥, and using the definition of the Euler Gamma Function, we will 

have: 

 

𝑓(𝑦) =
(1 − 𝛽−1)−(𝑦+𝛼)

𝛽𝛼𝛤(𝛼)𝑦!
∫ 𝑒𝑥𝑥𝑦+𝛼−1𝑑𝑥

∞

0

=
(1 − 𝛽−1)−(𝑦+𝛼)

𝛽𝛼𝛤(𝛼)𝑦!
𝛤(𝛼 + 𝑦) =

(𝛼 + 𝑦 − 1)

𝛽𝛼(𝛼 − 1)! 𝑦!
(

𝛽

1 + 𝛽
)
𝑦+𝛼

= (
𝛼 + 𝑦 − 1

𝛼 − 1
) (

𝛽

1 + 𝛽
)
𝑦

(
𝛽

1 + 𝛽
)
𝛼

 

 

We therefore find the density of the Negative Binomial as an expression of the 𝑌 predictive, which completes 

the proof. 

The result motivates us to make some changes to the model. A simple observation makes us notice that the 

distribution that best describes the default events is a Binomial(𝑛, 𝑝)  where 𝑛 is the (fixed) number of debtors 

of a portfolio and 𝑝 will be defined as the mean probability of default in the portfolio: = ∑
𝑝𝐴

𝑛𝐴 . From this 

definition, we see that the prior distribution that fits best the case is the beta (𝑎, 𝑏) which, in addition to being 

conjugated to the binomial, only assumes values in the range ,0,1-. As we have previously concluded, the 

distribution of 𝑌 will be obtained when we calculate the predictive of the above case. We will show that it will 

be a Beta-Binomial. 

Theorem 6.2 Let Y be a random variable such that Y |p (n, p). Suppose that the prior distribution of the µ 

parameter is Beta (a, b). So, the predictive distribution of Y is Beta-Binomial. 

Proof: By Bayes theorem, we know that: 
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𝑓(𝑦) =  ∫ 𝑓(𝑝)𝑔(𝑝)𝑑𝑝
1

0

= ∫ (
𝑛

𝑦
) 𝑝𝑦(1 − 𝑝)𝑛−𝑦

1

𝛽(𝑎, 𝑏)
𝑝𝑎−1(1 − 𝑝)𝑏−1𝑑𝑝

1

0

 

𝑓(𝑦) = ∫ 𝑓(𝑝)𝑔(𝑝)𝑑𝑝
1

0

= ∫ (
𝑛

𝑦
) 𝑝𝑦(1 − 𝑝)𝑛−𝑦

1

𝛽(𝑎, 𝑏)
𝑝𝑎−1(1 − 𝑝)𝑏−1𝑑𝑝

1

0

= (
𝑛

𝑦
)

1

𝛽(𝑎, 𝑏)
 ∫ 𝑝𝑦+𝑎−1 (1 − 𝑝)𝑛−𝑦+𝑏−1 𝑑𝑝

1

0

= (
𝑛

𝑦
)

1

𝛽(𝑎, 𝑏)
𝛽(𝑦 + 𝑎, 𝑛 − 𝑦 +  𝑏) 

 

 

 

 

 

(67) 

The expression found is exactly that of the Beta-Binomial probability function. At this point we need to define, 

as we did for the original model, the parameters of the beta distribution of p in relation to the portfolio data. For 

this, we recall some properties of this distribution: 

𝑀𝑒𝑎𝑛 =
𝑎

𝑎 + 𝑏
 

 

 

(68) 

    𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
𝑎𝑏

(𝑎 + 𝑏 + 1)(𝑎 + 𝑏)2
 

 

 

(69) 

We can see after some calculations that if 𝜇 and 𝜗2 where the mean and variance of p, the distribution 

parameters will be given by: 

 

𝑎 =  
(1 − 𝜇) − 𝜗2(2 − 𝜇)

𝜗2(2 − 𝜇)2
 

 

(70) 

𝑏 =
(1 − 𝜇),(1 − 𝜇) − 𝜗2(2 − 𝜇)-

𝜗2(2 − 𝜇)2
 

 

 

(71) 

For the case where the default rates are fixed, we would obtain the following PGF of the losses in each range: 

𝐺𝑘(𝑧) = ∑ 𝑝(𝑖 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠)𝑧𝑖𝑣𝑘𝑛(𝑘)
𝑖=0  , where 𝑛(𝑘) is the number of debtors in the range 𝑘 and 𝑝(𝑖 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠) =

 .
𝑛(𝑘)

𝑖
/ 𝑝𝑖(1 − 𝑝)𝑛(𝑘)−𝑖. 

This helps us to find the PGF of losses for the case where rates are uncertain. If 𝑚(𝑘) is the number of sector 

range 𝑘, 𝑛 
𝑘 the number of debtors of the j sector range k, we can write in the case of uncertain rates: 

𝐺𝑘(𝑧) = ∑ ∑𝑃(𝑙𝑜𝑠𝑠 = 𝑖 × 𝑣 
𝑘)𝑧𝑖

𝑛𝑗
𝑘

𝑖=0

𝑚(𝑘)

 =1

= ∑ ∑𝑧𝑖 ∫ 𝑃(𝑙𝑜𝑠𝑠 = 𝑖 × 𝑣 
𝑘|𝑃𝑘 = 𝑝𝑥)𝑓𝑘(𝑝𝑘)𝑑𝑝𝑘

1

0

𝑛𝑗
𝑘

𝑖=0

𝑚(𝑘)

 =1

= ∑ ∑𝑧𝑖𝑣𝑗
𝑘

𝑛𝑗
𝑘

𝑖=0

∫ 𝑃(𝑖 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠|𝑃𝑘 = 𝑝𝑥)𝑓𝑘(𝑝𝑘)𝑑𝑝𝑘

1

0

𝑚(𝑘)

 =1

  

 

Where 𝑃𝑘 is the average default probability in sector 𝑘. Note that the integral above is exactly the calculation 
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we previously did to find the density of Beta-Binomial. Recall that, since 𝑛(𝑘) is the number of debtors of the 

range 𝑘, we say that 𝑝𝑘 = ∑
𝑝𝐴

𝑛(𝑘)𝐴 ∈ 𝑠𝑒𝑐𝑡𝑜𝑟  𝑘  . 

Knowing that 𝑃(𝑖 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠) is the probability function of Beta-Binomial, this allows us to conclude that: 

𝐺(𝑧) = ∑ ∑𝑃(𝑖 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠)𝑧𝑖𝑣𝑗
𝑘

𝑛𝑗
𝑘

𝑖=0

𝑚(𝑘)

 =1

 

 

(72) 

𝐺(𝑧) = ∏𝐺𝑘(𝑧)

𝑛

𝑘=1

 

 

(73) 

With this result, we can write a new model based on CreditRisk+, using Bayesian Inference as a tool. 

7. Study Results 

7.1 Data and Structure 

To calculate the unexpected value (VaR) and the expected loss value (EL) through the CreditRisk+ model, real 

financial data from a Brazilian holding company in the segment of Asphalt Paving were used. For reasons of 

confidentiality, the name of the company will not be informed. 

The calculation was done on a monthly basis, starting in January 2010 and ending in December 2010. The credit 

risk estimation using the Creditrisk + model was performed in software R. For the portfolio used in this work, 

the maturity is 365 days and individuals are part of the same industry. Schuermann (2004) stated that the 

distribution of losses is bimodal with peaks at 0.25 and 0.75. In order to take a more cautious approach, the LGD 

(loss given default) value of 0.75 was adopted for all individuals in the portfolio. 

The rating matrix (which crosses the default probabilities with the ratings) was defined using the SERASA and 

Brazilian Central Bank data: 

 

Table 1. Rating Table 

 

 

 

 

 

 

 

 

 

 

In the 'RATING' column from Table 1 it is possible to observe the categories, 'DP' and 'SD' columns show the 

values for default probability and standard deviation respectively. As can be seen in the Table 1,  the further 

away from the A rating the individual is ranked the higher their probability of "defaulting" and the standard 

deviation of the default. If the agent is classified as H, for example, it has a probability of 75\% default with a 

standard deviation of 14.4\%. 

Figure 1 presents the CreditRisk+ calculation for the portfolio in January 2010 in which the holding company 

was exposed in the period. 
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Figure 1. Credit Risk Calculation for the portfolio in January 2010 

 

As can be seen in figure 1 the portfolio expected loss (EL) is 1,69 Mio (𝑀𝑖𝑜 =  106), in the graph the expected 

loss is illustrated by the green line (EL - Expected Loss). Therefore, 1.69 Mio is automatically provisioned as the 

natural loss from the transactions. 

At the 99.9% confidence level, the VaR (blue line), i.e. the unexpected loss value, is 14 Mio. The difference 

between the VaR and Expected Loss (blue line less the green line) is called Economic Capital Allocation (EC). 

The EC represents the amount that I must provision in the fund to ensure that in case of an unexpected loss the 

firm does not go bankrupt. In this case, it will be provisioned 12.31 Mio in the fund. 

In turn, the red line of the graph (Figure 1) represents the Expected Shortfall (ES), which is the average loss in 

the worst scenarios, ie 0.1\%. So, if the loss exceeds the VaR, the expected value is 15.47 Mio. One form of a 

more conservative approach would be to provision the value of the ES in the fund instead of the VaR. 

The same steps were taken for the other months until December 2010. Table 2 presents the Expected Shortfall 

values taking into account different levels of confidence. The following charts present the result for each month 

using the confidence level of 99.9 %. 

 

Table 2. Table of results (without stress test) 

 

Figure 2 reveals that the higher the confidence level, the higher the VaR and ES values. Expected Loss is not a 

forecast, so the loss value remains constant regardless of the confidence level. 
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Figure 2. Charts: Credit Risk per month 

 

The consolidated results can be seen in the Graph 3. 

 

Figure 3. Consolidated results 

As can be seen in Figure 3, VaR and ES values are higher at the 99.9 % significance level than at any other levels. 

Comparing confidence levels allow us to observe the influence of the level on the estimation of VaR and ES.  
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Economic Capital Allocation (VaR - Expected Loss) is the amount that it is advisable to make provision for 

eventual default situations. Using the 99.9% confidence level is the most conservative form, however, if you 

used the 99.0% or 95.0% level the Economic Capital would be lower and thus, it would be less credit standing at 

the bottom. 

The graph below (Figure 4) was constructed in order to visualize how VaR and Expected Shortfall (ES) behaved 

throughout the year. 

 

 
Figure 4. Credit risk for the portfolio in January 2010 

 

Another way to examine this is to compare the scenarios, ie, the results of each level of confidence. 

As can be seen in Figure 5, VaR behavior over time is similar to that of ES, regardless of the confidence level. In 

addition, in all three scenarios presented above the VaR is lower than the ES, this behavior is expected because 

the ES value refers to the cases when the defaults are larger than those predicted in the VaR. 

Again, it is possible to note the difference between significance levels across the different distribution levels on 

the Y-axis. Thus, VaR and ES values are higher in the 99.9 % confidence level scenario than in the other. It is 

worth remembering that the Expected Loss (EL) is not an estimate and therefore its value remains fixed 

regardless of the level of significance. 

Then a credit risk analysis submitting the ratings to stress will be carried out, this means thinking about the worst 

case scenario where an individual is 2 ratings below what he really is. For individuals in the 7th (penultimate) 

and 8 (last) classifications of the score table, the individual will be considered to be in the last category - 8. 

The stress method is usually used in the market to analyze whether the financial institution could handle losses in 

a scenario of economic crisis. 
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Table 3. Results table with Stress test 

 

In September 2010 the holding company had 100 MM as a total of the credit portfolio, so observing the VaR in 

Table 3 in September with a confidence level of 99.9% represents half of the portfolio in the month. 



http://ibr.ccsenet.org     International Business Research                    Vol. 13, No. 1; 2020 

60 

 

 

Figure 6. Graph of the results with stress 

 

According to Figure 6 it can be observed that the VaR of 99.9% from May to December are around 50 Mio, as 

the portfolio has a total value of 104 Mio then the total provisioning (VaR of the sum of EL with EC) is 50% of 

the total value of the portfolio. Therefore, VaR values with stress and 99.9% confidence level compromise the 

financial institution. 

 

Figure 7. Calculation of Credit Risk considering stress effect in the portfolio in January 2010 

 

Comparisons between stress scenarios and normal scenarios were performed to demonstrate the influence of the 

method's choice in the estimation of the loss curve. The use of the scenario with stress is to think of the worst 
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case scenario since it reduces the probability of return of the portfolio. However, it is important to assess whether 

the financial institution would be able to thrive during times of economic crisis. 

The first comparison was made in the Expected Loss (Figure 8), because, as said before, it is the value that is 

automatically lost in the transactions. Using the method with stress leads to a loss 4 times greater than the 

stress-free method, as can be seen in the graph below. 

 

Figure 8. Comparison between the expected loss with and without stress method 

 

As can be seen in Figure 9, stress VaR is always greater than stress-free, regardless of confidence level. The 

difference between the VaR under stress is greater than without stress, showing that the confidence level chosen 

has a great impact on the result. 

 

Figure 9. Comparison between stress VaR and stress-free VaR 

 

The Expected Shortfall follows the same behavior as the VaR, the difference being that the values are higher as 

expected. 
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Figure 10. Comparison between stress and stress-free ES 

 

The value of ES with stress is always greater than the value without stress regardless of the level of confidence. 

This shows that the method of stress is extreme. 

A chart of the Economic Capital Allocation was drawn up in order to illustrate the estimation results for the loss 

distribution. Economic Capital Allocation is considered here as the unexpected loss, which is the difference 

between the VaR and the Expected Loss. For the chart below, the confidence level of 95% was used. 

 
Figure 11. Economic Capital Allocation 

 

It is possible to observe in the graph above that if the stress method is used, the advisable amount of provisioning 

would be twice as great as the stress-free method. 

8. Conclusion 

In this article, credit granting concepts such as: borrower, savers and probability of default were presented. In 

addition, the types of risks involved in transactions and methods of calculating credit risk were discussed. 

The focus of this study was to carry out an application of CreditRisk+ in a portfolio and show the importance of 

calculating credit risk for companies, especially financial institutions. 

It should be noted that a risk management area should periodically monitor expected loss, VaR and CE, as these 

values impact on the mitigation of bankruptcy risk \cite{basileia6} and expected return. Thus, preventive 

measures can be developed to maintain the institution's solvency, such as creating a fund to withstand losses. 

As seen, high values of VaR should be notified to the credit granting area so that it becomes more efficient, in 

order to improve criteria for choosing its customers. In addition, VaR assists in the calibration of risk-return, i.e., 
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if the credit portfolio is very risky then it is necessary to increase the margin of returns. 

The analysis of the results made us conclude that Economic Allocation (EC), that is, the difference between the VaR 

and the expected loss (EL) is always higher considering the stress method. This result is important since the EC is 

the amount that it is advisable to provision in a fund for the institution to protect itself in (1 − 𝛼)% of the time.  

As seen in the various graphs presented above, we conclude that the use of different confidence levels impacts the 

results, which may be crucial for the definition of the provisioned amount in created funds. In addition, when the 

stress method is used, the values of expected loss value, VaR and ES are considerably larger than without stress. 

Therefore, the selection of the method used and the confidence level directly affect the estimation of the loss curve. 
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