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Abstract  

Among many amplitude parameters, Kurtosis (4-th normalized moment of probability density function) is 

recognized to be the sensitive good parameter for machine diagnosis. On the other hand, a new method of 

machine diagnosis can be considered utilizing the higher order cumulants which have the characteristics that 

cumulants more than 3rd order are 0 under Gaussian distribution. Cumulants are stated in combination with the 

same order moment and the moments under that order. Simple calculation method is required on the maintenance 

site. Furthermore, the absolute deterioration factor such as Bicoherence would be much easier to handle because 

it takes the value of 1.0 under the normal condition and tends to be 0 when damages increase. In this paper, nth 

normalized cumulant is considered so as to intensify the sensitivity of diagnosis. Also, the simplified calculation 

method for this new parameter by impact vibration is introduced. Furthermore, the absolute deterioration factor 

is introduced. Three cases in which the rolling elements number is nine, twelve and sixteen are examined and 

compared. The new calculation method is examined whether it is a sensitive good parameter or not. Compared 

with the results obtained so far, the new method shows fairly good results. 

Keywords: impact vibration, kurtosis, cumulant, rolling element, sensitivity 

1. Introduction 

In mass production firms such as steel making that have big equipments, sudden stops of production processes of 

machine failure cause great damages such as shortage of materials to the later processes, delays to the due date 

and the increasing idling time. 

To prevent these troubles, machine diagnosis techniques play important roles. So far, Time Based Maintenance 

(TBM) technique has constituted the main stream of the machine maintenance, which makes checks for 

maintenance at previously fixed time. But it has a weak point that it makes checks at scheduled time without 

taking into account whether the parts still keeping good conditions or not. On the other hand, Condition Based 

Maintenance (CBM) makes maintenance by watching the condition of machines. Therefore, if the parts are still 

keeping good condition beyond its supposed life, the cost of maintenance may be saved because machines can be 

used longer than planned. Therefore, the use of CBM has become dominant. The latter one needs less cost of 

parts, less cost of maintenance and leads to lower failure ratio. 

However, it is mandatory to catch a symptom of the failure as soon as possible of a transition from TBM to CBM 

is to be made. Many methods are developed and examined focusing on this subject. In this paper, we propose a 

method for the early detection of the failure on rotating machines which is the most common theme in machine 

failure detection field. 

So far, many signal processing methods for machine diagnosis have been proposed (Bolleter, 1998; Hoffner, 

1991). As for sensitive parameters, Kurtosis, Bicoherence, Impact Deterioration Factor (ID Factor) were 

examined (Yamazaki, 1997; Maekawa et al., 1997; Shao et al., 2001; Song et al., 1998; Takeyasu, 1989; 

Takeyasu et al. 2004; Takeyasu, 2017). 

Kurtosis is one of the sophisticated inspection parameter which calculatesnormalized 4th moment of probability 

density function.  

In the industry, there are cases where quick reactions are required on watching the waveform at the machine site. 

In this paper, we consider the case such that impact vibration occurs on the gear when the failure arises. Under 
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the normal condition, the probability density function of amplitude signal would be the Normal Distribution in 

general. A new index would be introduced using the relation that higher order cumulants more than 3rd order are 

0 under the Normal Distribution. The higher order cumulant is expressed as the combination of the same order 

moment and the moments less than that order. The new indices would be introduced because they are the 

combinations of plural order moments. If they are calculated into simple formed equations and their indices are 

sensitive, the new indices would be expected to be useful. 

Furthermore, an absolute deterioration factor such as Bicoherence would be much easier to handle because it 

takes the value of 1.0 under the normal condition and tends to be 0 when damages increase. Cumulants more 

than 3rd order are 0 under the normal condition and when failure increases, the value grows big. Therefore, the 

inverse number of the sum of calculated value of cumulants plus 1 would behave as an absolute index. The new 

index shows that it is 1.0 under the normal condition and tends to be 0 when failure increases. In this paper, we 

introduce a simplified calculation method to this new index and name this as a simplified absolute index of 

higher order cumulants. Three cases in which the rolling elements number is nine, twelve and sixteen are 

examined and compared. 

Trying several orders, we show that the new method is much more sensitive than Bicoherence. This simplified 

method enables us to calculate the new index even on a pocketsize calculator and enables us to install it in 

microcomputer chips. We show the fundamental relationship with moments and cumulants in section 2. We 

confirm the simplified calculation method of kurtosis we proposed before in section 3. In section 4, the 

simplified absolute index of higher order cumulants are introduced. Numerical examples are exhibited and they 

are compared with Bicoherence in section 5 which are followed by remarks of section 6. Section 7 is a summary. 

2. Moment and Cumulant 

2.1 Moment 

In cyclic movements such as those of bearings and gears, the vibration grows larger whenever the deterioration 

becomes bigger. Also, it is well known that the vibration grows large when the setting equipment to the ground is 

unsuitable (Yamazaki, 1977). Assume the vibration signal is the function of time as x(t). And also assume that it 

is a stationary time series with mean x .Denote the probability density function of these time series as )(xp . 

When mean x is denoted by 


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 dxxxpx )(        (1) 
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2  is denoted by 
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3rd order moment MT(3), 4th order moment MT(4) are denoted by 
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The normalized index of 3rd order moment and 4th order moment is known as Skewness(SK),Kurtosis(KT) for 

each in the following definition. 
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Discrete time series are stated as follows. 
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)( tkxxk   ),2,1( k  

where t  is a sampling time interval. Mean x ,variance
2 , Skewness (SK) and Kurtosis(KT) are stated as 

follows under discrete time series. 
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2.2 Cumulant 

Characteristic function )(u is defined as follows (Hino, 1977). 


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After taking Taylor expansion of the characteristic function, we can obtain coefficient )(nc as: 
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This )(nc is called cumulant. There exists following relation between cumulant and moment. 
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When 0x , Eq.(17) becomes as follows for n=1,2,3,4,6,8. 
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Where MT(6),MT(8) are 6th moment, 8th moment for each. It is well known that cumulant is 0 for the higher 

order cumulant more than 3 when the probability density function is a normal distribution. 

2.3 Bicoherence 

Bicoherence shows the relationship between two frequencies and is expressed as: 
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Range of Bicoherence satisfies: 
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3. Simplified Calculation Method of Kurtosis 

Assume that we get N  amount of data and then newly get l  amount of data. Let mean, variance, 

)3(MT , )4(MT , SK , KT  of N~1  data state as Nx 、 N
2 、 )3(NMT 、 )4(NMT 、 NSK 、 NKT   
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for each. And as for lNN  ~1 data, we state above items as 

lNx / 、 lN /
2 、 )3(/ lNMT 、 )4(/ lNMT 、 lNSK / 、 lNKT /  

For example, )4(NMT and )4(/ lNMT are stated as follows. 
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When there arise failures on bearings or gears, peak values arise cyclically. In the early stage of the defect, this 

peak signal usually appears clearly. Generally, defects will injure other bearings or gears by contacting the 

covering surface as time passes. Assume that the peak signals of S times magnitude from the normal signals 

arise during m times measurement of samplings. As for determining sampling interval, the sampling theorem is 

well known (Tokumaru et al., 1982). But in this paper, we do not pay much attention on this point in order to 

focus on our proposal theme. Let lN /
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We assume that time series are stationary as is stated at 2.1. Therefore, even if sample pass may differ, mean and 

variance is naturally supposed to be same when the signal is obtained from the same data occurrence point of the 

same machine. 

We consider such case that the impact vibration occurs. Except for the impact vibration, other signals are 

assumed to be stationary and have the same means and variances. Under this assumption, we can derive the 

simplified calculation method for machine diagnosis which is a very practical one. 

For these equations, we obtain lNKT  as lNKT  of the above case 
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While 0.3NKT  under normal condition. 

n.b. 
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Its moment is described as follows which is well known (Hino, 1977). 
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4. Simplified Absolute Index of the Higher Order Cumulant 

4.1 Absolute Index of Higher Order Cumulant 

Under the normal distribution, the higher order cumulants more than 3rd order are 0. If the system is under the 

normal condition, we may suppose )(xp  becomes a normal distribution function. The normalized cumulant 

CT is as follows which is the same form of Skewness and Kurtosis at 3.  
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Therefore, the simplified absolute index of the higher order cumulant is described as follows. 
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This is the absolute deterioration factor of which range is 1 to 0. 

 

4.2 Simplified Calculation Method for the Higher Order Cumulant 

3rd order cumulant is 3rd order moment itself as is expressed in Eq.(20). Therefore, we can obtain the following 

equations. When the peak signals arise, we denote )3(lNc 
 to be )3(lNc  as before for lN   data. 
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Under the normal condition or the probability density function has the symmetric form for right and left even if 

impact vibration occurs, )3(NMT  is 0. Therefore )3(lNc  is also 0. We can obtain the following 4th cumulant 

from Eq.(21). 
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Under the normal condition, the following equation is derived because NNMT 43)4(   by Eq.(35). 
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Under the normal condition, data can be normalized to be x  = 0, 12  without loss of generality 

(Tokumaru et al., 1982). Hence, we calculate using the following equation hereafter. 
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In the same way, 6th cumulant and 8th cumulant are described as follows from Eq(22),(23). 
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5. Numerical Examples 

If the system is under the normal condition, we may suppose p(x) becomes a normal distribution function. Under 

the assumption of 3. , let 16,12,9m , considering the cases 6,,3,2 S  for 3., and setting 
10

N
l  , we 

obtain Table 1 from the calculation of )(nZc lN . Here, m is the number of rolling elements. 

Table 1. Transition of )(nZc lN  (
10

N
l  ) 

<m=9> 

 S=1 2 3 4 5 6 

n=4 1 0.78742 0.34249 0.12904 0.05471 0.02649 
n=6 1 0.20130 0.01312 0.00201 0.00049 0.00016 

 

<m=12> 

  S=1 2 3 4 5 6 

n=4 1 0.83126 0.40925 0.16461 0.07147 0.03493 
n=6 1 0.25007 0.01728 0.00266 0.00065 0.00021 

 

<m=16> 

  S=1 2 3 4 5 6 

n=4 1 0.86765 0.47968 0.20775 0.09292 0.04595 
n=6 1 0.30657 0.02278 0.00352 0.00086 0.00028 

 

Next, setting ,0N  Nl  , we obtain Table 2. 

Table 2. Transition of )(nZc lN  ( )0(  N , Nl  ) 

<m=9> 

  S=1 2 3 4 5 6 

n=4 1 0.27273 0.05009 0.01478 0.00583 0.00275 
n=6 1 0.03114 0.00169 0.00026 0.00006 0.00002 

 

<m=12> 

  S=1 2 3 4 5 6 

n=4 1 0.32653 0.06383 0.01903 0.00752 0.00355 
n=6 1 0.03767 0.00204 0.00031 0.00008 0.00002 
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<m=16> 

  S=1 2 3 4 5 6 

n=4 1 0.38729 0.08163 0.02466 0.00998 0.00462 
n=6 1 0.04595 0.00253 0.00039 0.00009 0.00003 

As the value at n=6 is already so small, we have skipped the calculation at n=8. It does not affect the 

consideration of the result. 

As S grows large, the value decreases rapidly. As m increases, the value increases slightly. 

As for higher order cumuulants cases such as n=6, sensitivity grow much better. But calculation becomes more 

complicated as n grows large. 

Each corresponding case of Table 2 shows much more proceeded value in deterioration than those of Table 1. It 

is because each case of Table 2 is occupied only by the data under irregular condition. 

Subsequently, we examine Bicoherence. We made experiment in the past (Takeyasu,1987,1989). 

Summary of the experiment is as follows. Pitching defects are pressed on the gears of small testing machine. 

Small defect condition: Pitching defects pressed on 1/3 gears of the total gear. 

Middle defect condition: Pitching defects pressed on 2/3 gears of the total gear. 

Big defect condition: Pitching defects pressed on whole gears of the total gear. 

We examined several cases for the 1f , 2f  in Eq.(24). We got the best-fit result in the following case. 

1f : peak frequency of power spectrum  

2f : 2 1f  

We obtained the following Bicoherence values in this case (Table 3). 

Table 3. Transition of Bicoherence value 

Condition  Bicoherence 

Normal 0.99 
Small defect 0.38 

Middle defect  0.09 
Big defect 0.02 

Thus, Bicoherence proved to be a very sensitive good index. Bicoherence is an absolute index of which range is 

1 to 0. 

Therefore it can be said that it is a universal index. 

In those experiment, small defect condition is generally assumed to be S=2 and big defect condition is generally 

assumed to be S=6 (Maekawa,K. et al. 1997). Therefore, approximate comparison may be achieved, though the 

condition does not necessarily coincide.  

In the case of 4n  in Table 2, the value is 0.273 at small defect condition and 0.015 at middle defect 

condition and 0.003 at big defect condition which show more sensitive behavior than Bicoherence. In the case of 

n=6, the value decreases so heavily. Similar things can be said for m=12 and m=16. It could be said that the case 

n=4 would be sensitive enough for the practical use. Therefore, the case n=4 would be recommended in this new 

method. This calculation method is simple enough to be executed even on a pocketsize calculator. Compared 

with Bicoherence which has to be calculated by Eq.(24)～(27), the proposed method is by far a simple one and 

easy to handle on the field defection. 

6. Remarks 

The steps for the failure detection by this method are as follows. 

1. Prepare standard Zc  Table for each normal or abnormal level 

2. Measure peak values by signal data and compare the peak ratio  S  to the normal data  

3. Calculate Zc   
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4. Judge the failure level by the score of Zc  

m is the value of each equipment. For example, the number of ball bearings or the number of gears. Preparing 

the standard Table of Zc  for each normal and abnormal level, we can easily judge the failure level only by 

taking ratio of the peak value to the normal level and calculating Zc . This calculation method is very simple and 

is very practical at the factory of maintenance site. This can be installed in microcomputer chips and utilized as 

the tool for early stage detection of the failure. 

7. Conclusion 

We proposed a simplified calculation method for an absolute index of higher order cumulant and named this as 

simplified absolute index of higher order cumulant. Three cases in which the rolling elements number was nine, 

twelve and sixteen were examined and compared. As S increases, the value rapidly decreases. As m increases, 

the value increases slightly. Compared with the results obtained so far, the results of numerical examples of this 

paper are reasonable and much more sensitive than another method such as Bicoherence. Judging from these 

results, our method is properly considered to be effective for the early stage failure detection especially. 

Although it has a limitation that it is restricted in the number of research, we could obtain the fruitful results. To 

confirm the findings by utilizing the new consecutive visiting records would be the future works to be 

investigated. 

The effectiveness of this method should be examined in various cases. 
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