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Abstract 
Background: Breast cancer is the main cause of women cancer mortality. Therefore, precise prediction of 
patients’ risk level is the major concern in therapeutic strategies. Although statistical learning algorithms are high 
quality risk prediction methods, but usually their better prediction quality leads to more loss of interpretability. 
Therefore, the aim of this study is to compare ‘Model-Based Recursive Partitioning’ and ‘Random Survival 
Forest’; whether the partitioning, as the more interpretable learning technique, could be a suitable successor for 
forests. 

Patients and Methods: The applied dataset for this retrospective cohort study includes the information of 539 
Iranian females with breast cancer. To model the patients’ survival, various learning algorithms were fitted and 
their accuracy measures were statistically compared by means of several precision criteria.  

Results: This study verified the stability of ‘Model-based Recursive Partitioning’, further to ‘Random Survival 
Forest’ deficiency to present a unique pervasive model. Moreover, except ‘Log-Logistic-Based Recursive 
Partitioning’, none of the methods significantly outperformed ‘Exponential- Based Recursive Partitioning’. 

Conclusions: Briefly, it was concluded that the loss of interpretability due to the use of over complex models, 
may not always counterbalanced by the amount of prediction improvements. 
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1. Background 

Breast cancer as the most common cancer among Iranian females (Aboutorabi, Hadian, Ghaderi, Salehi, & 
Ghiasipour, 2015), is word widely the 18% proportional share of all cancers in women (Cvetković & Nenadović, 
2016). Certainly, the prerequisites for the disease prevention and proficient treatment findings are the precise 
detection of affective risk factors in diseases formation and progression (Mert, Kılıç, Bilgili, & Akan, 2015). For 
a long time ago, conventional survival models have been used to achieve this aim and to provide necessary 
requisites for breast cancer prognostication (Ahmadinejad, Movahedinia, Movahedinia, Naieni, & Nedjat, 2013; 
Azarkish, Najmabadi, Roudsari, & Shandiz, 2015; Sadoughi, Afshar, Olfatbakhsh, & Mehrdad, 2016). Although 
the prominent interpretability of these models has made them pioneer for simple medical explanations, but the 
lower bias and accurate prediction of recently introduced learning algorithms, has stimulated the statistical focus 
on machine learning methods. The superior performance of these state-of-the-art learning techniques has been 
confirmed previously in many medical studies (Chao, Yu, Cheng, & Kuo, 2014; Dezfuly & Sajedi, 2015; Habibi, 
Ahmadi, & Alizadeh, 2015). 

‘Model-Based Recursive Partitioning’ (MoBRP) could be referred as an exemplary interpretable machine 
learning technique (Zeileis, Hothorn, & Hornik, 2008a). Actually, this partitioning is a hybrid tree such that 
combines the traditional parametric survival models with newly introduced recursive partitioning methods 
(Zeileis et al., 2008a). By this way, MoBRP gains the profits of both classical and modern analysis; the 
prominent interpretability for recognized affective risk factors, in addition to its accurate survival time prediction 
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and modeling. 

Further to MoBRP, ‘Random Survival Forest’ (RSF) could be referred as another outstanding learning technique 
(Ishwaran, Kogalur, Blackstone, & Lauer, 2008). In fact, this more intricate and time-consuming repetitious 
algorithm is an ensemble of survival trees and therefore would be so expert to find high order effects and 
interactions (Hastie, Tibshirani, Friedman, & Franklin, 2005).  

Although the MoBRP ability to recognize nonlinearity and high order interactions, has made it superior to 
ordinary parametric survival models, but its detection ability for more complicated structures is hierarchically 
inferior to RSF. Briefly, more precise prognostication requires more costly computational analysis which usually 
provides less interpretable results; whereas, many publications have certified that the loss of interpretability due 
to the use of over complex algorithms may not always counterbalanced by the amount of prediction 
improvements (Haibe-Kains, Desmedt, Sotiriou, & Bontempi, 2008).  

The RSF performance has been evaluated several times previously. For instance comparative studies, using both 
of RSF and Cox proportional hazard, for modeling the survival of patients with different cancers as breast (Kurt 
Omurlu, Ture, & Tokatli, 2009), prostate (Gerds, Kattan, Schumacher, & Yu, 2013), head and neck (Datema et al., 
2012), as well as patients with systolic heart failure (Hsich, Gorodeski, Blackstone, Ishwaran, & Lauer, 2011). 
Forests were also compared with variety of learning techniques (Mirmohammadi, Shishehgar, & Ghapanchi, 
2014; Pang, Datta, & Zhao, 2010) and survival trees, as the forest elements (Yosefian, Mosa Farkhani, & 
Baneshi, 2015); but as far as we know, the RSF has never been compared with MoBRP. Therefore, the aim of 
this study is to compare the accuracy of predictions obtained with MoBRP and RSF; as if MoBRP which is more 
interpretable technique, could be a suitable successor for computationally expensive RSF.  

2. Patients and Methods 
2.1 Patients 

In this retrospective cohort study, the information of 539 eligible women with breast cancer was gathered. All the 
involved patients have undergone, at least, one surgery for tumor extraction, from 1995 to 2013. The surgeries 
were under the supervision of the Diagnostic Center of Darolaytam-e Mahdieh of Hamedan, as the referential 
center in the west of Iran. 

The interested event was death of breast cancer and the survival time was measured in days from surgery to 
death. Almost, 63% of patients were censored and had never experienced the event of interested, in the follow up 
duration. 

2.2 Model-Based Recursive Partitioning Algorithm 

Simply, MoBRP is a classification tree that is capable for parametric model fitting in each node of the tree 
(Zeileis et al., 2008a). Therefore, participated variables in MoBRP could be considered for two distinct 
objectives: (i) partitioning variables which are used for grow trees and forming the terminal nodes and (ii) model 
variables, which are used for explain the survival time in each node. It is worth noting that; these two types of 
variables could partially or totally be the same. 

In order to grow this special tree, each node would be partitioned if the instability of the fitted model associated 
to it, is statistically significant through some partitioning variables; more precisely, for all terminal nodes and 
through each partitioning variable, the stabilities of models are assessed and the variable which is responsible for 
the most instability is selected as partitioning variable for its associated terminal node. Additionally, the cut point 
selection would be in favor of some objective functions to globally optimize the models of terminal nodes 
(Zeileis et al., 2008a) 

2.3 Random Survival Forests Algorithm 

The conclusion of a RSF algorithm is simply the average of its constituent trees. To grow a forest including B 
trees, the following steps are repeated B times to produce each tree (Hastie et al., 2005; Ishwaran et al., 2008). 

A random sample with replacement, and of size N, is drowning from the original observations. At each node of 
the tree, p covariates are randomly selected and the partitioning would be based on the covariate which can 
provide the largest survival differences between generated nodes. Note that the covariate and its cut point are 
selected by a heuristic search through the all terminal nodes and for each possible split point along. Furthermore, 
different criterion could be used for this difference assessment (Hastie et al., 2005; Ishwaran et al., 2008). 

The growing would continue until a tree reaches its constrain about the least permissible number of observations 
at terminal nodes. 
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2.4 Performance Assessment 

In order to compare the efficiency of the aforementioned risk prediction methods, the five most common 
accuracy measures, for nonparametric survival algorithms, were used: the time-dependent receiver operating 
characteristic (ROC) curve (Heagerty, Lumley, & Pepe, 2000), the sensitivity and specificity, the concordance 
index (Harrell, Lee, & Mark, 1996), the Brier score (Brier, 1950; Graf, Schmoor, Sauerbrei, & Schumacher, 1999) 
and the hazard ratio (HR) from Cox’s proportional hazards model (Cox, 1972).  

2.5 Analysis Framework 

In this study, the MoBRP was grown based on the four most common parametric survival models (Corbiere & 
Joly, 2007); as: Exponential, Weibull, Log-Logistic and Log-Normal. 

The applied growing rules for RSF were Log-Rank and Log-Rank Score, that is, node splitting through 
maximization of log-rank and its standardized statistics, respectively (Ishwaran et al., 2008). 

To derive MoBRP and RSF risk group prediction, the patients with the lower 33% of the predicted risk score 
were considered as low risk; and the remains as high risk groups. It should be mentioned; this experimental 
proportion has been certified in various breast cancer prognostications (Buyse et al., 2006; Haibe-Kains et al., 
2008). 

Since exponential is the simplest parametric model, it was selected as the benchmark for MoBRP, whether the 
more complexity of other methods can provide them superior prognostications. All the comparisons were 
statistically tested except the values of sensitivity and specificity; due to the lack of any proven statistical test. 

Lastly, although the train and test sets were randomly selected from the dataset, but in order to demystify the 
style of subsets selection, all the analyses were repeated substituting the sets (Michiels, Koscielny, & Hill, 2005). 

3. Results 
The patients’ median lifetime was 8.85 years and the 5-year survival rate was 68% (95%CI: 64%-72%). The 
longest observed follow up duration was approximately 19 years. The variable’s importance, provided by both of 
forests, demonstrated the ‘Progesterone Receptor Status’ (PR) and ‘Number of Involved Lymph Nodes’, 
respectively as the two most relevant variables to explain the survival duration. These variables were also 
significant in all MoBRPs. 

Table 1 represents the sensitivities and specificities for risk group predictions. Excepting Exponential-BRP, 
almost all sensitivities were more than 0.7. Although the most sensitivity were associated to RSFs, but they were 
able to provide more sensitivities only for train set and MoBRP methods were pioneer in the test set. 
Furthermore, the specificities of the forests were lowest for test set, in spite of their moderate specificities for 
train set. Also, Exponential-BRP showed the most specificity despite its lowest sensitivities. 

 

Table 1. Sensitivity and specificity for risk group prediction for each of the train and test set 

Model 
Sensitivity Specificity 
train test train test 

Exponential-BRP 0.597 0.510 0.624 0.702 
Weibull-BRP 0.747 0.779 0.461 0.496 
Log-Logistic-BRP 0.819 0.789 0.417 0.494 
Log-Normal-BRP 0.787 0.791 0.431 0.438 
RSF Log-Rank 0.933 0.678 0.465 0.339 
RSF Log-Rank Score 0.945 0.716 0.458 0.354 

M-BRP: Model-Based Recursive Partitioning. 

 

Addition to C-index and IBS, which are common for risk score and group assessments, IAUC and HR have been 
included in Tables 2 and 3, respectively. The results of risk score prediction were confirmed by the results of risk 
group prediction, through the signification of statistical tests involving C-indices and IBSs. Excluding IAUCs, 
almost none of the MoBRPs were significantly more accurate than Exponential-BRP, for each of the measures or 
each of the train or test sets. Moreover, RSFs were in agreement and their superiorities were declared, 
unanimously by all the measures; however, their excellence was specific to train set and they failed to 
significantly outperform in the test set. This paradox could also be seen for all the prediction methods, according 
to IAUCs. 
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Table 2. Performance for risk score prediction for each of the train and test set 

Model 
C-index IAUC IBSC 
train test train test train test 

Exponential-BRP 0.653 0.625 0.667 0.623 0.183 0.219
Weibull-BRP 0.672 0.615 0.658** 0.615 0.194 0.215**

Log-Logistic-BRP 0.681 0.609 0.669** 0.617 0.168** 0.219**

Log-Normal-BRP 0.686 0.615 0.686** 0.613 0.195 0.221
RSF Log-Rank 0.761** 0.556 0.773** 0.569 0.177** 0.237
RSF Log-Rank Score 0.755** 0.556 0.763** 0.559 0.183** 0.229

M-BRP: Model-Based Recursive Partitioning; *Significant at 5%; **Significant at 1%; All the tests were 
designed as if the accuracy of every method is more than Exponential-BRP. 

 

Table 3. Performance for risk group prediction for each of the train and test set 

Model 
C-index HR IBSC 

train test train test train test 

Exponential-BRP 0.680 0.657 1.96 1.57 0.182 0.171

Weibull-BRP 0.707 0.706 2.05 2.22 0.148 0.161**

Log-Logistic-BRP 0.762 0.705 2.47 2.18 0.147 0.162**

Log-Normal-BRP 0.752 0.682 2.37 1.93 0.147 0.170

RSF Log-Rank 0.869** 0.527 3.87* 1.00 0.182** 0.177

RSF Log-Rank Score 0.850** 0.587 3.19* 1.20 0.184** 0.174

M-BRP: Model-Based Recursive Partitioning; *Significant at 5%; **Significant at 1%; All the tests were 
designed as if the accuracy of every method is more than Exponential-BRP. 

 

Log-Logistic-BRP was the sole method which its risk score predictions outperformed, in both of test and train 
sets; though, this supremacy seems uncertain as only one measure, i.e. IBS, affirmed that. However, 
Log-Logistic-BRP has performed leastwise similar to other methods; therefore, another generic 
Log-Logistic-BRP was fitted by participation of all the observations in order to provide a pervasive 
infrastructure for physicians. In this implementation, a four-terminal-node tree was formed. The percent of 
high-risk patients according to risk group prediction were respectively, 17%, 34%, 67% and 85%, associated to 
each terminal node; and the median lifetimes were 108, 100, 98 and 89 months, correspondingly. 

The stability of conclusions was confirmed by achieving the similar results after the replacement of training and 
test sets. As before, Exponential-BRP had the least sensitivity; however, it demonstrated most specificity in risk 
prediction. Although all the assessment criteria statistically certified more accuracy of RSF for this new training 
set, but none of them could discover any more precise for new test set.  

4. Discussion 
Since for none of the assessment measures, RSF significantly outperformed the Exponential-BRP in both of train 
and test sets; this investigation certified that the probable accuracy improvement caused by costly computational 
RSF does not compensate the loss of interpretability. The superiority of RSF only for its training set, testifies the 
RSF over-fitting and its deficiency to provide a generic pervasive model. Consistent with this conclusion, the 
RSF over-fitting has been cited as its disadvantage by many previous medical studies (Mirmohammadi et al., 
2014). Whereas, other studies (Ishwaran, 2007) which have compared RF with Classification and Regression 
Trees, have claimed the RF more capability for over-fit controlling. The idea of seldom over fitting with random 
forest classification is also affirmed by other documentations (Hastie et al., 2005).  

Considering Log-Logistic-BRP, the present order for the percentage of high-risk patients and the median lifetime 
related to terminal nodes clearly attests the ability of tree to divide the population to homogeneous subsets with 
the same risk levels. Therefore, in addition to MoBRP regression-structure, its excellent classification-structure 
should also be highlighted. Meanwhile, it is cited that the results of RSF would not be easy to interpret for 
clinicians, due to RSF inability for any classification (Walschaerts, Leconte, & Besse, 2012).  

There are many studies which have estimated the risk factor importance of breast cancer by means of RSF. In 
line with our findings Ishwaran et al. and Kurt Omurlu et al. reported the importance of ‘PR’ and ‘Number of 
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Nodes’; but in contrast with us, they found ‘Number of Nodes’ as a more important risk factor (Ishwaran et al., 
2008; Kurt Omurlu et al., 2009). In spite of these diagnosed factors, it has been claimed that the predicted 
importance by RSF is bias due to its bias of variable selection (Strobl, Boulesteix, Zeileis, & Hothorn, 2007). To 
explain more, note that other than MoBRP which is a special unbiased tree, there are numerous studies that have 
discussed the bias of variable selection in the algorithm of usual tree models (Hothorn, Hornik, & Zeileis, 2006; 
Kim & Loh, 2001). Clearly, a forest composed of bias trees would lead to bias predictions of variable 
importance. 

Addition to the mentioned factors, all the MoBRPs recognized the significant effects for ‘Tumor Size’; since the 
adverse effect of this factor was previously certified in many clinical researches (Faradmal, Soltanian, Roshanaei, 
Khodabakhshi, & Kasaeian, 2014); therefore, MoBRPs seems to be more able for risk factor recognition. 

In partial agreement with our study, D’Eredita cited ‘Lymph Status’, ‘Tumor Size’ and ‘Histological Grade’ as 
the most informative medical factors (D’Eredita, Giardina, Martellotta, Natale, & Ferrarese, 2001). Also, the 
study of Delen et al. (Delen, Walker, & Kadam, 2005) affirmed the effectiveness of ‘Tumor Size’ through the 
sensitivity analysis of Artificial Neural Network. In agreement to our results, they found ‘Number of Involved 
Lymph Nodes’ as another important factor but in contrast to ours, they reported the ‘Stage of Disease’ as a more 
informative index. In their study decision tree showed the best prediction following with Artificial Neural 
Network and Logistic Regression. They also suggested that modern pattern recognition tools should be used as 
the complementary for traditional statistical modelling. It is worth noting that, their idea could be considered as a 
reference for MoBRP which combines the algorithm of both methods.  

The prediction quality of RSF has been appraised many times. Bou-Hamad et al. assessed the RSF performance 
for predicting the survival of patients with primary biliary cirrhosis of the liver. The resulted IBS from a 10-fold 
cross validation certified the best implementation for RSF following with bagging (Bou-Hamad, Larocque, & 
Ben-Ameur, 2011). In another real data application to model the survival time of Iranian females with breast 
cancer, random forest showed the highest level of accuracy among other learning techniques (Montazeri, 
Montazeri, Montazeri, & Beigzadeh, 2015). In spite of mentioned studies in the context of learning algorithms, 
there are also comparisons between RSF and Cox, as the most widely used method for modeling the censored 
data (Hothorn, Bühlmann, Dudoit, Molinaro, & Van Der Laan, 2006). Through some of these comparative 
studies Cox has shown, not only the same (Hsich et al., 2011), but also better performance than all diversity of 
forests (Datema et al., 2012). Additionally, the supremacy of Cox has been confirmed by other simulation studies 
(Kurt Omurlu et al., 2009). Evidently and in agreement to our findings, random forest is so prominent among 
learning algorithms; however, its computational complexity may not always guarantee its superiority over 
traditional models. 

Other than MoBRP, random forest has been also compared with survival trees with so simpler structure. In a 
study which was designed to model the survival of Iranian patients suffering from acute myocardial infarction, 
both of IBS and C-index ascertained the RSF more precise results; furthermore, the difference between indices in 
training and test sets, evidenced the more generalizability of the forest (Yosefian et al., 2015). It should be added 
that the RSF less prediction error rates, has been also proven in another study in the field of breast cancer 
survival modeling (Walschaerts et al., 2012). Maroco et al. compared the performance of seven data mining 
classifiers in addition to three traditional models including logistic regression. They concluded that the overall 
accuracy of random forest out performed three different types of classification trees and logistic regression 
(Maroco et al., 2011). Eventually, although forest outperforms each of its constituent trees but our study 
statistically certified that MoBRP, as a less complex algorithm, can provide sufficient accuracy and less 
over-optimization. 

For none of the aforementioned studies, statistical test was used to compare the accuracy measures. In actuality, 
the investigation of Haibe-Kains et al. is referring as the first study that has statistically compared the 
performance of learning algorithms for breast cancer prognostication from gene expression data (Haibe-Kains et 
al., 2008). In accordance with the present study, they claimed that the loss of interpretability as the consequences 
of complex models does not equilibrate the provided excess prices in breast cancer prognostication (Haibe-Kains 
et al., 2008). 

It should be noted that the retrospective design of this study could be referred as its main limitation. Although, it 
was preferred to conduct a study including all Iranian females with breast cancer, but the target population of this 
survey only includes breast cancer patients from the west of Iran. Finally, regarding to the high observed 
censoring rate and the high possibility of being cured, variety of cure models seem to be a proper proposal for 
survival modelling and more investigations. 
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5. Conclusion 
Briefly, more precise prognostication is in the wake of more costly computational analysis which usually 
provides less interpretable recognitions. This study certified MoBRP as a compromise between a high quality 
prediction and the ease of interpretation for clinicians; therefore, a good analytical model, in medical fields.  
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