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Abstract 
Background: Logistic regression (LR) and linear discriminant analysis (LDA) are two popular statistical models 
for prediction of group membership. Although they are very similar, the LDA makes more assumptions about the 
data. When categorical and continuous variables used simultaneously, the optimal choice between the two 
models is questionable. In most studies, classification error (CE) is used to discriminate between subjects in 
several groups, but this index is not suitable to predict the accuracy of the outcome. The present study compared 
LR and LDA models using classification indices.  

Methods: This cross-sectional study selected 243 cancer patients. Sample sets of different sizes (n = 50, 100, 
150, 200, 220) were randomly selected and the CE, B, and Q classification indices were calculated by the LR 
and LDA models.  

Results: CE revealed the a lack of superiority for one model over the other, but the results showed that LR 
performed better than LDA for the B and Q indices in all situations. No significant effect for sample size on CE 
was noted for selection of an optimal model. Assessment of the accuracy of prediction of real data indicated that 
the B and Q indices are appropriate for selection of an optimal model.  

Conclusion: The results of this study showed that LR performs better in some cases and LDA in others when 
based on CE. The CE index is not appropriate for classification, although the B and Q indices performed better 
and offered more efficient criteria for comparison and discrimination between groups.  
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1. Introduction 
Classification method in medical studies is important when researchers are interested in classifying subjects in 
specific groups according to specific characteristics. Multivariate analysis is commonly used to classify this type 
of data.  Logistic regression (LR) and linear discriminant analysis (LDA) are two forms of multivariate analysis 
used to predict membership in two or more mutually exclusive groups using a set of predictors (Alkarkhi & Easa, 
2008; Montgomery, White, & Martin, 1987). 

LDA is similar to LR and both can be used in one study; nevertheless, the two methods differ in statistical 
assumptions. The underlying assumptions of LDA are the normal distribution of independent variables and equal 
variance-covariance matrices within each group. When some or all variables are categorical, the assumptions are 
nearly always violated. This is particularly important when the objective is to estimate the magnitude of the 
effects of the predictor variables. When the objective is only prediction or classification, these assumptions are 
less constraining and both methods provide the same model. LR does not have as many assumptions (Johnson & 
Wichern, 2007; Montgomery et al., 1987). When the assumptions of LDA are met, this type of analysis is more 
powerful than LR. LR is the common choice when all aspects are considered because the assumptions of LDA 
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can rarely be met.  

Several studies have compared the two models. One study indicated that LDA is more useful for classification of 
cases into several groups, while LR is more useful for relating a binary dependent variable to independent 
variables (Press & Wilson, 1978). Other studies have reported that LDA is asymptomatically more efficient than 
LR when the assumptions of multivariate normality and equal covariance hold (Barön, 1991; Efron, 1975).  

Most studies on LDA have focused only on continuous variables (Barön, 1991; Lei & Koehly, 2003); however, 
categorical variables could also be useful predictors. There is little theory available to deal with this situation 
(Krzanowski, 1982, 1986; Lee, Song, & Lu, 2007). It has been recommended for the numerical value of a 
variable to equal one if the object possesses the characteristic and zero if the object does not. This variable is 
then treated like a continuous variable in the usual models (Johnson et al., 2007).  

Classification error (CE; percentage of incorrectly classified observation) is a simple and common criterion used 
to compare two models; however, it is not a sensitive and statistically appropriate measure (Harrell, 1997). CE 
can be similar in two models, but can be overestimated when there is a difference between models. If the 
predicted value for one case is 0.51 and for another is 0.99, both will be classified into the same group, which 
demonstrates that CE does not reveal differences between values well. CE also cannot determine the accuracy of 
the predictions (Pohar, Blas, & Turk, 2004); thus, other methods should be employed for comparison two models. 
Four measures have been proposed to compare predictive accuracy of two methods (Harrell & Lee, 1985). Only 
Pohar et al. have investigated this subject thus far. They studied measures of predictive accuracy by simulation 
(2004). More studies are necessary to explore the difference between classification criteria.  

The present study compared LR and LDA for classification of subjects to groups having different conditions 
using continuous and categorical variables and different indices to increase accuracy of the prediction based on 
sample size. Specifically, real data used to predict depression in cancer patients undergoing chemotherapy and 
radiotherapy.  

2. Methods 
The 243 subjects selected were patients in the chemotherapy and radiotherapy wards of Shiraz Nemazee Hospital. 
All subjects who agreed to participate in this research were selected. The patients had an incomplete data were 
excluded. The data was collected using two forms, one for demographic characteristics and one for medical 
conditions.  

The independent variables were sex, marital status, education, location, income, satisfaction from her/his 
condition, family history of depression, type of cancer, knowledge about the disease, type of treatment 
(categorical variables), age, and duration of cancer (continuous variables) (Shayan, Shahkolahi, Ahmadlo, Vafaee, 
& Shayan, 2014). Groups of different sizes (n = 50, 100, 150, 200, 220) were randomly selected from the 
original population (n = 243). To increase the precision, resampling was repeated. Two data sets were ultimately 
produced and their classification indices were calculated. Data analysis was done using LDA and LR models 
from SPSS software (Statistical Package for the Social Sciences, Chicago, Illinois), version 16. LR was first used 
to determine the variables that affect depression and then the selection of best model was made based upon these 
variables.  

3.1 Statistical Methods  

3.1.1 Logistic Regression Model 

The binary LR model is used when the response variable takes just two values. This model is primarily used to 
identify the relationship between one or more independent variables (Xi) and the dependent variable (Y) or to 
predict the independent variables that are most influential on the dependent variable.  

The form of the LR determines the relationship between response probability and the predictor variables as: 

Logit (pi) = log (
௣೔ଵି௣೔) = ߚ௜଴ ൅ ߚ௜ଵ ௜ܺଵ  ൅ … ൅ ߚ௜௞ ௜ܺ௞ 

Or  

pi= exp (
ఉ೔బା ఉ೔భ௑೔భ ା … ା ఉ೔ೖ௑೔ೖଵା௘௫௣ ሺఉ೔బା ఉ೔భ௑೔భ ା … ା ఉ೔ೖ௑೔ೖሻ) 

where, (
௣೔ଵି௣೔) is the ratio of the probability of a success to the probability of a failure, called odds, β0, βi are 

parameters to be estimated, and pi is the response probability for ith group, k is number of variables (Alkarkhi et 
al., 2008).  

3.1.2 Linear Discriminant Analysis 

LDA predicts a categorical dependent variable using continuous or binary independent variables. Discriminant 
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functions are linear combinations of variables useful when determining whether a set of variables is effective for 
predicting category membership. It is assumed that the variables have multivariate normal distribution and the 
variance/covariance matrices of the variables are homogeneous across groups. The form of the discriminant 
function is:  

Zi = ai + wi1 Xi1 + wi2 Xi2 + … + wikXik 

In this formula, the subscript i denotes the specific group; the subscripts 1, 2, ..., k denote the k variables; ai is a 
constant, wij, j=1, …, k is the weight for the jth variable in the computation of the classification score for the ith 
group; Xj is the observed value for jth variable. Zi is the classification score. This formulation computes the 
classification scores for each case. The cases are then classified into specific groups based on the highest 
classification score.  

3.1.3 Comparison Criteria 

The present study measured the B and Q indices and CE for accuracy of the prediction. The B and Q indices can 
be used to assess the accuracy of the outcome prediction.  

The B index measures the average of squared difference between an estimated and actual value: ܤ ൌ 1 െ ∑ ሺ݌௜ െ ௜ሻଶ௡௜ୀଵݕ ݊  

where pi is a probability of classification into group i, yi is the actual group membership (1 or 0), and n is the 
sample size of both groups. The B index lies between 0 and 1, where 1 denotes a perfect prediction. For random 
prediction in two equally-sized groups, the B index is 0.75.  

The Q index is similar to the B index and is also a measure of predictive accuracy: 

ܳ ൌ  ∑ ሾ1 ൅ ଶ൫௣೔೤೔ሺଵି௣೔ሻభష೤೔൯ሿ௡௜ୀଵ݃݋݈ ݊  

Q = 1 denotes a perfect prediction and a Q = 0 denotes a random prediction. When Q < 0 predictions are worse 
than random. If a predicted probability for the Q index equals 0 or 1, the Q index remains undefined (Pohar et al., 
2004).   

CE measures the percentage of incorrectly classified objects (misclassification). This index is determined from 
the results of LR and LDA. CE calculated one minus overall accuracy. The accuracy increases as the CE value 
decreases. 
3. Results 
The results of LR in the present study showed that satisfaction from her/his condition, a family history of 
depression, and duration of cancer were good predictors of depression in cancer patients. Comparisons between 
models were based on these variables. The results from two the series of samples are given in Tables 1 and 2. In 
these tables, it was assumed that the duration of cancer is continuous variable.  

Table 1 summarizes the results of the first random sampling. The CE percentage, B and Q indices were 
calculated for different sample sizes with LR and LDA models. The results showed that the percentage of CE for 
LR is sometimes lower and sometimes higher than LDA.  

 

Table 1. Comparison of logistic and linear discriminant analysis based on classification indices with different 
sample sizes (the first random sampling) 

n  Q B % Classification Error 

 LR LDA LR LDA LR LDA 

50 

100 

150 

200 

220 

Total sample

 0.13907 

0.24627 

0.18272 

0.17096 

0.18768 

0.17325 

0.13419

0.24133

0.16065

0.15044

0.16764

0.16053

0.79099

0.82432

0.80240

0.80163

0.80560

0.80157

0.79064

0.82327

0.79913

0.79786

0.80086

0.79880

32.0 

25.0 

32.7 

31.0 

32.7 

31.7 

32.0 

25.0 

30.7 

32.5 

32.3 

32.9 
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Table 2 summarizes the results of the second random sampling. As seen, the CE percentage for LR is lower than 
LDA as the sample size increases. The results for the B and Q indices are very interesting; the LR model is more 
accurate than the LDA model. At a sample size of n = 50, the accuracy of prediction was low, especially for the 
LDA model, and the Q index is close to zero.  

 

Table 2. Comparison of logistic and linear discriminant analysis based on classification indices with different 
sample size (the second random sampling) 

n  Q B % Classification Error 

 LR LDA LR LDA LR LDA 

50 

100 

150 

200 

220 

Total sample

 0.09043 

0.20682 

0.19205 

0.17271 

0.17195 

0.17325 

0.08933

0.19196

0.18664

0.16254

0.16205

0.16053

0.78025

0.81148

0.80634

0.80082

0.80098

0.80157

0.77949

0.80863

0.80602

0.79909

0.79913

0.79880

36.0 

27.0 

30.0 

32.5 

31.4 

31.7 

34.0 

28.0 

30.0 

34.0 

32.7 

32.9 

 

The duration variable was categorized and the calculations repeated. Table 3 provides the results based on the 
categorized variables and shows that the LR and LDA models are similar when based on CE. The results show 
that, as the sample size increased, the differences between the two methods for the B and Q indices became 
negligible.  

 

Table 3. Effect of categorization of variables on classification indices with different sample sizes (based on the 
first random sampling) 

n  Q B % Classification Error 

 LR LDA LR LDA LR LDA 

50 

100 

150 

200 

220 

Total sample

 0.14323 

0.22965 

0.14863 

0.16303 

0.17487 

0.16162 

0.14228

0.22651

0.14278

0.16015

0.16748

0.15824

0.79442

0.81936

0.79390

0.79902

0.80141

0.79809

0.79424

0.81871

0.79359

0.79866

0.80050

0.79781

34.0 

25.0 

31.3 

32.0 

31.8 

32.5 

34.0 

25.0 

31.3 

32.0 

31.8 

32.5 

 
4. Discussion 
The present study investigated the effect of sample size and categorical variables on the accuracy of 
classification using different classification criteria. When both categorical and continuous variables were 
employed, the choice between models based on CE might be questionable. It appeared that LDA was more 
advantageous than LR in some cases and vice versa. These findings are in agreement with other studies. Baron 
(1991) concluded that LR performed better than the LDA when the data was non-normal, whereas little 
difference was found between models with multiple non-normal data sets in meta-analysis (Meshbane & Morris, 
1996). Antonogeorgos et al. (2009) used LDA and LR to predict the presence of asthma symptoms. Their results 
showed that the correct classification rate differed slightly between LR and LDA, but that area under curve 
(AUC) was similar for both models. Marcos et al. (2010) presented an automatic obstructive sleep apnea 
syndrome detection algorithm based on classification of nocturnal oxygen saturation using LR and LDA. They 
showed that the overall accuracy and AUC were similar. Delmar et al. (2011) assumed multivariate normality 
and equal covariance matrices to estimate coefficients using LDA and LR that were identical. LDA and LR had 
the same true AUC, but the results of real data suggest that the finding is sensitive to the assumption of 
normality. 
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The results of the present study indicates that, when all variables were categorical, the LR and LDA models 
yielded similar results based on CE, but the B and Q indices produced more accurate results using LR. Pohar et 
al. concluded that when variables were normally distributed and categorized into a specific number of categories, 
the LDA model performed better if the number of categories was large enough (2004). CE was not an 
appropriate index because it was not sensitive to the accuracy of the prediction. The B and Q indices indicated 
that the LR model can provide more accurate predictions than the LDA in all situations. Although the use of CE 
is common, but it was not appropriate for the data used in this study and could cause bias.  

The major drawback of LR is its requirement of a large sample size. Harrell and Lee (1985) showed that LDA 
was more accurate than LR for small samples. Another study of using real data found that LR worked better than 
DA for small samples (Johnston & Seshia, 1992). One study showed that sample size had a little effect on 
classification accuracy, although a small sample size had a greater effect on LR than on LDA (Fan & Wang, 
1999). Pohar et al. (2004) showed that sample size had an evident effect on the difference between models.  

In summary, the LR model is appropriate for prediction of depression in cancer patients based on the variable of 
satisfaction from her/his condition, family history of depression, and duration of cancer using B and Q indices. 
No effect was observed for sample size on classification for selection of the best model. When the sample size 
was small (n = 50), the accuracy of prediction was low especially for the Q index. It was shown that LDA can be 
used with small sample sizes.  

5. Conclusion 
The results of this study showed that logistic regression provided better results in some case and linear 
discriminant analysis in others, confirming that classification error is not appropriate. Although the B and Q 
indices provided better and more efficient criteria for discrimination between groups and better prediction when 
the purpose is to predict the response, the best choice is the model with higher accuracy. Further study should 
focus on classification error as it relates to mixture categorical and continuous variables.  
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