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Abstract 
Scientists and engineers have developed the use of Homotopy Perturbation Method (HPM) in non-linear problems 
since this approach constantly distort the intricate problem being considered into a simple problem, thus making it 
much less complex to solve. The homotopy perturbation method was initially put forward by He (1999) with 
further development and improvement (He 2000a, He, 2006). Homotopy, which is as an essential aspect of 
differential topology involves a coupling of the conventional perturbation method and the homotopy method in 
topology (He, 2000b). The approach gives an approximate analytical result in series form and has been effectively 
applied by various academia for various physical systems namely; bifurcation, asymptotology, nonlinear wave 
equations and Approximate Solution of SIR Infectious Disease Model (Abubakar et al., 2013). 
Keywords: approximate solution, infectious disease model, homotopy perturbation method 
1. Model Equations 
Considering the following systems of non-linear ordinary differential equation given as; = 𝑏 + 𝑎 𝑆 − 𝛼 𝑐𝑆 − 𝜇𝑆        

= 𝛼 𝑐𝑆 − (1 − 𝜑)𝑆 − 𝜇𝑆      

= (1 − 𝜑)𝑆 − (1 − 𝑒 )𝜆𝑆 − 𝑎 𝑆 − 𝑞𝑆 − 𝜇𝑆   

= 𝑞𝑆 − (1 − 𝑒)𝜆𝑆 − 𝜇𝑆                                                                     (1)  

= (1 − 𝑒 )𝜆𝑆 + (1 − 𝑒)𝜆𝑆 − 𝜌 𝑆 − 𝜇𝑆    

= 𝜌 𝑆 − (1 − 𝛾)𝐼 − 𝜇𝐼    

= (1 − 𝛾)𝐼 − 𝑑 𝐼 − 𝜇𝐼     

We let, 
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𝑔 = (𝛼 𝑐 + 𝜇) ,   𝑔 = (1 − 𝜑),   𝑔 = (𝑔 + 𝜇),     𝑔 = (1 − 𝑒 )𝜆,   𝑔 = (𝑔 + 𝑎 + 𝑞 + 𝜇) , 𝑔 = (1 − 𝑒)𝜆,  𝑔 = (𝑔 + 𝜇),    𝑔 = (𝜌 + 𝜇),    𝑔 = (1 − 𝛾),   𝑔 = (1 − 𝛾 + 𝜇), 𝑔 = (𝑑 + 𝜇) 

Rewriting  (1) in a more compact form, we obtain; = 𝑏 + 𝑎 𝑆 − 𝑔 𝑆        

= 𝛼 𝑐𝑆 − 𝑔 𝑆      

= 𝑔 𝑆 − 𝑔 𝑆   

= 𝑞𝑆 − 𝑔 𝑆                                                                                     (2) 

= 𝑔 𝑆 + 𝑔 𝑆 − 𝑔 𝑆    

= 𝜌 𝑆 − 𝑔 𝐼    

= 𝑔 𝐼 − 𝑔 𝐼   

3. Basic Idea of He’s Homotopy Perturbation Method 
To demonstrate the basic idea of He’s homotopy perturbation method, we consider the non linear differential 
equation, [He, 2000]. 𝐴(𝑢) − 𝑓(𝑟) = 0                 𝑟 ∈ Ω                         (3) 

Subject to the boundary condition of: 𝐵 𝑢, = 0,                       𝑟 ∈ Γ                       (4) 

Given that; 𝐴: the general differential operator, 𝐵: the boundary operator 𝑓(𝑟) ; a known analytical solution and  Γ: the boundary of the domain Ω , Taghipour, (2011) 
The general operator, A can be divided into two parts viz; L and N in which L is the linear part and the nonlinear 
part being N. Hence (3) will now become; 𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝑟) = 0          𝑟 ∈ Ω                             (5) 
We shall now construct a homotopy 𝑉(𝑟, 𝑝) such that 𝑉(𝑟, 𝑝): Ω × [0,1] → 𝑅 satisfing that; 𝐻(𝑟, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢 )] + 𝑝[𝐿(𝑣) + 𝑁(𝑣) − 𝑓(𝑟)] = 0               (6) 𝑃 ∈ [0,1], 𝑟 ∈ Ω 
Or 𝐻(𝑟, 𝑝) = 𝐿(𝑣) − 𝐿(𝑢 ) + 𝑝𝐿(𝑢 ) + [𝑁(𝑣) − 𝑓(𝑟)] = 0                       (7) 
Where  
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𝐿(𝑢) is the linear part 𝐿(𝑢) = 𝐿(𝑣) − 𝐿(𝑢 ) + 𝑝𝐿(𝑢 ) and 𝑁(𝑢) is the non-linear term. 𝑁(𝑢) = 𝑝𝑁(𝑣)  𝑃 ∈ [0,1] is an embedding parameter, while 𝑢  is an initial approximation of equation (3) which satisfies the 
boundary conditions. 
Obviously, considering equations(6) and (7), we have 𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢 ) = 0                                    (8) 𝐻(𝑣, 1) = 𝐴(𝑣) − 𝑓(𝑟) = 0                                    (9) 
The changing process of 𝑝 from zero to unity is just that of 𝑉(𝑟, 𝑝) from 𝑢  to 𝑢(𝑟).  In topology, this is called 
deformation while 𝐿(𝑣) − 𝐿(𝑢 ),  𝐴(𝑣) − 𝑓(𝑟) are called homotopy. 
According to Homotopy perturbation method (HPM), we can first use the embedding parameter, 𝑝 as a small 
parameter and assume solution for equation (6) and (7) which can be expressed as;  𝑉 = 𝑣 + 𝑝𝑣 + 𝑝 𝑣 + ⋯                                   (10) 
If we let 𝑝 = unity, an approximate solution of equation (10) can be obtained as; 𝑈 = lim → 𝑣 = 𝑣 + 𝑣 + 𝑣 + ⋯                            (11) 
Equation (11) is the analytical solution of (3) by homotopy perturbation method. 
He (2003), (2006) makes the following suggestion for convergence of (11)  
(a). The second derivative of 𝑁(𝑣) wrt 𝑉 must be small because parameter, 𝑝 must be relatively large i.e 𝑝 → 1 
(b). The norm of 𝐿  must be smaller than one so that the series converge. 
We now apply HPM on the system (3) by assuming the solution as; 𝑆 = 𝑢 + 𝑃𝑢 + 𝑃 𝑢 + ⋯  𝑆 = 𝑤 + 𝑃𝑤 + 𝑃 𝑤 + ⋯  𝑆 = 𝑥 + 𝑃𝑥 + 𝑃 𝑥 + ⋯  𝑆 = 𝑦 + 𝑃𝑦 + 𝑃 𝑦 + ⋯                                                                           (12) 𝑆 = 𝑧 + 𝑃𝑧 + 𝑃 𝑧 + ⋯  𝐼 = 𝑚 + 𝑃𝑚 + 𝑃 𝑚 + ⋯  𝐼 = 𝑛 + 𝑃𝑛 + 𝑃 𝑛 + ⋯  

From the the first equation of (12),  = 𝑏 + 𝑎 𝑆 − 𝑔 𝑆  

The linear part is = 0  

and the non-linear part is 
 𝑏 + 𝑎 𝑆 − 𝑔 𝑆 = 0 
We now apply HPM ⇒ (1 − 𝑃) + 𝑃 − 𝑏 − 𝑎 𝑆 + 𝑔 𝑆 = 0      

Expanding, this gives − 𝑃 + 𝑃 − 𝑃(𝑏 + 𝑎 𝑆 − 𝑔 𝑆) = 0  
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⇒ − 𝑃(𝑏 + 𝑎 𝑆 − 𝑔 𝑆) = 0  

⇒ − 𝑃𝑏 − 𝑃𝑎 𝑆 + 𝑃𝑔 𝑆 = 0                                                                  (13) 

Substituting the first and third equations of (12) into (13) gives (𝑢 + 𝑃𝑢 + 𝑃 𝑢 + ⋯ +) − 𝑃𝑏 − 𝑃𝑎 (𝑥 + 𝑃𝑥 + 𝑃 𝑥 + ⋯ )  +𝑃𝑔 (𝑢 + 𝑃𝑢 + 𝑃 𝑢 + ⋯ ) = 0  
Collecting the coefficient of powers of  𝑃, we have; 𝑃 : 𝑢 = 0  𝑃 : 𝑢 − 𝑏 − 𝑎 𝑥 + 𝑔 𝑢 = 0                                                                           (14) 𝑃 : 𝑢 − 𝑎 𝑥 + 𝑔 𝑢 = 0  

Applying the same approach, we have the following ; 𝑃 : 𝑤 = 0  𝑃 : 𝑤 − 𝛼 𝑐𝑢 + 𝑔 𝑤 = 0                                                                              (15) 𝑃 : 𝑤 − 𝛼 𝑐𝑢 + 𝑔 𝑤 = 0  

 𝑃 : 𝑥 = 0  𝑃 : 𝑥 − 𝑔 𝑤 + 𝑔 𝑥 = 0                                                                                (16) 𝑃 : 𝑥 − 𝑔 𝑤 + 𝑔 𝑥 = 0  

 𝑃 : 𝑦 = 0  𝑃 : 𝑦 − 𝑞𝑥 + 𝑔 𝑦 = 0                                                                               (17) 𝑃 : 𝑦 − 𝑞𝑥 + 𝑔 𝑦 = 0  

 𝑃 : 𝑧 = 0  𝑃 : 𝑧 − 𝑔 𝑥 − 𝑔 𝑦 + 𝑔 𝑧 = 0                                                                      (18) 𝑃 : 𝑧 − 𝑔 𝑥 − 𝑔 𝑦 + 𝑔 𝑧 = 0  

 𝑃 : 𝑚 = 0  𝑃 : 𝑚 − 𝜌 𝑧 + 𝑔 𝑚 = 0                                                                           (19) 𝑃 : 𝑚 − 𝜌 𝑧 + 𝑚 𝑔 = 0  

 𝑃 : 𝑛 = 0  𝑃 : 𝑛 − 𝑔 𝑚 + 𝑔 𝑛 = 0                                                                           (20) 𝑃 : 𝑛 − 𝑔 𝑚 + 𝑔 𝑛 = 0  

From the first equation of (14), 𝑢 = 0  
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= 0  ⇒ 𝑑𝑢 = 0   

Integrating gives us 𝑑𝑢 = 𝑆               ∴ 𝑢 = 𝑐   

Where 𝑐  is constant of integration. Applying the initial condition we have 𝑢 (0) = 𝑆   ⇒ 𝑐 = 𝑆   ∴ 𝑢 = 𝑆                                                                                   

Similarly, we have that; ∴ 𝑆 = 𝑤                                                                                                  ∴ 𝑆 = 𝑥                                                                                 ∴ 𝑆 = 𝑦                                                                                                (21) ∴ 𝑆 = 𝑧                                        ∴ 𝐼 = 𝑚                                                                                                       ∴ 𝐼 = 𝑛                                                                                                         

From the second equation of (14), 𝑢 − 𝑏 − 𝑎 𝑥 + 𝑔 𝑢 = 0,  𝑢 = 𝑏 + 𝑎 𝑥 − 𝑔 𝑢   ⇒ = 𝑏 + 𝑎 𝑥 − 𝑔 𝑢   ⇒ 𝑑𝑢 = (𝑏 + 𝑎 𝑥 − 𝑔 𝑢 )𝑑𝑡                                                                          (22)  

Substituting the first and third equations of the system (21) into (22) we obtain; 𝑑𝑢 = (𝑏 + 𝑎 𝑆 − 𝑔 𝑆 )𝑑𝑡  

Integrating with respect to 𝑡, we have; 𝑢 = (𝑏 + 𝑎 𝑆 − 𝑔 𝑆 )𝑡 + 𝑐   

Where 𝑐  is constant of integration. Applying the initial condition we have; 𝑢 (0) = 0,   ⇒ 𝑐 = 0 ∴ 𝑢 = (𝑏 + 𝑎 𝑆 − 𝑔 𝑆 )𝑡     
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Similarly, we have that;                                      ∴ 𝑤 = (𝛼 𝑐𝑆 − 𝑔 𝑆 )𝑡                                                                          ∴ 𝑥 = (𝑔 𝑆 − 𝑔 𝑆 )𝑡                                                                         (23)  ∴ 𝑦 = (𝑞𝑆 − 𝑔 𝑆 )𝑡                                                                                 ∴ 𝑧 = (𝑔 𝑆 + 𝑔 𝑆 − 𝑔 𝑆 )𝑡                                                                  ∴ 𝑚 = (𝜌 𝑆 − 𝑔 𝐼 )𝑡                                                                                 ∴ 𝑛 = 𝑔 𝐼 − 𝑔 𝐼 𝑡                                                                               

From the third equation of (14), 𝑢 − 𝑎 𝑥 + 𝑔 𝑢 = 0    𝑢 = 𝑎 𝑥 − 𝑔 𝑢   ⇒ = 𝑎 𝑥 − 𝑔 𝑢    ⇒ 𝑑𝑢 = (𝑎 𝑥 − 𝑔 𝑢  )𝑑𝑡                                                                          (24)  

Substituting the first and third equations of (23) into (24) we obtain; 𝑑𝑢 = [𝑎 (𝑔 𝑆 − 𝑔 𝑆 )𝑡 − 𝑔 (𝑏 + 𝑎 𝑆 − 𝑔 𝑆 )𝑡]𝑑𝑡  𝑑𝑢 = [𝑎 (𝑔 𝑆 − 𝑔 𝑆 ) − 𝑔 (𝑏 + 𝑎 𝑆 − 𝑔 𝑆 )]𝑡𝑑𝑡  𝑑𝑢 = [−𝑏𝑔 − (𝑎 𝑔 + 𝑎 𝑔 )𝑠 + 𝑎 𝑔 𝑆 + 𝑔 𝑆 ]𝑡𝑑𝑡  

Integrating both sides with respect to 𝑡, we have; 𝑢 = [−𝑏𝑔 − (𝑎 𝑔 + 𝑎 𝑔 )𝑠 + 𝑎 𝑔 𝑆 + 𝑔 𝑆 ] + 𝑐   

Where 𝑐  is constant of integration. Applying the initial condition we have; 𝑢 (0) = 0,   ⇒ 𝑐 = 0 ∴ 𝑢 = [−𝑏𝑔 − (𝑎 𝑔 + 𝑎 𝑔 )𝑠 + 𝑎 𝑔 𝑆 + 𝑔 𝑆 ]       

Similarly, we have that;                  ∴ 𝑤 = [𝛼 𝑏𝑐 − (𝛼 𝑐𝑔 + 𝛼 𝑐𝑔 )𝑠 + 𝑎 𝛼 𝑐𝑆 + 𝑔 𝑆 ]                    

∴ 𝑥 = [𝛼 𝑔 𝑐𝑆 − (𝑔 𝑔 + 𝑔 𝑔 )𝑆 + 𝑔 𝑆 ]                                                         (25) 

∴ 𝑦 = [𝑞𝑔 𝑆 − (𝑞𝑔 + 𝑞𝑔 )𝑆 + 𝑔 𝑆 ]                                              

∴ 𝑧 = [𝑔 𝑔 𝑆 − (𝑔 𝑔 + 𝑔 𝑔 − 𝑞𝑔 )𝑆 − (𝑔 𝑔 + 𝑔 𝑔 )𝑆 + 𝑔 𝑆 ]            

∴ 𝑚 = [𝜌 𝑔 𝑆 + 𝜌 𝑔 𝑆 − (𝜌 𝑔 + 𝜌 𝑔 )𝑆 + 𝑔 𝐼 ]                          

∴ 𝑛 = [𝜌 𝑔 𝑆 − (𝑔 𝑔 + 𝑔 𝑔 )𝐼 + 𝑔 𝐼 ]                                                

Substituting the first equations of (21), (23) and  (25)  into the number one equation of system (12), we 
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obtain; 𝑆(𝑡) =  𝑆 + 𝑃(𝑏 + 𝑎 𝑆 − 𝑔 𝑆 )𝑡 + 𝑃 [−𝑏𝑔 − (𝑎 𝑔 + 𝑎 𝑔 )𝑠 + 𝑎 𝑔 𝑆 + 𝑔 𝑆 ] + ⋯                                         

Setting 𝑝 = 1, we obtain; 

 𝑆(𝑡) = 𝑆 + (𝑏 + 𝑎 𝑆 − 𝑔 𝑆 )𝑡 + [−𝑏𝑔 − (𝑎 𝑔 + 𝑎 𝑔 )𝑠 + 𝑎 𝑔 𝑆 + 𝑔 𝑆 ] + ⋯        

𝑆 (𝑡) = 𝑆 + (𝛼 𝑐𝑆 − 𝑔 𝑆 )𝑡 + [𝛼 𝑏𝑐 − (𝛼 𝑐𝑔 + 𝛼 𝑐𝑔 )𝑠 + 𝑎 𝛼 𝑐𝑆 + 𝑔 𝑆 ] + ⋯                                    

𝑆 (𝑡) = 𝑆 + (𝑔 𝑆 − 𝑔 𝑆 )𝑡 + [𝛼 𝑔 𝑐𝑆 − (𝑔 𝑔 + 𝑔 𝑔 )𝑆 + 𝑔 𝑆 ] + ⋯                   (26𝑎)                  

𝑆 (𝑡) = 𝑆 + (𝑞𝑆 − 𝑔 𝑆 )𝑡 + [𝑞𝑔 𝑆 − (𝑞𝑔 + 𝑞𝑔 )𝑆 + 𝑔 𝑆 ] + ⋯      𝑆 (𝑡) = 𝑆 + (𝑔 𝑆 + 𝑔 𝑆 − 𝑔 𝑆 )𝑡 + [𝑔 𝑔 𝑆 − (𝑔 𝑔 + 𝑔 𝑔 − 𝑞𝑔 )𝑆 − (𝑔 𝑔 +𝑔 𝑔 )𝑆 + 𝑔 𝑆 ] + ⋯                                                                         

𝐼(𝑡) = 𝐼 + (𝜌 𝑆 − 𝑔 𝐼 )𝑡 + [𝜌 𝑔 𝑆 + 𝜌 𝑔 𝑆 − (𝜌 𝑔 + 𝜌 𝑔 )𝑆 + 𝑔 𝐼 ] + ⋯                  (26𝑏)                  

 𝐼 (𝑡) = 𝐼 + 𝑔 𝐼 − 𝑔 𝐼 𝑡 + [𝜌 𝑔 𝑆 − (𝑔 𝑔 + 𝑔 𝑔 )𝐼 + 𝑔 𝐼 ] + ⋯     
Hence, equations (45) to (51) are our model equations in HPM. 
4. Conclusion 
In this paper, we solved some nonlinear time dependent ordinary differential equations analyticall to obtain 
approximate solutions using Homotopy Perturbation Method. We considered a system of nonlinear ordinary 
differential equations arising from the developed mathematical model of an infectious disease. We applied He’s 
same approach in handling the model equations when applying Homotopy Perturbation Method (HPM) to obtain 
approximate solutions. The result shows the efficiency of homotopy perturbation method in solving nonlinear 
equations. 
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