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Abstract 
The early and mid 20th century was a time of great interest in the rise of agriculture and its role in the evolution 
of civilizations societies in particular environments. Late 20th century efforts to reconstruct the nature and 
history of prehistoric farming societies in the northern lowlands of South America ranged from expansive 
hypotheses to regional case studies using archaeobotanical technologies then available. Since 2000, a large 
number of regional studies using expanded and refined methods have produced broadly interesting results. 
Approaches from the fields of geography and earth sciences are being recruited increasingly. The resulting 
empirical evidence does shed light on aspects of the history of human use of some plants but, as always, has 
raised more questions than it solved. Many of the problems interpreting the processual and evolutionary 
significance of these findings are methodological ones. This article reviews what seem to be the most important 
methodological and interpretive issues of this area of research for the tropical lowlands (up to c. 1500 m a.s.l) of 
northern South America.  
Keywords: Orinoco, Caribbean coast, maize, prehistory, taphonomy, neotropics, farming, archaeobotany, 
archaeology 
1. Introduction 
1.1 Paradigms for Research on Early Farming 
Archaeologists' engagement with early prehistoric agriculture has involved theories of human evolution and 
models of systematic change through time in the relationship of subsistence and society. In the post-World-War-2 
era, American anthropologists and geographers were obsessed with population growth, agriculture, and their 
roles in the rise of the state and urban civilization, i.e.: of our kind of society. One or all of these were the topics 
of choice for many researchers (Adams, 1966; Braidwood & Reed, 1957; Carneiro, 1970; Flannery, 1965, 1973; 
Fried, 1967; Harris, 1968; Lathrap, 1970; MacNeish, 1965; Sauer, 1952; Service, 1975). That era, of which I was 
a latter-day member (Roosevelt, 1980), overestimated the importance of agriculture as a response to 
demographic growth and as the economy of early complex societies. Extensive paleopathological research 
worldwide does not support the hypothesis that agriculture was devised to furnish more food for starving 
foragers (Roosevelt, 1984b). Evidence for dietary inadequacies are uncommon before the rise of agricultural 
economies but are common afterwards. We tended to underestimate the sophistication and productivity of 
intensive foraging and its ability to support sedentary populations and complex heterarchical organizations (as 
Arnold, 1996 points out). Theorists also tended to underestimate the managerial effectiveness small-scale 
organizations compared to states and chiefdoms, assuming that the former would be necessarily be egalitarian 
"village" societies unable to organize and underwrite monumental projects. 
Environmental determinism was an influential notion in that earlier phase of theoretical applications and still is 
in some quarters. The choices that prehistoric people made were assumed to have been conditioned, even caused 
by, their environment. In that intellectual era, most researchers assumed that drier, cooler, more open habitats 
were centers of plant domestication and state formation. In contrast, tropical forests and savannas were assumed 
to have received their cultigens from those outside habitats because their own soils were considered too poor to 
allow incipient horticulture and the intensive agriculture that state formation required.Scholars' search for origins 
therefore focused on the few plants that had become important staples in late prehistoric complex societies and 
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civilizations and in modern globalized industry, but it's now clear that the earliest cultivation did not necessarily 
privilege these plants (Oliver, 2008). It's also now recognized that cultigens like maize, earlier assumed to have 
been domesticated in dry, open, upland habitats in central Mexico, may have originated in the humid lowland 
tropics (Piperno & Pearsall, 1998), an insight that has, however, not yet shed light on what the process of crop 
development in the lowlands might have been like. Furthermore, slash and burn agriculture was not always the 
main kind of tropical forest cultivation, as it often is in the more open habitats of today's tropical nations; slash 
and mulch is an effective method in very high-rain areas rainforest in Colombia and Ecuador (Orejuela, 1992). 
Ancient tropical forest villages preserved by volcanic eruptions in central America turned out to have permanent 
agricultural fields (Lentz, Beaudry-Corbett, de Aguilar, & Kaplan, 1996; Sheets, Dixon, Guerra, & Blanford, 
2011), and tree and palm agroforestry is a still-persistent indigenous system likely to have been an ancient form 
of permanent cultivation (Politis, 2009; Roosevelt, 2014). The long-lasting systems of intensive tree and shrub 
management and fishing uncovered through CRM research in the Archaic of Louisiana (Fritz, 2007) could be 
useful models to test in future research in lowland South America. 
A form of evolutionary environmental determinism was important in modeling the origins of agriculture. As in 
behaviorist approaches popular in the mid-20th century, cultivation was seen as arising first from inadvertent 
human effects on the environment that then led to physiological and genetic changes in plants, which humans 
only later selected for collection, leading to further changes culminating in plants that required human 
intervention to reproduce (Rindos, 1984). Complicating this model are more recent data showing the 
unsuspected extent of purposeful human interventions in world environments (Erlandson & Braje, 2013). 
Cultural ecology thus turns out to be a more useful and holistic paradigm than environmental determinism for 
research on the origins and consequences of agriculture. This paradigm represents humans' relationships to 
habitat as always mediated by culture, and considers habitats to be fully integrated into culture and social 
organization, as the human frameworks through which habitat is viewed and imaged (e.g., Rival & McKey, 
2008). Unlike cultural ecology, the popular theoretical movement of historical ecology (e.g., Erickson, 2008) is 
not explicitly tied to the overarching phenomena of long-term cultural and biological evolution. Without that link, 
regional histories proliferate, without clarifying the fundamental processes at work in systematic change 
worldwide in human-environment interaction.  
Since the old days, researchers have branched out to investigate the ways that social, political, and ideological 
cultures are linked to the development and dissemination of domestic plants and their uses. Now that social 
complexity finally has became recognized as having developed in the tropical forests and savannas of the 
Orinoco and Amazon, it has been assigned to chiefdom or complex chiefdom levels, continuing the idea that 
those habitats did not permit state development (e.g., Moore, 2014). Systematic comparison of complex societies 
in different environmental zones, however, has not yet solved that paradox, and societies are still categorized 
more by their habitats than by their forms (Roosevelt, 1991). Early on, there was much theorizing about the role 
of migration in sociocultural, political, and economic development in lowland South America (e.g., Lathrap, 
1970; Rouse & Cruxent, 1963), without much empirical testing of the implications of those theories. Theories 
about Greater Amazonia were a branch of the global theorizing that language, ethnic groups, and art styles 
moved together lock-step in the spread of farming systems (e.g., Diamond & Bellwood, 2003). Some recent 
reviews on the northern lowlands have found the grand old schemes wanting (e.g., Gassón, 2000; Navarrete, 
2008). Processes of acculturation and exchange rather than solely migration may be important processes for 
understanding cross-regional similarities (Roosevelt, 1997, pp. 170-176). However, the current accrued evidence 
about the cultures in the northern South American lowlands, does offer much information relevant to issues 
about plants and evolution there, whether the issues are those raised earlier or new ones. This paper will attempt 
to evaluate the rather disparate data from the area from that point of view. 
1.2 Epistemology of Early Agriculture in the Tropical Lowlands 
The field of archaeobotany (aka paleoethnobotany) has produced new information about the history of human 
plant use in prehistory (Fritz, 2005; Hastorf & Popper, 1988; Hather, 2010; Pearsall, 2000, 2007; Piperno, 2006; 
Piperno & Pearsall, 1998; Wright, 2010). But there are still serious empirical problems hampering understanding 
of the early history of plant domestication that need to be sorted out before there can by any definitive patterns to 
compare and interpret (Fritz, 2005; Langlie, Mueller, Spengler, & Fritz, 2014). For example, the domestication 
of maize is still inadequately reconstructed, and there are strong conflicting opinions about the crops’ 
development (c.f., Buckler & Stevens, 2006; Eubanks, 2006). These empirical problems are related to 
epistemology: the issue of how we can know things scientifically. Methodological issues include sampling, 
identification, dating, provenience and stratigraphic relationships, quantification, and habitat reconstruction. We 
still have very different information about plant use from different areas and times: lack of sequence information 
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in some, only plant macrospecimens from others, only microfossils in others, lack of human stable isotope ratios 
in most, and lack of comprehensive information on local sociopolitical organization and paleoenvironments in all 
areas.  
2. Background and Methodology 
2.1 Environment 
The background of any inquiry on history of plants in human societies in particular regions is history of the 
environment. It used to be that archaeologists and botanists would use the modern habitat as a proxy for the 
ancient ones. But today's environments cannot easily be projected backwards because of important recent human 
impacts (Roosevelt, 2014), which explanations of current environments tend to minimize or ignore (e.g., Medina, 
1980; van der Hammen & Hooghiemstra, 2000) and which many archaeological analyses don't take into 
consideration (e.g., Pohl, Piperno, Pope, & Jones, 2007). Many tropical lowlands tend to be drier now than in the 
past, due to recent wide deforestation, which lowers rainfall, locally, especially in the areas of prehistoric raised 
fields, which for centuries have been intensively cut and burned for cattle ranching and plantation agriculture. 
The human use of fire in such wetland areas has been much greater since the conquest (e.g., Iriarte et al., 2012). 
Some of the supposedly natural, climate-caused savannas in the South American northern lowlands are actually 
intensively managed cattle pastures (Migliazza, 1985) and may not have been open savannas before the conquest 
(Roosevelt, 2014). In addition, rapidly fluctuating seasonal floodplains in high-rain areas of northern South 
America support diverse herb-dominant communities yet are hardly archetypal climatic savannas. Nonetheless, 
ancient pollen-core zones with such communities are usually classified by palynologists as savannas (Roosevelt, 
2014). Another problem for habitat reconstruction is that so-called "savanna" species identified in pollen cores 
are also integral parts of current forest habitats, as the denizens of early succession stages after disturbance 
(Lorenzi, 2002; Pires, 1984). Furthermore, ancient habitats are likely to have included regional groupings of 
plants that may no longer exist. Thus the structure of an ancient habitat, i.e., whether it was a dense forest 
community, herbaceous meadow, or something in-between, must be investigated independently of mere "index" 
or "type" species identifications.  
For many reasons, then, the complexity of climate/hydrology/soil/plant/animal/human interactions through time 
means that modern tropical vegetation communities are rarely exactly the same as ancient ones, even when they 
share many of the same species. Community structure and patterns of taxonomic dominance have varied greatly 
through history and prehistory. Therefore, comprehensive studies are needed to evaluate the structure and 
composition of vegetation at the different times of interest. Even more important, ethnobotanists and 
geographers have discovered by actualistic studies that many tropical forest communities are distinctly anthropic 
in that they contain purposeful plantings by people as well as plant groupings created unintentionally by human 
activities (references summarized in Roosevelt, 2014). Furthermore, modern distribution of "wild" plants is 
heavily affected by human manipulations as well as by interactions with cultivated species, yet researchers 
usually treat distributions as a product of "natural" processes, as in the interpretation of savannas as natural 
formations or non-field Manihot species as "wild" manioc species (e.g., Schaal, Olsen, & Carvalho, 2006). All 
such interpretive problems lead to problematic reconstructions of prehistoric habitats, their plants, and their 
long-term relationships with humans (Roosevelt, 2014, pp. 72-73).  
2.2 Stratigraphy  
Another necessary background for research on histories of plant use is archaeological and geological stratigraphy, 
an important part of the taphonomic record of how materials get buried in the ground. (Taphos is Greek for a 
burial.) To recover, depict, and interpret stratigraphy, however, certain excavation operations are needed that are 
often not accomplished. Both natural and cultural layers usually do not exist as level uniform, level structures. 
But the artificial excavation levels used by many excavators are uniform and horizontal. Therefore, excavation 
mixed deposits of different age and function, confusing the history of plant use and the associated artifacts. 
Sediments and objects must be separately collected and recorded by the strata and features that relate to ancient 
processes of interest. Conclusions about the age of plant microfossil remains from early strata not kept separate 
from intrusions during excavation are not valid. Intensive dating of layers in archaeological sites and in sediment 
cores commonly show significant disturbance and mixture, despite researchers' insistence that this does not 
happen (e.g., Pohl, Piperno, Pope, & Jones, 2007). Claims for very early agriculture are often based on contexts 
that the excavators admitted were highly insecure stratigraphically (e.g., Fritz, 1994b). Yet out-of-order dates are 
simply rejected by researchers, and the occurrence of plant fossils interpreted without taking into consideration 
that sediment of different ages has become mixed. Moreover, the powerful motorized coring devices often used 
by palynologists definitely create downward movement of soil and therefore of macro and microfossils. Certain 
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important humid tropical soil formation processes that change location of both macro and microfossils between 
strata also must be recognized and dealt with, as must the effects of associated geological substrates, chemical 
weathering patterns, neo-tectonic movements, and bio-intrusions such as roots and burrows. Consequently, 
identifications of very rare microfossils from such contexts are not reliable evidence for the age of a supposed 
cultivated taxon. However, the obvious mixture in many sites is rarely discussed in the interpretations of 
histories of plant use, and, even if it is discussed in primary monographs on research, it is usually left out of the 
summary articles in international journals. 
Geological, geomorphological, and biological effects on the isotopic values of sediments, plants, animals, and 
humans also complicate inferences about ecosystem and plant community structures for habitat reconstruction 
and quantification of diets. Plant roots and animal burrows move soil and objects around in the ground, and 
common chemical weathering processes under rain forest, such as eluviation and illuviation, move fine particles 
downward, including microfossils (Roosevelt, 2014, pp. 70-72). These clay-size particles are observable as fine, 
thin coatings upon artifacts, plant and animal remains, and soil layers. Pollen also moves with water down 
through the soil profile at a rate of c. 1 meter each 1000 years, becoming concentrated in lower levels (Dimbleby, 
1985, p. 59; Kelso, 1994; Piperno, 1995), and, though phytoliths are sometimes argued to be much less mobile 
(Piperno, 2006), they nonetheless have been shown to move downwards in archaeological sites and experimental 
sites (Fishkis, Ingwersen, & Streck, 2009; Hart & Humphreys, 1997; Osterrieth, Madella, Zurro, & Alvarez, 
2009), and direct dating of aggregates of them reveals significant stratigraphic displacement compared to other 
dated ecofacts (Piperno & Becker, 1996). While it's claimed that such pedological processes "simply do not 
apply to starch grains by any circumstance" (Pagán-Jiménez, 2012, p. 80), starch grains indeed are found to 
move downwards in archaeological sites through the translocation of clays, which adsorb starch grains (Haslam, 
2004). And starch grains of different sizes move downward at different rates (Therin, Fullagar, & Torrence, 
1999). Thus, it should be expected that microfossils retrieved from excavated sediment or artifacts may well 
have moved down from the layers and features in which they were originally deposited. Thus, the specimens that 
occur together in archaeological layers may be of different original provenances and therefore of different ages. 
2.3 Dating  
All the issues discussed in section 2.2 are involved in problems assessing the age and significance of objects of 
interest. Depending on stratigraphy, weathering patterns, bioturbation, and cultural processes, materials dated are 
not necessarily the same age as associated plants or human remains. Descent processes place recent objects and 
materials into ancient strata. Extraneous geological materials that enter objects during prehistory, such as 
calcium carbonate or petroleum materials, which are widely distributed through the northern lowlands, can 
create too-old radiocarbon dates (1). Although most petrochemicals mined industrially are deep beneath the 
surface in the Orinoco, lignite, lignitic, semi-bituminous coal and asphalt outcrop in many places drained by 
Orinoco tributaries, in its mouth area, in Trinidad, and in the Guyanas (Kugler, 1956; Leidelmeyer, 1966; Liddle, 
1946, pp. 575-582, 593-679, 790-794, and Fig. 12; Lopez, Hedberg, & Kehrer, 1956, pp. 327-350). Coal and 
petrochemicals also are exposed and redeposited by Colombian rivers draining into the Caribbean (Olsson, 1956, 
pp. 293-326). Such materials are found as coatings on pottery (Oliver, 2014, pp. 99-104, Tables 4 and 5), as 
carvings (Fewkes, 1914; Roosevelt, 1980), and, occasionally, collected in large masses, for probable fuel 
(Roosevelt, 1980; 1997, pp. 73-87). For its weight, low-grade coal burns much longer than wood and is a fibrous, 
black material often mistaken for charcoal. When archaeologists run dates on assemblages of unidentified black 
bits in this region they run the risk of incurring imprecise or irrelevant dates, which can mislead the 
reconstruction of archaeological and palynological sequences.  
Because many of the layers in archaeological sites and sediment cores are not dated, ages that researchers quote 
for finds are often extrapolations from dates in other layers (e.g., Bush, Piperno & Colinvaux, 1989). But the 
amounts of time that different layers represent are very different, so such extrapolations are not valid ages. Both 
different cultures and different environments produce contrasting thickness and density of sediment deposits per 
unit time. Also, the site formation processes discussed in the section 2.2 on stratigraphy, mean that materials 
move around in archaeological sites. An object from a dated stratum or with dated artifacts is not proven to be 
the same age unless dated directly. Critical re-study of the paleoethnobotanical record has shown by direct dates 
on macroplants by accelerator that they are often much younger than associated charcoal and artifacts in the 
layer (Fritz, 1994a; 2005). The drastic up-dating of the supposed early maize from highland Central Mexico is a 
good example. Tiny primitive cobs assumed to be early Archaic age from dates on associated charcoal instead 
gave early Formative dates than the associated charcoal. Direct dates show that the cobs are now only between 
4700-5400 BP at the earliest, roughly 2000 to 3000 years younger than the layers they were in (Langlie et al., 
2014, p. 1602; Piperno & Flannery, 2001). In addition to the descent of prehistoric specimens from higher to 
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lower levels in sites, some plants, like maize, were been widely and intensively cultivated in late prehistory and 
historic times, so there's the potential for their remains to get from the surface into archaeological sites. That 
recent plants remains routinely get into archaeological deposits is show by their ubiquity in soil flotation light 
fractions.  
Another example of this problem is the dating and re-dating of La Gruta phase date samples from the middle 
Orinoco. Conventional dates on grouped charcoals dated early to mid Formative but accelerator dating of 
individual specimens from remaining groups showed that the groups included dates in the early Formative, 
terminal prehistoric, and post-conquest (Roosevelt, 1997, pp. 196-198). Only series of multiple dates on 
individual objects for each occupation strata can confirm age by exposing or eliminating inconsistencies 
(Méndez, 2013, p. 62). But in most strata profiles and sediment cores representing history of plant use in the 
northern lowlands there still are only a minority of strata with even one or two dates; the rest have extrapolated 
ages, despite clear evidence for changing sedimentation rates. In addition to the need for multiple dates, it's 
important to date identified single specimens of short-lived botanical parts, bones, teeth, or identified flora or 
fauna, spicules, caraipe, charcoal from artifacts, to compare to charcoal dates, which might have come from 
long-lived trees. In areas with a history of vulcanism, such as upland Colombia, argon-argon dating could help 
clarify chronologies but has not been used so far.  
2.4 Identification of Plant Remains 
The interpretation of botanical finds often is complicated because of the non-comparability of site records. 
Multiple proxies are rarely available because the intensiveness of sampling for identifiable plant specimens from 
sites is uneven, as are the use of methods for the purpose. Mid-to-late 20th century research showed the error of 
assuming plant and faunal remains were not abundantly preserved in humid tropical sites (Piperno & Pearsall, 
1998; Roosevelt, 1980; 1984b), but researchers sometimes claim that macroplants are not usually preserved in 
rainy tropical sites (Iriarte, 2007, p. 168; Torrence & Barton 2006 passim). Carbonized macroplants, useful 
because single taxonomically identified specimens can be directly dated, are recovered in much larger quantities 
by hand during excavation than by selective soil flotation (e.g., Spencer & Redmond, 2014, pp. 862-877), but 
soil flotation often recovers types of material rare among finds uncovered during excavation (e.g., Lentz et al., 
1996). Intensive, exhaustive soil flotation and dry fine-screening can produce large samples of carbonized 
macroplants but are rarely carried out, making comparisons of patterns of finds difficult between sites excavated 
with different methods (Garson, 1980). Unfortunately, many excavators don't collect carbonized plants 
exhaustively, but any site that produced charcoal for dating is likely to have other kinds of carbonized plant 
remains also, regardless of what the excavators say.  
The secure identification of ancient plant remains is itself very difficult no matter what the type of material 
(Langlie et al., 2014; Shillito, 2013). Most claims for finds of very ancient cultigens are based on microfossil 
identifications that are accurate only to family, or at best genus (Crowther, Haslam, Oakden, Walde, Mercadern, 
2014, p. 101). Conclusions for species level identifications and cultivation status from such specimens require 
risky interpretive extrapolations, such as that a plant from a certain family is not local so therefore it must be an 
introduced cultigen species (e.g., Piperno, 2011). Such assumptions don't take into account that modern 
distributions may not be representative of ancient ones (Langlie et al., 2014). Ancient remains often differ 
inscrutably from modern reference collections, making their identity mysterious (e.g., Spencer & Redmond, 
2014: 844-848). Microfossil identifications often rely on assumptions about the frequency of certain shapes in 
different species, yet the occurrence of such differences is not well established experimentally, and often the 
number of microfossils identified is so small that the frequency comparisons are not statistically viable (Shillito 
2013).  
Not infrequently, preliminary tentative identifications are not confirmed. The identification of carbonized maize 
from a Lesser Antillean site turned out to be erroneous (Newsom 2006, p. 329). A set of Archaic Colombian 
specimens initially thought by archaeobotanists to be palm seeds were later concluded to be avocado pits 
(Gnecco, 2000, p. 68; Herrera, Bray, Schrimpff, & Botero, 1992; Piperno & Pearsall, 1998, pp. 199-203; 
Schrimpff, Herrera, & Bray, 2005, pp. 32-35, and note 24), despite the very different anatomy of the taxa. 
Specimens originally identified as the tips of corn cobs (Walton Galinat, personal communication, 1992) could 
not be corn, for they had C3 plant stable carbon isotope ratios on analysis (Geochron Laboratories). The fact that 
carbonized palm inflorescences are very similar anatomically to maize inflorescences not been discussed by any 
archaeobotanist, to my knowledge. Further, carbonization of macrospecimens can change size and shape, as can 
heating and other types of damage to starch grains. Thus, identifications based purely on size are not definitive. 
Ancient specimens identified by researchers as a particular cultivated species are not necessarily convincingly 
similar to modern ones in illustrations, and analysts' identifications are often hedged with qualifications that get 
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lost in the secondary literature (e.g., Pagán-Jiménez, Rodriguez-Ramos, Reid, van den Bel, & Hofman, 2015). 
Inferences on hypothetical fresh anatomy extrapolating from desiccated and presumptions about what trait forms 
ancient people might have selected are based upon the frailest grounds (e.g., Benz, 2001). Most are not 
illustrated or enumerated, and some are mere personal communications (Mora, 2003; Herrera et al., 1992; 
Schrimpff et al., 2005, pp. 32-35, and note 24). Such identifications are weak because they can't be checked and 
debated.  
It's difficult for archaeobotanists to become familiar with all the large number of tropical forest natives and their 
phylogeny, so mistakes in identification are made, such as the assignment of a seed identified to a species of the 
myrtle family to the bean family. Researchers often assume that early-context specimens of taxa that people later 
cultivated must be cultivated plants, but they could simply collected plants or plants from background vegetation 
(e.g., Piperno & Pearsall, 1998, p. 200). Many such taxa are common locally in early successional vegetation: 
Ipomoea in sunny terrain and Maranta in shadier terrain (Roosevelt, 1991, p. 24 on Ipomoea carnea). 
Unfortunately, most tropical lowland palms and flowering trees that are cultivated do not differ greatly 
morphologically from uncultivated examples, and most are not actually domesticated plants anyway (Clement, 
de Cristo-Araújo, Coppens D’Eeckenbrugge, Alves Pereira, & Picanço-Rodrigues, 2010; Lorenzi, 2002). 
Humans manage them but they also exist dispersed in the forest without the need for human intervention. The 
cultivated Amazonian tree Brazil nut, for example, grows more easily when planted by humans or large rodents, 
its main dispersers, but it does grow without them. The role of humans in its Holocene dispersal is inferred from 
the taxon's comparatively low genetic diversity over its range compared to wild species (Shepard & Ramirez, 
2011). Another probable human artifact may be the frequent clustering of Brazil nut trees at sites with Black 
Indian soil, considered an indicator of permanent habitation.  
DNA analysis of modern remains can help resolve the history of cultivation and dissemination of a plant 
(Bradley, 2006; Emshwiller, 2006), as well as the regional migrations of early people, but there are currently 
significant interpretive problems for using genetic patterns from DNA analysis of modern populations to infer 
the history and location of domestication of plants anciently. Claims that wild ancestors of cultigens such as 
manioc have been definitively identified in a region often lack a firm basis in comprehensive geographic 
sampling and DNA analysis (e. g., Olsen & Schaal, 1999, 2006). Few studies have done adequate sampling for 
modern examples throughout the possible areas of origins (Perry, 2002b, p. 347), and there has been little work 
on the DNA associations of modern cultivars' characteristics, so the meaning of molecular comparisons remains 
opaque. When researchers do include maps of sampling site locations, these show that sampling was not 
comprehensive areally (e.g., Grant, Hatheway, Timothy, Cassalett, & Roberts, 1963). Few genetic studies deal 
with the problem that cultivars can hybridize with "wild" or weedy species and thus alter the distribution patterns 
"in the wild". A further problem is that during the anthropocene humans may have changed the distribution of 
possible wild ancestors. Moreover, many factors including molecular mechanisms make time-telling by 
molecular clocks highly problematic (Emshwiller, 2006). As an example, the author of the widely cited figure of 
9000 BP for the earliest maize cautioned not to rely on it (as pointed out by Langlie et al., 2014, p. 1607).  
But the study of ancient DNA from both plants and humans is becoming more and more viable and valuable, due 
to improvements in technology of analysis and wider applications. Fortunately, it is not the case (contra van den 
Bel, 2015, p. 58) that human bones generally do not survive in neotropical climates, and many sub-fossil 
materials including some carbonized plants retain extractable DNA, which can be compared with DNA from 
other archaeological contexts and from modern populations. The DNA in subfossil materials at high latitude sites 
has allowed identification of numerous species to help reconstruct ancient late Pleistocene habitats (Willerslev et 
al., 2014). And molecular studies have shown that yams were domesticated independently in the different 
continents, including South America, Africa, and in several parts of southeast Asia (Malapa, Noyer, Marchand, & 
Lebot (2006). Application of such methods to the lowlands could solve some important interpretive issues and 
greatly expand data on the distribution of species and cultivars over time and space.  
Microfossils, unfortunately, cannot be dated directly individually to check their age. Even grouping enough of 
them to get a radiocarbon date does not yield definitive evidence of age. Dates on groupings of microfossils are 
imprecise for the same reason that groups of charcoals are, because the individual specimens aren't necessarily 
all the same age (Langlie et al., 2014). Though it's sometimes said that starch grains have been directly dated, 
what was actually dated was an unidentified carbonized mass that had a few identified starch grains in it (e.g., 
Piperno, 2011). Another problem with microfossils is that some starches, especially maize and manioc starch, but 
also now soybean, sorghum, and wheat starch, are widely used for sizing of the paper and cloth (Paper Academy, 
2012) used to contain, label, and/or handle samples (e.g., Pagán-Jiménez, 2012, p. 82, 85). And cornstarch, the 
most common lubricant for lab gloves is abundantly dispersed in the air where they are used (Occupational 
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Safety & Health Administration [OSHA], 2005; U.S. Food and Drug Administration [USFDA], 1997). It's 
argued that extracting starch grains from dental calculus allows the avoidance of contamination (Barton & 
Torrence, 2006; Mickleburgh & Pagán-Jiménez, 2012), but that's only if the researchers follow strict field and 
lab hygiene.  
A recent study of contamination in archaeology starch identification labs found widespread and sometimes 
abundant contamination with modern starches, raising serious doubt about the authenticity of starch grains 
claimed in the past to represent ancient plant presence (Crowther, et al., 2014). Maize, the most common starch 
identified archaeologically is also the most common lab contaminant. A large range of lab utensils and materials 
were found to be contaminated with modern starch grains, from pipettes and slides to cloth, paper, and plastic 
bags. The same study found that recommended tests for contamination did not reliably detect contamination and 
that routine cleaning procedures were not effective at eliminating the contaminants. By my observation, the 
procedures of hygiene, conservation, and provenience maintenance in many dating, archaeology, and botany labs 
do not protect materials from contamination and degradation. Objects are often scrubbed in tap water or, worse, 
river water and left in the hot sun to dry rapidly (causing deterioration and dust pick-up). Specimens are handled 
repeatedly with unwashed hands, separated from proveniences, enclosed in gelatin capsules that shatter and 
contaminate them, leaving them mixed with specimens of other provenance. In all these ways it's easy for 
individual specimens to be dislocated, making very rare finds unreliable bases for conclusions. The significance 
of the distributions of identified taxa in excavation strata are not usually evaluated statistically, and big 
conclusions are made based on only one or two microfossils (Bush et al., 1989). It's been recommended for 
future studies of microfossils that negative controls be analyzed along with the target samples (Crowther, et al., 
2014), and I believe that samples should always be analyzed blinded. Past identifications have not, on the whole, 
used such controls. 
2.5 Quantifying Diet 
Beyond dating and identification, how to quantify the changing consumption levels of different foods through 
time? Different types of plant and animal parts are preserved in different quantities vis-à-vis those originally 
consumed, creating horrific barriers to reconstruction of diets. Actualistic studies comparing materials with their 
decay products can help, but they have shown that preservation is not very predictable thus far (Piperno & 
Pearsall, 1998). Certainly, sandy, draughty soils are not good for microfossil and bone preservation but can be 
good for carbonized macroplants. Clayey soils are generally better for all types of remains but can be difficult to 
separate from the remains without damage. But how to figure out the degree of use of identified materials? 
Stable isotopic analysis of modern and ancient human and animal bones and plant remains sometimes can 
contribute to the evaluation of both biological community structure and diet in prehistory and today, helping to 
get around some of the difficulties. And combining the different methods and extracting different materials, 
along with provenience control, soil analysis, and exhaustive dating can also help with interpretive problems. 
Studying all phases of occupation, including recent and modern ones, also helps in the navigation of interpretive 
difficulties.  
Before the florescence of archaeobotany, artifacts were the main evidence on subsistence, and they still are 
influential in researchers' interpretations. Unfortunately, by themselves, they usually don't give much information 
on specific foods and importance of cultivation. Contrary to earlier assumptions, some Archaic pottery cultures 
lack any evidence for agriculture, and some Archaic pottery seems used ceremonial purposes rather than for 
cooking (see section 3.2, Archaic horticulture?). Griddles, once parsed as evidence for manioc or maize, the main 
ethnographic staple plants in northern South America, are commonly used to bake cakes of both plants and any 
number of other plant foods as well, nowadays, including Brazil nuts. Rock slabs also serve the same purpose. 
Recently, flaked or ground stone "axes", both celts and waisted or notched axes, have been argued to be strong 
evidence for Archaic, or even Paleo, farming, as hoes (e.g., Schrimpff et al., 2005). But these tools need to be 
interpreted in both archaeological and ethnographic context. Flaked and ground stone axes and adzes are found 
in early Paleoindian sites in Amazonia but are interpreted as wood-working tools (see the next section). Foragers 
observed historically actively use digging tools to collect food that is not, however, cultivated (Hart, 1960). 
Furthermore, early ethnographic stone celts and waisted axes in museum collections from Amazonia, Orinoquia, 
and the Guianas are hafted as axes, not as hoes (e.g., de la Penha, Bruni, & Papavero, 1986, p. 43, 250; Versteeg 
& Rostain, 1999), and Warao people of the Orinoco mouth often used adzes for chopping starch out of palm 
trunks (Heinen, 1988). It's also been pointed out that most of the early Colombian tools are too small to be axes 
or hoes and don't have the expected wear produced by experiments; so they have been reinterpreted as paring 
knives, instead (e.g., Santos Vecino, Monsalve, & Correa Salas, 2015). It's not clear why pounding and cutting of 
game or fish are not considered also, as metal knives, choppers, and hammers of the size also are common 
butchering or meat-tenderizing tools in recent days.  
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yet been studied. In the Cauca drainage, the PIII0I-52 site had a date of 10 260 BP, and El Jazmin and La Morena, 
dates of 10 100 BP (1 date each). 
The predominantly low stable carbon isotope ratios of wood charcoal dated from all the Paleoindian sites reflect 
habitat communities structured as forests, not as savannas. And contrary to the theoretical premise that the 
tropical forest was too poor in edible wild plants and game to support hunter-gatherers (Bailey, Head, Jenike, 
Owen, Rechtman, & Zechenter, 1989), the Paleoindians in the humid tropics intensively foraged a large number 
of both plant and animal foods. Palm and tree fruits and tree legumes are the most common kinds of carbonized 
plant foods in the tropical Paleo sites. Species of many of the identified taxa are cultivated near habitation sites 
in the tropical lowlands today, but few or none are considered domesticated plants (Goulding & Smith, 2007; 
Lorenzi, 2002; Smith, Vásquez, & Wust, 2007). Brazil nut (Bertholletia excelsa) was identified in the Brazilian 
cave site but was very rare. The sandy Brazilian soils did not preserve phytoliths or pollen, but the cave had 
thousands of pieces of carbonized seeds from many palm and tree genera now used for food or materials: Attalea, 
Astrocaryum, Hymenaea, Byrsonima, Saccoglottis, Talisia, Mouriri, and Vitex. Faunal remains recovered from 
the site, such as small fish, shellfish, turtles, and small land vertebrates, also are consistent with an intensification 
of a range of local resources.  
None of the Colombian Paleo sites have produced faunal remains, perhaps an artifact of preservation conditions 
or of collection methods. San Isidro produced a large number of carbonized specimens identified to 
now-important cultivated food plants, including palms (Acrocomia), fruit trees avocado (Persea), which is now 
domesticated, a tree legume (Erythrina), whose pods and seeds are edible if processed to remove toxins, and 
several plants now used for materials (e.g., Lagenaria). Stone tools from the site produced starch grains 
identified to several genera of herbaceous herbs with starchy roots. Some of the grains are said to be either 
Xanthosoma, Ipomea, or Manihot, and some speculated to be Maranta (an arrowroot). Other grains were from a 
variety of grasses and legumes. Species, however, were not identified, most of the original identifications are 
now considered to be doubtful (Gnecco, 2000, pp. 67-69), and in any case all the possible genera and families 
occur in tropical forest successions today. A conclusion that the arrowroot species was cultivated, for example, 
was based on the supposition that plants of the family Marantaceae do not occur naturally in sub-Andean tropical 
forests (Piperno, 2011) however, they do occur (Cano, Young, Leon, & Foster, 1995, p. 280). The avocado pits 
were thought to be cultigens at first, but archaeobotanists concluded that their size was not proof of cultivation 
on its own (Piperno & Pearsall, 1998, p. 200). So, it's not the case that there's evidence that any of these plants 
were necessarily cultivated or under domestication there in the late Pleistocene. (That avocado pits had been 
carbonized at San Isidro, in addition to the palm fruits, has been thought a great mystery, because the fruit is 
eaten raw today (Schrimpff et al., 2005, p. 32). However, oily or woody fruit pits are commonly burned for 
charcoal in Amazonia, especially those of palms (e.g., Anderson, May & Balick, 1991), but also those from other 
species. 
These few Paleo occupations that have been studied are surprisingly sedentary, to judge by the extended seasons 
represented by their food plants and animals (Gnecco & Mora, 1997; Roosevelt, 2000; Roosevelt et al., 1996), 
and at all the sites people appear to have disturbed and selectively altered their habitats. In the Brazilian cave, the 
continuing occupation created a black Indian soil, and anthropic effects on the forest around the site are 
suggested by the abundance of terra firme palm remains with less negative stable carbon isotope ratios than those 
of the carbonized wood of trees in the same site levels. In modern anthropic palm forests, instead of being 
dispersed in the shady forest understorey, the palms are grouped close together in clearings, where they are more 
productive of fruit, due to more sun exposure. Anthropic palm forests today can be a by-product of either seed 
discard or of human planting in prepared clearings (Anderson, 1988; Anderson et al., 1991; Politis, 2009).  
The tool types from Paleo sites do not shed light on the issue of cultivation. The formal lithic tools from Pedra 
Pintada include stemmed, triangular point fragments, gravers, and small and large unifacial cutting tools such as 
adzes/limaces, all made by flaking. The point forms are reminiscent of modern harpoons and fish arrow points. 
Entire cutting tools of flaked stone were cached in the cave, whereas only broken points were left there. Whole 
points, however, are common finds at rapids in the interfluves, where migrating fish pass, however (Roosevelt et 
al., 2009). In San Isidro and other Colombian sites, also, whole cutting tools of ground or flaked stone, such as 
axes or adzes/limaces, were left behind with mostly broken flaked tools (Santos Vecino et al., 2015; Gnecco, 
2000, pp. 51-56; Gnecco & Mora, 1997). However, abundant, fine flaking debris at sites shows that people were 
making points but must have been taking them away from sites for use. The Magdalena sites in Colombia had 
stemmed triangular point fragments and the adze/limaces, as did Pedra Pintada, and the PIII0I-52 site in the 
Cauca had, a triangular, broad-stemmed point. Having points does not mean that hunting was important source 
of food in a site occupation, though, and the big-game hunter hypothesis does not work well for tropical forest 
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There were abundant carbonized palm seed fragments and carbonized tree fruits at several of the sites but none 
firmly identifiable as macroplant cultigens. Genera of tree fruits include Annona and avocado (Persea) (Figure 
3), both of which are today highly valued food plants that have important cultivated varieties as well as wild 
forms in northern South America. Some researchers feel that microfossils prove cultivation of bottle gourd, 
avocado, maize, amaranth, arrowroot, South American taro, yam, beans, and manioc are cultigens at those sites 
by 7000 to 9000 BP (Dickau et al., 2015; Piperno, 2011). Most identifications are based on starch grains from the 
surfaces and pores of "axes" or grinding stones or from pollen in sediments in excavation levels or pollen cores. 
However, the microplant finds from sites and cores are equivocal in both age and cultural context. Microfossil 
numbers are low or not given, and some macroplant specimens have widely divergent identifications: palm or 
avocado, in one case (Herrera et al., 1992), Rubus (Rosaceae) or Mora (Moraceae) in another (Dikau et al., 
2015). Tentative identifications or ones from materials from insecure stratigraphic context are hardly definitive. 
All of the plant identifications except maize are to plants available in the environment, and maize is identified 
only by very rare microfossils. The hypothesized maize consists of microfossils from excavated strata or swamp 
cores. The rare microfossils in strata could be any age, given the normal roots, burrows, and the translocation of 
clays in tropical forest soils. Specifically, the finds have problematic contexts: shallow deposits, amorphous, or 
strongly disturbed stratigraphy, obvious bioturbation, undulating strata crosscut by artificial levels, combination 
of materials of different ages, reversed dates, Formative dates, modern dates, or clearly old-carbon dates in the 
sequence, and/or singly-occurring microspecimens, and more. And most of the sampled levels they come from 
have few or no dates, and most dates are on unidentified charcoal or on soil samples. These problems make it 
unclear whether the pollen, phytoliths, or starch grains identified are from Archaic or Formative contexts.  
The Archaic sequence of the Orinoco has yet to be investigated actively, though there has been speculation about 
it (Sanjoa & Vargas, 2006). The few known sites don't give any evidence for cultivation but do document the 
early use of palm fruits for food. At the Atures Rapids near Puerto Ayacucho in the Orinoco, several sites 
produced carbonized palm endocarps, tentatively identified to a common palm (Oenocarpus bataua), but no 
faunal remains. For example, Provincial, a c. 9000 BP (two radiocarbon dates) site about 80-100cm below the 
surface had what the excavator calls nondescript, crude stone tools: lithic flakes, a flake scraper, a core, a nutting 
stone, a hammerstone, fragment of a ground stone axe, and a polished hematite fragment (Barse, 1990; 2003). 
Organic remains included unidentified wood charcoal and the carbonized palm seeds. The possible palm species 
identified is found both wild and cultivated in the northern lowlands today but is not considered domesticated. 
The only other possible link to cultivation, the ground stone axe, is as likely to have been used for wood 
chopping, as discussed in section 3.1 on the Paleoindians. 
3.3 Archaic Complex Cultures 
Over and above the Archaic cultures discussed in section 3.2, continuing work on early prehistoric sequences in 
various parts of the tropical lowlands of South America and the Caribbean and Brazilian coasts has uncovered 
several examples of complex Archaic cultures. These cultures had diverse economies of intensive foraging on 
wild staples, such as fish and shellfish, palm and tree fruits, shrubs, roots, and/or seeds (Gaspar, DeBlasis, Fish, 
S., & Fish, P., 2008; Mora, et al., 1991; Imazio da Silveira & Schaan, 2005; Oyuela-Caycedo & Bonzani, 2005; 
Roosevelt, 1995; Roosevelt, Housley, Imazio da Silveira, Maranca, & Johnson, 1991). Some of the cultures 
appear to be relatively sedentary, and others, more mobile. The features considered complex include special 
ceremonial mounds and precincts, funerary facilities, domestic structures, and/or special art and crafts, including 
decorated pottery, jewelry, ground stone effigies and axes, and ritual objects, such as drug-taking equipment. 
The complex Archaic cultures in the vicinity of major lowland rivers and estuaries differ from those in smaller 
river basins in having pottery. Opposite the Paleoindian sites of Pedra Pintada and Painel do Pilão at Monte 
Alegre in the Lower Amazon near Santarem is a complex Archaic site, Taperinha, dating to c. 7000-6000 BP (13 
dates, of which one was TL on pottery). This monumental, >6m-tall shell mound with both domestic and 
ceremonial features around it had thick sand-tempered pottery with a rare incised rim sherds, some small 
grinding slabs, a few bone tools and ornaments, shell scrapers, and many fire-cracked rocks. Subsistence appears 
to have been focused on fish, several species of freshwater shellfish bivalves, and turtles. Carbonized plant 
remains were rare in the site; its sandy and/or shelly sediments have not produced identifiable phytoliths or 
starch grains; and the pollen from two swamps cored not far downriver produced plenty of disturbance indicators 
but no possible cultigens (Piperno & Pearsall, 1998: 230-232). The diet seems to have been quite adequate, 
apparently, for the teeth of a child of c. 9 years buried there were free of any pathologies. A Paituna-phase 
shell-midden in the middle levels of Pedra Pintada cave, occupied between 7500 and 5000 years ago BP (7 dates, 
one of which was TL on pottery), produced similar pottery and food remains. At the mouth of the Amazon, the 
6500-5500 BP year-old Mina and Alaka monumental shell mound sites of the pottery Archaic also have 
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subsistence emphasizing fish and shellfish, including varied univalves and bivalves. Carbonized plant remains 
also are rare in them).  
On the lower Magdalena River not far from the Caribbean coast of Colombia, the c. 6000-4600-year old (13 
dates) sites of San Jacinto have remarkable, rare, elaborately-decorated pottery food service wares with incised 
and modeled zoomorphic decoration. Features within the sites include earth ovens, fire-pits, abundant 
fire-cracked rock, and stones for grinding, mashing, and nut-cracking. Subsistence is thought to have been based 
primarily on mush made by grinding gathered seeds or mashing roots and secondarily on large univalve and 
bivalve shellfish. But, as at Taperinha, no pollen was recovered, though one soil sample from a cooking pit 
yielded phytoliths of unidentified C3 grasses and of the arrowroot family (Marantaceae), though the number of 
specimens is not given. Flotation showed carbonized plants to be very rare around the cooking facilities, though, 
and the only common ones were shrubs of the Malvaceae family not known to be food sources today. The many 
weed taxa identified and the local provenance of the site's lithic materials suggest site occupations of as long as 
six months in the seasonally humid tropical environment. The very negative stable isotope ratios accord with a 
heavily wooded landscape, however. 
On the southwest coast of Trinidad, the shell midden of St. John, dated between 6900 and 5000 BP on shell, 
yielded a small number of securely identified starch grains including some possible cultigens (Pagán-Jiménez et 
al., 2015). The excavator at the site, Basil Reid, had taken great pains to conserve the artifacts for analysis, 
making the results possibly more definitive than usual. But all radiocarbon dates in one unit, 3, were in reverse 
order, with the latest date, 5080 BP, equivalent to an early Formative date on the mainland, in the base level, and 
the earliest date, 6710 BP, at the surface, a range of almost 2000 years in the wrong direction. This is 
unequivocal evidence of a stratigraphic reversal that went undetected by the artificial excavation levels. Of the 
firm identifications from strata with consistent dating, there were 29 grains of Zea, identified as maize with the 
expectation that there was no wild maize ancestor in the region. All the other identifications were tentative or 
from the reversed strata. What with the small number of grains overall, the problem of maize contamination in 
labs, and the date reversals, it's not clear whether taxa other than maize were present and were cultigens and 
whether any of the starch grains analyzed are Archaic or later in date. Although the site is represented as a single 
component preceramic Archaic site by the authors, it has a number of ceramic-age and historic occupations 
including mid- and late-prehistoric camps and villages, a colonial cane field, a provision garden, and a house site 
(Boomert, Faber-Morse & Rouse, 2013). Further excavations and dating could clarify the situation. 
All these sites, then, do not seem to make up strong evidence for early cultivation of maize or any other 
domesticated plant during the Archaic. Non-domesticated taxa identified could have been either collected or 
cultivated. So it still appears to be the case that strong evidence for maize cultivation is confined to the early 
Formative (see the next section). If, however, maize cultivation can one day be firmly dated to the Archaic, then 
it would seem to be the earliest demonstrable cultigen in the sequences, and the implication would be that the 
concept of cultivation was introduced from the outside. Strangely, this is not an implication recognized by 
researchers who both claim very early presence of maize at c. 9000 or 10 000 BP and interpret their sequences as 
evidence of indigenous development of plant domestication.  
Except for the universal shift in the Archaic to relatively crude lithic tools compared to the finely flaked Paleo 
lithics, the general Archaic culture pattern so far is one of strong regional diversity in culture and subsistence 
(Oyuela-Caycedo 1996). Unfortunately, most of the more sedentary Archaic sites, where the process of 
domestication might have been facilitated, according to the Sauer/Lathrap way of thinking, had few plants 
remains compared to the less sedentary ones. Away from rich estuaries and floodplains, more mobile societies 
thought likely centers of domestication, don't have recognizable cultigens with firm identifications, either. But 
Peña Roja, which had abundant carbonized palm seeds, lies in the hypothesized zone where peach palm might 
have been domesticated (Morcote-Ríos & Bernal, 2001), so it is a place where more intensive research on sites 
with plant remains would be valuable. And, given the very incomplete Archaic record, intensive search for new 
sites in different kinds of local habitats would seem in order. 
3.4 Formative Horticulture c. 5000-1500 BP 
Investigations at many Formative sites have yielded possible cultigens. The doubts about them, not always 
acknowledged, include inadequate study collections to confirm taxonomic IDs and very small numbers of most 
of the securely identified taxa. When very few specimens of a taxon have been identified, any doubts about the 
identification loom large and hamper solid conclusions. And when stratigraphy is disturbed or excavation is by 
artificial levels, mixture of sediment of different ages is to be expected and with it mixture of specimens of 
different ages. Unfortunately, the quantitative relationship of microfossils to subsistence economy is even more 



esr.ccsenet.

 

uncertain t
human rem
the comple
common is
 

 
3.4.1 Form
The best k
Saladoid-B
Saladero s
levels of 
Roosevelt,
defined in 
(1800-200
expansive 

org 

than that of m
mains that perm
ex of possible
s maize. 

F

mative Ceramic
known cultures
Barrancoid Ho
site in the lowe
Corozal in th
, 1980, 1997; 
Trinidad (Boo

00 BP) in Surin
in nature, spr

macrofossils, b
mit quantificat
e cultigens of F

Figure 4. Salad

c Cultures 
s of the Forma

orizon defined 
er Orinoco (30
he middle Ori

Rouse & Cru
omert, et al., 2
nam (Boomert
reading slowly

Earth S

because of the 
tion of diet com
Formative site

dero site map, V

ative of the Or
originally by C
00-2500 BP 7 
inoco (c. 3000
uxent, 1963). R
2013; Fewkes,
t, 2000; Rosta
y but widely t

Science Research

14 

dating proble
mponents. Non
es. Among the 

Venezuela (Ol

rinoco, Caribb
Cruxent and R
dates) (Figure

0-1400 BP) (
Related cultur
 1914) and Ka

ain, 2008 a and
through the lo

h

em, and few si
netheless, there
few taxa that 

iver 2014: 99, 

bean Colombia
Rouse, from m
e 4) and from L
Cruxent & R
es outside the
aurikreek (420
d b; Versteeg, 
owlands throu

ites have the k
e is a high deg
recur at differ

 
Figure 1) 

a, and the Guia
materials in the 

La Gruta, Ronq
Rouse, 1958-19
e Orinoco inclu
00-3750 BP) an

2008). The cu
ugh mechanism

Vol. 6, No. 1;

kinds of studi
gree of similari
rent sites, the 

anas, belong t
lower levels o
quin, and the l
959; Oliver, 2
ude several ph
nd Wonotobo 
ultural horizon
ms thought to 

2017 

es of 
ity in 
most 

o the 
of the 
ower 

2014; 
hases 
Falls 

n was 
have 



esr.ccsenet.

 

included tr
from the C
upper Am
leadership
architectur
wide-area-
pattern of 
and Island
(Siegel, 20
of earth co
the middle
The elabo
crushed-ro
sponge sp
effigy bow
inside or 
interpreted
(Boomert, 
several ve
dates on th
maize, pal
(Heinen, 1
forms, and
 

Figure 5

org 

rade and allian
Caribbean coas

mazon. These F
 and defined s
re, funerary 
-excavated in t
complexity is 

d of St. Eustati
010). However
onstruction: m
e Orinoco. 
orate iconogra
ock-tempered p
picules, and po
wl with zoomo

outside; rare 
d as representi
et al., 2013; R

essels from Sa
he material. Al
lm starch, man
1988; Rooseve
d characteristic

5. Saladero str

nce, rather tha
st all the way 

Formative soci
social hierarch

rites, and 
the Orinoco, t
seen more cle

ius (Boomert, 
r, some late Fo

mounds and ear

aphy of the s
pottery, though
ossibly tree ba
rphic adornos 
effigy bottle

ng the animism
Roosevelt, 198
ladero appear 
ll the styles ha
ny other food
elt, 1980). Som
c temper but la

ratigraphy and 

Earth S

an mass migra
to the Upper X

ieties are diffic
hies, but they d

fine artwork
to recover cere
early in resear
2000; Verstee

ormative sites 
rly raised field

styles of the 
h some regions
ark ash. The m
on the rim or 
s depict anim
m still importa
0, 1997). Man
to have been 

ave griddles, w
ds, and/or com
me marginal s
ack the elabora

plan drawings

Science Research

15 

ations (Boome
Xingu and from
cult to model 
do manifest sig
ks with com
emonial foci w
rch results on t
eg, 1998; Fewk
in both the Or

ds in the weste

horizon are 
s have their ow
most common
handle and gr

mals with hum
ant in indigeno

ny decorated ve
sealed with b

which could ha
mbinations of f
sites of the ho
ate zoomorphic

s (units S1 and

h

ert, et al., 2013
m the mouth o
as complex ch
gnificant inve

mplex iconog
with whole ves
the Formative 
kes, 1914), an
rinoco and the 
rn Orinoco an

mostly found
wn distinctive t
n Saladoid-Ba
rooved zoomor
man some fea
ous cultures of
essels have soo
bitumen, judgin
ave been for co
foods, as Grea
orizon have th
c imagery.  

d S4 from Tren

3). Examples o
of the Amazon
hiefdoms with
stment in cere
graphy. No 
ssels or structu
cultures of Tr

nd at sites in th
Guianas do h

nd in the Guian

d in the chara
tempering met

arrancoid deco
rphic decoratio
atures. Such i
f the Amazon 
ot on the base,
ng from the in
ooking cakes o
ater Amazonia
he shallow gro

nch 7, Oliver 2

Vol. 6, No. 1;

of styles are f
n all the way t

h central param
emonialism, m

sites have 
ure patterns, so
rinidad and To
he Greater An
ave clear exam
nas, and moun

acteristic sand
thods, such as 

orated vessel i
on in a band o
images have 
and Orinoco t

, from cooking
nfinite radioca
of manioc, ma
an people do t
ooved incision

2014:103, Fig. 

2017 

found 
o the 

mount 
ound 
been 

o this 
obago 
ntilles 
mples 
nds in 

d- or 
shell, 
s the 
n the 
been 

today 
g, and 
arbon 
anioc, 
today 
, rim 

 
5) 



esr.ccsenet.

 

3.4.2 Datin
There is un
have signi
Careful res
from later 
prehistoric
next sectio
Corozal ha
the kernel
and post-c
ancient pe
burrows an
dates, con
coatings th
Section 2.
inconsisten
 

The palms
current loc
protect us
 
 
 
 
 

org 

ng the Formati
ncertainty abo
ficant disturba
study of the si
layers and ab

c deposits relat
on) (Cruxent &
ave intrusions 
s, and other si

conquest mater
eople for fuel o
nd root holes. 

nfirming the hy
hat yielded m
.3. Sites in oth
nt dates.  

F
s are corozo (A
cal economy r
eful trees 

ive 
out the history 
ances, with pro
te of Saladero 
ut the kitchen 
ted to the regio
& Rouse, 195
of maize kern
ites there also 
rials. Too-old 
or sealant, and
Lignite from t

ypothesized id
microfossils we

her regions, s

Figure 6. Coro
Acrocomia ac
relies on ranc

Earth S

of the local st
oof from AMS

by Oliver sho
of a modern h

onal pottery ho
58, pp. 213-23
els from late F
show mixture

dates from sit
d the sites' loos
the site under 

dentification a
ere infinite or 
such as Eva in

ozal site, Vene
culeata), a spe
hing. Rancher

Science Research

16 

tyles and use o
 dating that lat

ows that the ear
house (Oliver,
orizon charact
37). In the mid
Formative leve
e between preh
es in both area
se, sandy soils 
the modern se
s low grade c
too old dates 

n French Guia

ezuela (Roosev
ecies still often
rs clear and bu

h

of plants becau
ter materials h
rly Formative 
, 2014) (Figure
terized by inten
ddle Orinoco,

els, proven by d
historic levels
as seem relate
allow recent m

ettlement of Pa
coal. At Salade

(Table 1), fo
ana, also have

velt 1997: Pla
n cultivated in
urn vegetation

use the sandy O
ave descended
layers had bee
e 5). The site 
nsive maize us
 some early F
direct AMS ra
 and intrusion

ed to petroleum
materials to de
armana gave in
ero, all the da
llowing the p
e sandy sedim

ate 2, top) 
n northern Sou
n to create pas

Vol. 6, No. 1;

Orinoco levee
d into earlier la
en pierced with
is capped with
se (discussed i
Formative leve
adiocarbon dat
n of late prehis
m products use
escend in the m
nfinite radioca

ates on black s
attern discusse

ment and nume

uth America. 
sture but often

2017 

sites 
ayers. 
h pits 
h late 
n the 
els at 
es on 
storic 
ed by 
many 
arbon 
sherd 
ed in 
erous 

 

The 
n 



esr.ccsenet.org Earth Science Research Vol. 6, No. 1; 2017 

17 
 

Table 1. *Saladero AMS radiocarbon dates and starch grain identifications from the carbonaceous coating on 
sherds (Oliver 2014: 104, Table. 5) 

 

OxA-# 

No. de 

Laboratorio 

(Pagán); 

del Museo 

Peabody 

Trinchera 

No. 

Sección: 

nivel 

profundidad 

Descripción de la 

cerámica** 

Identificación de los 

almidones- 

J. Pagán Jiménez 

Años 

Radio-carbono 

a.P. 

Calibración 

2σ (95.4%) 

a.C. 

Δ13C

28062 #12-28 

 

ANT.218113 

Trinchera-7  

S3: nivel 2 

25-50cm 

BAR-3 

panza con botón 

modelado-inciso 

(cauxí) 

Zea mays; 

Leguminosae(?) 
27430±270 a.P. 

30417-29230

a.C. 

 

-27.8 

28063 #12-28 

 

ANT.218113 

Trinchera-7  

S3: nivel 2 

25-50cm 

BAR-3 

panza con botón 

modelado-inciso 

(cauxí) 

Zea mays; 

Leguminosae(?) 
27330±160 a.P. 

29846-29251

a.C. 

 

-27.5 

28064 #12-26a & 

#12-26b 

 

ANT.214222 

Trichera-7  

S3: nivel 4 

75-100cm 

BAR-3 

fragmento de panza de una 

olla con 

modelado-inciso-punteado 

(cauxí) 

(a) Zea mays (?) 

Marantacea 

silvestre; 

(b) Manihot cf. 

esculenta; Zea mays; 

Capsicum spp.; 

Leguminosae 

29400±220 

a.P. 

32686-31465

a.C. 

 

 

 

-27.7 

28065 #12-27a & 

#12-27b 

 

ANT.218686 

Trinchera-7 

T3: nivel 5 

100-125 cm 

BAR-2 

fragmento de borde recto y 

hombro de una olla globular, 

sin decorar 

(a) Zea mays, 

fermentada(?); 

Leguminosae 

silvestre; cf. 

Capsicum sp.;  

cf. Manihot 

esculenta; 

(b) Zea mays 

29960±250 

a.P. 

33140-32075

a.C. 

 

 

 

-27.9 

28066 #12-25 

 

ANT.218246-a 

Trinchera-7 

S3: nivel 7 

150-175cm 

SAL 

fragmento de budare(?) sin 

decoración 

Zea mays; 

cf. Manihot 

esculenta; posible 

ñame (Dioscorea 

spp.)  

32080±320 a.P. 
35596-33569

a.C. 
-27.9 

(ORAU-33406) 

 

#12-23 

 

ANT.218233 

Trinchera-7 

S3: nivel 6 

125-150cm 

SAL 

fragmento de budare, con 

decoración incisa 

(sin costra de carbón) 

 

 

Zea mays 

 

 

sin fechar 

 

 

sin fechar 

 

 

x 

 

(ORAU-33402) #12-24 

 

ANT.215712 

Trinchera 1 

B2: nivel 6 

125-150cm 

BAR-1 

fragmento de budare, sin 

decoración 

(sin costra de carbón) 

Zea mays, 

Capsicum sp. 
sin fechar sin fechar x 

* The samples of starch grains were taken from the crust of carbonized food on the inside of the shred and/or  
from the interstices of the inside surface. All the ressulting dates are contaminated with old carbon. Oxa-28062 
and -28063 are from the same sample (ANT.218113).  
** SAL= Saladero style; BAR-1= Barrancas style; BAR-2= Los Barrancos style; BAR-3= Guarguapo style. 
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maize and is not now grown in the lowlands north of the Orinoco (Grant et al., 1963, pp. 30-32). Thus, it's 
unlikely to have been a local staple and could have been produced elsewhere and traded into the middle Orinoco 
in small amounts. Stable isotope analysis of four human skeletons from Corozal-phase levels showed little or no 
effect of consumption of a C4 plant such as maize (Figures 10A and 10B, and Table 3) (Roosevelt, Krueger, 
Sullivan, nd; van der Merwe, Roosevelt, & Vogel, 1981). The sandy-textured sediments of these levels did not 
contain preserved phytoliths or pollen, but sediment samples are curated and sherds and lithics with residues not 
washed, so these could be studied for microfossils and organic substances in the future. At the Saladero site, 
curated materials were analyzed for microfossils (Oliver, 2014: 104, Table 5, and 108-109). Starch analysis 
conclusively identified 29 maize grains and 3 manioc grains but only tentatively identified a small amount of 
sweet potato, arrowroot, Xanthosoma, legumes, and chili peppers. Though it seems clear the relatively abundant 
and ubiquitous maize remains must be Formative, we don't know where exactly in the cultural sequence they 
belong, because of the extensive mixture between levels and lack of any direct dates on cultigens.  
 
Table 2. Corozal, Excavation 2, Distribution of carbonized maize specimens (Roosevelt 1980: 238-242, Table 20. 
Feature and level subdivisions are combined in the table.) 

Excavation Strata Approximate Phases Provenience # #Specimens
levels  depths in cm  >1/2 kernel
1 W,V 0-12 Postcontact 49 0 
2 V,U,T 25-45 Camoruco 3 32 0 
3 S 45-60 Camoruco 3 34 23 
4 R 60-77 Camoruco 3 80, 612 110 
5 Q,P,O 77-95 Camoruco 2/3 12, 393, 490 25 
6 Q,P,O  95-112 Camoruco 2 60 57 
7 N,M  112-138 Camoruco 2 48 62 
8 L,K,J  138-143 Camoruco 2 4, 28, 380 49 
9 K,J,I  153-167 Camoruco 1 43 11 
10 I 167-185 Camoruco 1 35 15 
11 H & feature 185-210 Corozal 3 Camoruco1 47 8 
12 G 210-230 Corozal 3 10, 36 3 
13 F 230-250 Corozal 3 3, 26 1 
14 E 250-275 Corozal 2 2 0 
15 D 275-295 Corozal 2 7, 29 2 
16 D,C & feature 295-305 Corozal 1 37, 42, 62, 293, 542 0 
17 C 305-310 Corozal 1 45 0 
18 B 310-320 Corozal 1 27, 545 6 
19 A 3210-340 Corozal 1 54 0 
20 A 340-375 Corozal 1 40 0 
21 A 375-400 Sterile  0 
22 A 400-425 Sterile  0 

 
At late Formative mounds in Surinam, manioc microfossils were recovered (Versteeg, 2008), and the early 
Formative Eva-2 site in French Guiana, mentioned in section 3.4.2, had three stones with grinding wear from 
which 6 starch grains of Zea, 2 of Zamia, and 1 of sweet potato, were firmly identified (Pagán-Jiménez et al., 
2015, p. 237, Table 2; van den Bel, 2015, pp. 157-158). The tools, however, were handled and washed before 
analysis, the site's dates showed extensive mixing, so the provenance is not certain, and the numbers of 
specimens and identifications differ in the different publications. At the Peña Roja site in the northwest Amazon 
in Colombia, some maize and manioc microfossils and fruit remains of Avocado and Annona genera are reported 
for early Formative levels (c. 5000-3000 BP) but not enumerated or dated directly (Mora et al., 1991). In the 
lower Amazon at Caverna da Pedra Pintada, the directly dated human cranium and tooth from skeletons buried 
with early Formative pottery gave C3, not C4 plant diet results, showing no effect of maize consumption in those 
individuals (Roosevelt, 2000, p. 482, Table 15.3). The few Formative individuals from the Amazon and middle 
Orinoco show a pattern of robust good health, lacking the enamel hypoplasias and caries of some late prehistoric 
Andean and Mesoamerican populations heavily reliant on starchy food (Storey, 1992; Whittington & Reed, 
2006). The Corozal-phase skeletons have rugged frames and crania like some Saladoid populations in the 
Antilles (Drew, 2009).  
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Many of the sites in the Columbian uplands whose rivers drain to the Caribbean have firm evidence of maize 
microfossils by the early Formative, along with sparse examples identified to the local plants that could be either 
background or cultivated (Aceituno & Loaiza, 2014, 2015; Dickau et al., 2015). 
If we can rely on occurrence of microfossils as well as macroplant specimens from secure contexts, a pattern 
seen widely during the Formative is the presence of a cultigen for long periods without their conversion to staple 
foods. Maize, for example, is definitely documented in the lowlands of Amazonia and the Orinoco by reasonable 
numbers of microfossils (50-100) and a few dated macro-specimens from the mid to late Formative period, c. 
3000 to 1500 BP, but maize is not shown by stable isotope analysis to be a staple food until the period between 
500-1500 BP. Thus, the Formatives definitely were cultivating maize in the Orinoco and northern Amazon, but a 
number of other foods were more important in the diet. Thus, it is not the case, as I proposed earlier (Roosevelt, 
1980), that the arrival of maize was soon followed by its adoption as a staple in the sense of furnishing a large 
majority of calories. That process took many hundreds of years. Until c. 1500 BP, other plants must have 
furnished most of the vegetal food. Manioc and other root, tuber, or corm-bearing plants, bean varieties, and tree 
fruits, are likely ones, though there is as yet no way to measure their proportions of food consumed (but see the 
discussion of the use of nitrogen isotopes to study legume/game/seafood versus other C3 plants and maize in 
Amazonian diets, Roosevelt, 1989 and Antillean diets, Pestle & Colvard 2012). 
3.5 Intensive Agriculture in the Orinoco and Guiana Coasts c. 500-1500 BP 
3.5.1 Late Prehistoric Ceramic Cultures 
Only during late prehistory, when many northern tropical lowland areas became influenced by the Arauquinoid 
style series of the so-called Incised and Punctate cultural horizon (Boomert, 2000; Lathrap, 1970; Rouse & 
Cruxent, 1963), is there firm isotopic and botanical evidence for the adoption of a fully domesticated plant as a 
dietary staple, i.e., the main source of food. The plant in question was indeed maize, and the agricultural systems 
in which it became the main staple were the floodplain and wetland raised field cultivation systems of the coastal 
and riverine lowlands of South America. Based on both archaeological and ethnohistoric evidence, the adoption 
of maize as a staple was the joint achievement of a series of culturally-related, wealthy, populous, and warlike 
polities that formed along the floodplains of the larger rivers of Caribbean and Orinocan Colombia, the 
Venezuelan Orinoco, and the Guianas' coasts during late prehistory.  
Regions whose study inform on these patterns include the western Orinoco plains of Colombia and Venezuela 
(Garson, 1980; Gassón, 1998; Spencer & Redmond, 1992, 2014; Spencer, Redmond, & Rinaldi, 1994; Zucchi & 
Denevan, 1979), the middle Orinoco of Venezuela (Perry, 2004; Roosevelt, 1980; 1997; van der Merwe et al., 
1981; Smith & Roosevelt, 1985), the lower Orinoco in Venezuela (Oliver, 2014), and the coastal plains of the 
Guianas (Boomert, 1980; 1987; 2000; Iriarte et al., 2010; McKey et al., 2010; Rostain, 2008ab, 2013 a and b; 
Versteeg, 2008). [Arauguinoid relatives and also a variety of local cultures have been identified in western, 
northern, and eastern Venezuela (Gassón, 2002; Navarrete, 2008) and Caribbean coast of Columbia 
(Oyuela-Caycedo, 2008), but their subsistence has not yet been investigated comprehensively.]  
3.5.2 Evidence for Maize as a Staple 
Maize's status as a staple in late prehistory is indicated in several ways: the comparative high frequency of its 
pollen compared to other food plants' pollen in the relevant levels of western Orinoco sites (Spencer & Redmond, 
2014: 844-848), its greater ubiquity compared to other food plants' starch grains in the later levels of Saladero in 
the lower Orinoco (Oliver, 2014: Table 5), the hundreds of carbonized maize specimens and highly C4 influenced 
stable carbon isotope ratios of late prehistoric human skeletons and food residues (Figures 8A, 8B, 8C, 8D1, 10C, 
and Tables 2 and 3) (Roosevelt, 1980; 1997), the hundreds of starch grains (Perry, 2004) in relevant levels at 
sites in the middle Orinoco, and the ubiquity of maize phytoliths in the raised fields on the Guianas' coasts 
(Iriarte et al., 2010). Maize history is not well known in the Amazon proper, but at Lake Ayauchi in the 
Ecuadorian Amazon, maize phytoliths became very abundant between 2400 and 800 BP. (Piperno, 1990); and C4 
range stable carbon isotope ratios start to appear in the bones of some individuals between about AD 500 and 
1500 on Marajo Island in the Brazilian Amazon and at Lake Yarinacocha in the Peruvian Amazon (Roosevelt, 
1989; 2000, pp. 480-486).  
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there. Nonetheless, the non-maize foods that remained in the diet seem to have prevented nutritional deficiencies 
serious enough to cause recognizable bone pathologies. 
3.5.3 The Agricultural Societies and Their Cultivation Systems 
The initial change in maize's role was contemporary with supraregional socio-political changes starting to take 
place at the time. (The skeletons showing high maize consumption are dated to the very beginning of the 
development of Arauquinoid culture styles.) While Archaic and Formative societies in the northern lowlands did 
sometimes build mounds for ceremonial or residential purposes and had feasting cultures (Roosevelt, Douglas, 
Bevan, Imazio da Silveira, & Brown, 2012), the Arauquinoid societies in late prehistory had elaborate 
ceremonial and funerary practices and built house mounds and large formal complexes of mounds with ramps 
and causeways at their centers (Roosevelt, 2013). Sites are larger, more numerous, more hierarchical in size 
distribution, than before, and often include the black Indian soil layers that are considered to be refuse from 
urban-like settlements (Lehman, Kern, Glaser, & Woods, 2003). The contrast in magnitude between ancient and 
modern indigenous settlements in northern South America has been difficult for some ethnographers to accept 
(Heinen & Garcia-Castro, 2000, p. 561). 
Ethnohistoric sources for the Orinoco and Caribbean and other areas of Arauquinoid cultural influence coasts 
gives evidence for paramount chiefships held by men and also women (Roosevelt, 1980, 1991). Another 
contemporary development was intensified communication among regional societies. Although many regions 
engaged in the Formative Saladoid-Barrancoid horizon, this took place over a long period of time in contrast to 
spread of the late prehistoric horizon, whose styles have closely similar timing of appearance. The later horizon's 
iconography has an emphasis on humans, especially females (Cruxent & Rouse, 1958-1959; Roosevelt, 1980, 
1997; Versteeg, 2008), rather than the animals that predominated in the earlier art. Careful lapidary works, 
interpreted as female ornaments, based on ethnohistoric accounts, were exchanged widely in the horizon zone 
(Boomert, 1987; Versteeg, 2008). Pottery production also changes in many places: from careful, elegantly 
sculptured, fine, hard, grit-tempered forms in the Formative to hasty, sloppy, light-weight, 
sponge-spicule-tempered forms of late prehistory. As in the Formative, the new ceramic horizon seems to appear 
first in a decoratively simpler form in the Orinoco, among the Barrancoid styles of the late Formative Corozal 
phase, but research may change the origin of the horizon, as more regional sequences are constructed, and the 
origin of the geographic the new styles can be traced. The highest development of the style, centered at the major 
ceremonial and residential site of Santarem in the lower Amazon, Brazil, is, however, one of the latest cultures of 
the horizon, starting no earlier than 800 BP (Gomes, 2001; Nimuendajú 2004; Roosevelt, 1999; 2000).  
Concurrent with the increase in population and the rise of staple maize cultivation during the period of influence 
from the Incised and Punctate horizon, c. AD 500 and 1500, large areas of wetlands in several parts of northern 
lowland South America were converted to raised agricultural fields, in some cases covering as much as 10 000 
square kilometers. Such areas have been found in the western (Denevan & Zucchi, 1978; Garson, 1980 Spencer 
& Redmond, 2014; Spencer & Redmond, 1998; Spencer et al., 1994; Zucchi & Denevan, 1979), central, and 
northeastern Orinoco and piedmont and the coastal lowlands of the Guianas (Rostain, 2008; 2013 a and b; 
Versteeg, 2008; Versteeg & Bubberman,1992). Shapes and sizes of fields were very diverse, often clustered by 
shape type, but all seem to have been constructed by digging drainage ditches and by heaping the mud from 
them on top of the fields (Figures 11, 12). Causeways, canals, and ponds are associated spatially with the field 
systems. The fields are generally interpreted as a method of creating and fertilizing permanent cultivation 
surfaces to expand production beyond gardening and swiddening (Rostain, 2008ab; 2013). They have been 
called an extension of floodplain agriculture because they multiply the area of possible planting surfaces in 
floodplains (Versteeg, 2008). Maize specimens predominate among the botanical identifications from the fields 
and adjacent settlements, though the relative rarity of manioc and other plants could be a preservation problem 
(Figures 13, 14). The possibility that wild rice varieties, common among raised field microfossils, were 
cultivated (suggested by Brochado, 1980) has not yet been investigated. 
Most raised fields are associated with Arauquinoid styles of the late Incised and Punctate horizon of the Orinoco, 
but a few field systems were erected by people using pottery styles affiliated with the late Barrancoid culture, 
among which the earliest Arauquinoid styles in the middle Orinoco sequence developed. Late Barrancoid raised 
fields dating between about AD 100 and 300 were identified in Surinam. Early Arauquinoid sites are found 
alongside raised fields in the western Orinoco plains of Venezuela and in the Guianas coastal plains of Surinam 
between about AD 300 and 700 to1000 AD. Most raised fields investigated, however, date after AD 1000, and a 
few constructions have turned out to be post-conquest. Modern people occasionally renovate and cultivate the 
prehistoric ones sometimes for maize, sometimes for root crops (e.g., Spencer & Redmond 2014; Rostain, 2008a: 
225), but most of those investigated have produced prehistoric artifacts and/or radiocarbon dates.  
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Thus, it seems that only during the last 1500 years or so of prehistory during a period of intense complex society 
development and population expansion that we have secure evidence of true agriculture that produced the 
majority of the food in the societies. It is interesting that the particular geomorphological zones where this 
happened were those with significant areas of floodplains and wetlands. Thus, intensive, permanent cultivation 
apparently was focused presciently on low-lying alluvium and not on upland terrain that might be subject to 
erosion and depletion of soil nutrients under permanent cultivation. 
4. Agriculture Today 
Despite its importance in the agriculture of late prehistory, maize is not often a staple food today among most 
indigenous groups in the Orinoco and Amazon in the sense of providing the majority of food calories, which 
manioc more often provides, or introduced plants like banana and plantain. In fact, based on ethnography, the 
Orinoco was originally expected to have been a manioc-staple area in prehistory (Rouse & Cruxent, 1963), an 
expectation that the research at Corozal refuted. The assumption that ethnographic patterns were a stable 
adaptation that necessarily represented ancient patterns was a Radcliffe-Brownian way of thinking that most 
archaeologists, at least, have long since abandoned. This is not to say that the rich ethnographic record and living 
populations are not an essential primary source of understanding, especially for indigenous people's views and 
knowledge about issues of interest to anthropologists, ethnobotanists, and geographers. Without this record, we 
would be hard put to parse the archaeological record, but we shouldn't be constrained by it from glimpsing other 
ways for other times. 
Thus, the cultivation of different crops and the degree of reliance on them in ethnographically observed societies 
may not be a good indication of early prehistoric patterns. By definition, subsistence changed through time in 
prehistory, and ethnographic patterns presumably could not be representative of all the many different prehistoric 
periods (Roosevelt, 1994b). Some of the recent changes in ethnographic crop emphasis in northern South 
America may be related to various post-conquest effects. Most areas lost population at least at first, and the 
cohesive string of Arauqinoid societies that had pursued staple maize economies, farmed floodplains, and 
sometimes built raised fields, soon disappeared. In both the Amazon, Orinoco, and also in the Guianas, the 
ending radiocarbon dates of incised and punctate societies, cited in section 3.5.3 (The agricultural societies and 
their cultivation systems), show that most of the societies fell apart soon after the conquest. The initial reason for 
the abandonment of the raised fields may have been the loss and flux of population during the conquest, but 
foreign settlers soon entered and intervened in the situation. Some societies survived into the early contact period 
by letting go of old lifeways and developing ones related to the new economies and social contexts, such as 
cattle ranching, extractive collection, guiding, and portering. Only a few native groups continued to make and 
use raised fields after the European conquest: the Palikur in northern Brazilian Guiana, Amapá, for manioc and 
yams, and Karina in the northeast Orinoco in Venezuela for maize and other crops (Denevan & Schwerin, 1978; 
Rostain, 2008a). Careful work with peasant farmers in Amapá, Brazilian Guiana (Padoch & Pinedo-Vasquez, 
1999; Raffles, 1999), and French Guiana (Rostain, 2013 b) has revealed that the practice continues among them, 
too, in limited ways.  
Although many people speaking Arawak or Carib continued to cultivate maize north of the Orinoco into the 19th 
century, that area now is dominated by Spanish-speaking ranchers who and eat maize as a staple. Native people 
still live south, east, and west of the Orinoco, and manioc and/or bananas tend to be their staple food, produced 
in shifting horticultural fields, rather than permanent fields. Flour or cakes made from manioc are usually the 
most common everyday foods consumed on a seasonal basis along with fish (Roosevelt, 1994a). People also eat 
a wide range of fruits from trees and palm, which are for the most part native species that are managed, 
cultivated, and disseminated by people but that are not domesticated species in the strict sense of the term. Peach 
palm stands out among all these as a species whose groves do not flourish nowadays without human 
management (Clement, 1990; Mora-Urpi, Weber, & Clement, 1997; Politis, 2009). Only in the more distant 
indigenous communities do people get much of their plant food from palms, though, especially peach palm and 
other orchard trees (e.g., Politis, 2009; Smole, 1976). For example, interior Orinoco groups such as some 
Yanomamo people still cultivate peach palm as one among several staple foods (Smole, 1976). Moriche palm 
(Maurita excelsa) fruits, stem sap, and stem starch eaten with fish used to be a staple in the large population of 
Warao inhabiting the Orinoco delta, and the Warao used for minor purposes many of the same taxa as Paleos and 
Archaics: including Euterpe, Erythrina, Manilkara, and Virola (Heinen, 1988). The intrusion of missionaries and 
Euro-American farms and businesses in this century, has led Warao to change to slash and burn subsistence 
farming and wage labor. 
Maize is now a staple in much of Venezuela and Colombia, outside of indigenous areas. Slash and burn 
cultivation and house gardens produce the main subsistence crops. Like the ancient and modern indigenous 
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farmers, most modern people also cultivate a large variety of native species in addition to their staples, some of 
them for other than basic food purposes. Also like native people, peasants make specialty foods and drinks from 
succulent or nutritious tree and palm fruits such as Brazil nut or açaí (Euterpe) for consumption in ceremonial 
contexts. Other peasant plant staples are beans, some the minor indigenous crops, and introduced crops, such as 
rice, bananas, and plantain. Native root crops such as sweet potato, arrowroot, and Xanthosoma also are more 
common foods in rural communities distant from national urban centers than they are in communities oriented to 
urban or global markets. 
Most Spanish-speaking rural people in the modern nations of the northern lowlands employ systems of 
production linked to local or outside markets (Roosevelt, 1980, 1991; Adams & Murrieta, 2009). Cattle ranching 
is important among them, as is the raising of small stock for their own use, also recently taken up by some 
indigenous people, as in the Gran Sabana of Venezuela. Ranching is rapidly displacing the agroforestry of both 
peasants and indigenous peoples in Amazonia and in the Orinoco (e.g., Hecht, 1990; Hecht & Cockburn, 2011; 
Peters et al., 1989; Schmink & Woods, 1992), and the oil industry has further transformed Caribbean coast and 
middle and lower Orinoco landscapes. All these changes mean that researchers interested in studying and 
fostering rural people's management and use of plants and native plants' ecology and genetics will have to hasten 
there before the people and the plants are gone forever. 
5. Conclusions 
It seems very likely that the early migrants to northern South America understood the principle of planting and 
may have planted some species of major importance in their cultures. Ethnohistoric evidence on hunter-gatherer 
societies that survived into the early contact period, such as indigenous California peoples, demonstrate that they 
frequently managed non-domesticated plants in the same ways that agricultural people manage domesticates, 
planting, pruning, fertilizing, building terraces for them, etc. (e.g., Blackburn & Anderson, 1993) Despite the 
lack of comprehensive archaeological evidence, our sequences give some hints of what more definitive research 
in the future may discover along those lines.  
The Paleoindians congregated or returned regularly for appreciable periods at food-rich locales, but in territories 
with sparser food sources, they stayed less time at sites. The common use of certain lithic forms and technologies 
over wide areas shows that they traveled and communicated actively with people in other regions. It is clear that 
plants were important in their diet and industries. Many of the palms and some of the trees now cultivated as 
important seasonal staples in the northern tropical lowlands later on were staple food sources for Paleoindians, 
along with fish, turtles, shellfish, and small land animals. Where faunal food remains are not preserved or not 
collected during excavation, we can't assume that they were not important, and because of stratigraphic and 
preservation imponderables, it's not yet clear whether Paleos used any of the herbaceous plants that later became 
cultigens in the area. But they weren't big-game specialists, contrary to the thinking of early Paleo experts. The 
manifest importance of plant foods in the period suggests that careful study could reveal some kind of purposeful 
plant management. On the analogy of ethnographic studies, also, their occupation sites must at least have had an 
impact on the local plant population. 
Some Archaic people settled down permanently where food species abounded naturally or became concentrated 
by germination in refuse heaps. When their chosen food resources were more scattered, they roamed their 
regions. Subsistence thus became much more diversified regionally in the Archaic than before. Some people - as 
at Taperinha and other sites in the lower Amazon and Amazon mouth - used fish, shellfish, and turtles as staple 
foods, and tree and palm fruits are rare in their sites. These communities may not have had a role in early 
cultivation, contrary to the theories of Sauer and Lathrap. Some other people - at San Jacinto in the lower 
Magdalena River - collected and intensively processed herbaceous plants that bore roots or seeds and collected 
large univalves. They may have had a role in domesticating those root-bearing herbs, but those local seed plants 
were not ultimately brought into cultivation, as best we know. All these latter groups also make pottery, much of 
it very ornately decorated. Some preceramic Archaic people – at Peña Roja, in the northwest Amazon and 
Provincial and Culebra, in the middle Orinoco - emphasized the palm and tree fruits Paleoindians had 
emphasized; fauna might have been eaten, but their remains are not preserved or were not targeted by the 
archaeologists' collection methods. Perhaps the domestication of selected palms and fruit trees took place in 
those kinds of Archaic sites. Other preceramic people living outside of the floodplains and wetlands in Colombia 
appear to have relied on a variety of forest herbs and tuber or corm bearing plants. Perhaps those herbs 
ultimately became domesticated there, too, but most sequences are too incomplete to show that process. The 
uplands of the Guianas also had early Archaic sites, but analysis of their cultures and ways of life is just 
beginning.  
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During the Formative, people with rich conceptual and material cultures spread slowly through the lowlands, 
establishing modest-sized but highly organized settlements on the basis of varied and nutritious subsistence from 
both collected plants and animal foods and cultivated plants. So far the clearest evidence for maize cultivation is 
from their sites, in the later part of the period c. 4500 to 1500 BP. The evidence varies but includes numerous 
identified microfossils, directly dated maize kernels, and C4 stable isotope ratios in some food remains. Perhaps 
among these late Formative groups were those who first selected out the maize varieties that became the 
productive races that later became staples. That appears to be a process indigenous to the northern lowlands, 
since the maize races that were developed for tropical environments, like Chandelle, are local to the region, not 
introduced from somewhere else. But maize is definitely not an early Formative staple, for their bones show little 
or no effects of substantial maize consumption. Their presumed cultivation system - based on root crops, the 
maize, palms, and fruit trees - seems better described as mixed horticulture and agroforestry than agriculture, 
given its lack of specialization and the low intensity of cultivation. 
Agriculture, which is definitely based on maize, is only documented in late prehistory, between about 1500 and 
500 years ago, and only in certain landscape contexts as floodplain or wetland raised field cultivation, and in 
certain socio-political contexts: sedentary, stratified societies with conspicuous leaders. The cultures that pursued 
this labor-intensive and potentially unhealthy lifeway were a closely related group: named Arauquinoid after the 
Orinoco site where their pottery was first found. They both negotiated and fought to establish relationships for 
trade, intermarriage, ceremonial systems, and political alliances. Their influence reached far, though not as far as 
that of the Formatives. Arauquinoid art has turned up from the Caribbean coast and Islands to Amazon mouth 
and the Bolivian Amazon. The maize that they primarily relied on in their Orinoco area of origin was a race 
developed locally, unlike the maize race that appears earliest, which has highland links outside the lowlands. The 
long delay the use of maize as a staple, proven by the significant negativity of human stable carbon isotope ratios 
until late prehistory, suggests that open-field agriculture was not a system that early lowland foragers found very 
interesting or useful.  
Perhaps the model of early farming in the region should not be slash-and-burn field horticulture but some 
preliminary form of forest management. Perhaps Archaic sites represent the initial stage of intensive use and 
manipulation of plants when settlement became more localized due to the settling of most regions, preventing 
free roaming, as several authors have suggested. Most of the macro-plant remains recovered from Archaic sites 
in the tropical forest of the northern lowlands of South America come from palms, shrubs, or trees. Although 
there has not been a broad, systematic effort to recover and identify palm and tree remains from lowland 
archaeological sites, many specimens have been recovered through routine field methods. It's been hypothesized 
that the one certain Neotropical domesticated palm, peach palm (Bactris gasipaes), was first domesticated in the 
northwestern lowlands of Colombia (Morcote-Ríos & Bernal, 2001), but systematic sampling of modern and 
ancient palms has yet to be carried out. Many indigenous communities in the northern Amazon, Orinoco, and 
Guianas still have extensive plantings of palms and trees (e.g., Politis, 2009; Smole, 1976), especially including 
this species. Nearly all the economic palms are regularly planted and their fruits are eaten in abundance in season 
in greater Amazonia (Goulding & Smith, 2007; Smith et al., 2007; Henderson, 1995), and a number of tree 
species' fruits also are seasonal staple foods (Smith et al., 2007). But when cultivation of all these species began 
is an open question. The problem with tracing palm and tree cultivation is that many of the regularly planted 
species do not show obvious effects from being cultivated. 
It's obvious what is needed to start to clarify the picture of early plant use. To avoid the sampling artifacts that 
flaw knowledge of distributions, plant researchers investigating the ancestors of cultigens need to adopt explicit 
sampling procedures that cover the entire range of possible habitats and record where sampling was done and not 
done. Genetic testing must be applied more intensively and extensively, including analysis of ancient specimens. 
Geneticists need to use multiple working hypotheses and avoid premature conclusions from limited sampling 
and data analysis. Archaeologists need to adopt much more comprehensive excavation and soil-processing 
methods to collect a wider range of remains and to record and acknowledge disturbances that affect 
interpretation. Archaeologists and laboratory researchers need to adopt clean procedures and controls to protect 
finds and to detect contamination. Identifications will mean more when more are accomplished and results 
presented more openly for discussion and debate. Distributions need to be statistically analyzed for significance 
or lack of significance. And current food, foraging, and cultivation systems must be studied more extensively and 
more humbly, seeking ethnographic illumination from those who still actively design and carry them out. 
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