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Abstract

Variational data assimilation can be a powerful allied in order to estimate the determination of the trajectory of
a pollutant accidentally spilled on the sea surface, when a set of observation of the resulting pollutant spot is
available, as well as a computational model of the sea surface dynamics of the region of the accident. In order to
solve the computational problem, the adjoint equations method will be of the paramount importance. Here it is
presented the mathematical foundations of the problem, a brief discussion of some computational issues, and an
very simple example is discussed.
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1. Introduction

In several accidents involving the spillage of pollutants in the sea surface, one of the main problems faced by the
authorities is to determine where to combat the resulting spot. The experience have shown this is a hardy problem.
For example, in 2000, there was a terrible accident involving the Brazilian company, Petrobras, in a bay known
as Baı́a de Guanabara, in Rio de Janeiro. An large amount of oil leaked from Reduc (see Figure 1), and, despite
all the efforts, it reached in less than 48 hours I do Governador, São Gonçalo and Niterói, as in a real cat and
mouse game. It was estimated some mangrove with a rich biodiversity would need some 20-30 years to recover its
original state, in an optimist scenario. At that time, we were trying to understand the mathematical foundations of
Variational data assimilation in the meteorological context, as a way to improve the numerical weather predictions,
and we thought that technique could be used to obtain a better estimation of the trajectory of the oil spot, using the
available information. In fact, from the mathematical view point, both problems have the same structure, namely,
a set of partial differential equations, with initial and boundary conditions, describing the problem dynamics, and
also we could have a set of information of the the object we want to estimate, that is, meteorological variables, in
one case, and the shape and location of the spot, in the other.

Data assimilation, in its two main approach, sequential and variational, establishes that the assimilation of all
available information (roughly, observations) will improve the predictive ability of the model, and that is a passive
process, in the sense that it does not interfere with the model itself.

The key point in the variational data assimilation is the assumption of the existence of an initial condition (or model
state) such that, when this condition is used as the initial data of the model, the subsequent states of the model will
minimize a functional that measures the discrepancy between model and observed states, and, if so, the procedure
is more than adequate as a first step to solve the problem of the oil spillage problem.

Although the data Assimilation method can be invaluable in computational simulations, since observations of
the systems act ont the numerical model as restriction which the solution must verify, with the exception of a
few articles and books, the mathematical formalism is not always clearly presented, and this is not an appropriated
situation to the development of the method, since important aspects for its future must be placed in solid theoretical
foundations.
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Figure 1. Guanabara Bay (Source: INPE)

Therefore, is our intention to present a rigorous mathematical formulation not only for Variational Data Assimila-
tion but also Adjoint Equation Method as well, so as to make them perfectly understood.

In order to realize the numerical control of the space-time evolution of a system involving a geophysical flow it
is necessary to know its initial condition, which is, the numerical counterpart of the real initial state or the initial
configuration of the system under study. In the case of geophysical flows, the dimension and the geographic
location of the spatial domain problems make the distribution of an observational network difficult, what causes a
scarcity of data about the phenomenon studied or even turns the initial configuration unavailable for computational
simulations (Talagrand, 1997). As in those flows are presented phenomena of difficult representation in a numerical
model, and even in analytical models, being, in certain situations, processes highly sensitives to initial conditions
variations , to establish an initial condition adequate for simulations, in this case, is of the crucial importance for
the results.

In fact, although we have not considered here the question, we should mention that due to the range of space-time
scales present in oceanographic problems, any numerical model designed to solve one of those problems will face
numerical instabilities related to the fractal structures inherent in those situations (Candy, 2009)

For an adequate initial condition of the numerical experiment, one means that one which generates the numerical
model states that fit, in accordance with the desired precision, the available observations. In order to decide
whether or not an initial condition is appropriated to certain simulation, one should consider, in addition to the
flow dynamics, the full set of observations of the system being studied. That is exactly what is performed by the
methodology known as Data Assimilation, approach in which all the knowledge on a system being analyzed, its
dynamics and observations, is combined in order to produce an initial condition that minimize the error between
the model generated configurations and the correspondent known configurations, in a sense to be precise later.

A problem involving geophysical flows in its discrete form produce sa very high number of variables, so that,
straight away, Variational Data Assimilation is a methodology computationally intractable. A solution for this
difficulty can be obtained with the use of the Adjoint Equations Method, which adequately insert the problem of the
initial condition determination to simulations of geophysical flows in the domain of Optimal Control Theory , and
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its mathematical foundations are analyzed here with the necessary accuracy. A second consequence of the resulting
methodology of combining Variational Data Assimilation with Adjoint Equation Method is the transformation of
a minimization problem with restrictions, as originally proposed by the Variational Data Assimilation formalism,
in a minimization problem without, what makes it possible the use of more agile routines, as L-BFGS (Liu and
Nocedal, 1989), in the determination of an optimal initial condition.

In the first section of this work, the mathematical foundations of two crucial methods are presented, Variational
Data Assimilation and Adjoint Equations Method. In the second section, in order to fix ideas, one works with a
one-dimensional model which permits the exploration of several aspects of the methods used and also to develop
explicitly the adjoint of a given equation. Finally, in the third section, one describes a bi-dimensional numerical ex-
periment, showing with some detail (i) an algebraic formalism, fundamental in the development of a computational
program to perform the experiment, formalism that has already produced, in the Computational Linear Algebra
domain, a new line of investigation, known as Automatic Differentiation and as Automatic Adjoint Generation
(Faure and Papegay, 1998), and (ii) the structure of a FORTRAN code, created by the author, in order to realize
the Variational Data Assimilation of a flow described by the bi-dimensional advection-diffusion equation.

2. The Mathematical Approach

Definition Let A be an open set in Rn and f : A → R a differentiable function. Then, ∀x ∈ A, the differential of f
in x ∈ A, is the linear functional such that, ∀ v ∈ Rn,

d f (x) · v = lim
t→0

f (x + tv) − f (x)
t

As d f (x) is a linear functional in (Rn)∗, the dual vector space of Rn, it follows from Linear Algebra the existence
and uniqueness of the vector ∇ f (x) ∈ Rn such that

d f (x) · v = ⟨∇ f (x), v⟩,

where ⟨, ⟩ is the canonical inner product in Rn.

2.1 The Data Assimilation Method

Let S be an evolutionary system, observed during the time interval [t1, t2], from which is available a set of ob-
servations, all of them collected in the same time interval and distributed in the spatial domain of interest on S.
Besides, it is known the dynamics of S. Based on those pieces of information, one wants to determine the initial
condition of the modeled S, or the numerical representation of the configuration of S at the time t1 , the starting
moment for a computational simulation of S generates configurations to approach, within an acceptable precision,
to the available observations of S at correspondent instants of time, in order to obtain a configuration of the model
at t f > t2 which reproduces the real configuration of S at time t f , also within an acceptable precision. From a
conceptual point of view, this process is similar to the Best Linear Unbiased Estimation (Sorensen, 1980) of the
configuration of S at t f , given the S configurations within [t1, t2], here solved in a deterministic approach as an
optimal control problem, in which the initial conditions is the control data. At first, one considers the continuous
version of the Variational Data Assimilation problem, which admits the appropriate mathematical treatment. In
this case, the mathematical objects are:

• the system observations: given by Z : [t1, t2] × V → V , such that, ∀t ∈ [t1, t2] , Zt : V → V is a differential
operator defined on the vector space V provided with the inner product ⟨, ⟩, where [t1, t2] is the assimilation
interval or assimilation window.

• the dynamics of the system S, described by

∂X
∂t
= F(X), (1)

where X : [t1, t2] × V → V is the system S trajectory during the assimilation interval, [t1, t2], E = {Y; Y :
[t1, t2] × V → V and Y ∈ C2} and F : E → E is a differential operator.

• the “weight” function W : [t1, t2] → L(V), where L(V) is the vector space of the linear operators in V ,
that results from the statistics information of the instruments used to collect the data on S , and that, each
t ∈ [t1, t2], associate the injective linear operator W(t) : V → V .
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• the quadratic functional

J :E → R (2)

X 7→ 1
2

∫
D
⟨W(t)(X(t, x) − Z(t, x)),W(t)(X(t, x) − Z(t, x))⟩

Then the Variational Data Assimilation problem is to find a trajectory of the system states S, X : [t1, t2] × V → V
such that X is the solution of equation (1) which minimize the functional (2), in other words, we arrive to the
following minimization problem with constrait:

Problem MR: find the solution of equation (1) minimizing the functional (2)

It would be much more interesting (and, in many problems, the only feasible way) if instead of the solution X ∈ E
one searches the solution XI ∈ EI , where EI = {XI ; XI = X

∣∣∣∣{t1}×V
, X ∈ E and X ∈ C2} is isomorph to the set of

operators in V , which could be called the space of the initial configurations of S, that minimizes the restriction of
the functional J to EI .

However, it is not known an explicit relation between J and XI , since J is not a function of X. Nevertheless, if
the problem in equation (1) is well posed, in the Hadamard sense, then the knowledge of X and the knowledge XI

are equivalent. The Adjoint Equation Method provides, from the relation between X and XI , the differential of the
restriction of J to EI .

2.2 The Adjoint Equations Method

One rewrites the functional in equation(1)3 as

J :E → R (3)

X 7→
∫

D
T (X(t, x))dD,

where

T :E → R

X(·, ·) 7→ 1
2
⟨W(·, ·)((X(·, ·) − Z(·, ·)),W(·, ·)((X(·, ·) − Z(·, ·))⟩.

As the differential of J in X ∈ E is a linear functional in the Hilbert space E with the inner product

⟨X(·, ·),Y(·, ·)⟩E =
∫

D
⟨W(·, ·)X(·, ·),W(·, ·)Y(·, ·)⟩dD,

by using the Riesz’ Representation Theorem (Kreyszig, 1989), one obtains, ∀H ∈ E,

dJ(H) · X = ⟨∇X J(H), X⟩E =
∫

D
⟨∇XT (t, x),H(t)⟩dD, (4)

where ∇X J and ∇XT are the gradients of J and T , respectively, with respect to X.

Now, one considers the linear version of the equation (1)

∂X
∂t
− ∂F
∂X

X = 0 (5)

resulting from the substitution of the operator F for its first order approximation in an equilibrium point, omitted

from the equation, and in which it was used the notation (
∂F
∂X

) for the differential Of F, and its adjoint equation is

∂X
∂t
− (
∂F
∂X

)∗X + ∇XT = 0, (6)
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where (
∂F
∂X

)∗ is the adjoint operator of
∂F
∂X

.

Then one obtains the following result:

Theorem 1: Given a solution X ∈ E of MR, XI = X
∣∣∣∣{t1}×V

is the solution of the following unconstraint minimization

problem:

Problem MU: find δx ∈ EI minimizing ⟨∇XI J, δx⟩.

Proof : Let Y : [t1, t2] × V → V be the solution of (5) such that Y(t2) = 0 and δX ∈ EI is a perturbation of any
solution of equation (6). Then it follows that

⟨∂X
∂t
− ∂F
∂X
δX, Y⟩ + ⟨∂Y

∂t
+ (
∂F
∂X

)∗Y + ∇XT, δX⟩ = 0

∴ ∂
∂t
⟨Y, δX⟩ + ⟨∇XT, δX⟩ = 0

∴ ∂
∂t
⟨Y, δX⟩ = −⟨∇XT, δX⟩

∴ ⟨Y, δX⟩
∣∣∣∣t2
t1
= −

∫
D
⟨∇XT, δX⟩dD = −⟨∇XT J, δX⟩

∴ ⟨YI , δXI⟩ = ⟨∇X J, δX⟩ (7)

Equation (7) is the main point to be addressed by the Adjoint Equation in this context, and its meaning must be
clear. The right side of the equality is the expression of the differential of J (relative to X), dJ(X). As XI is the
projection of X onto EI , the left side of equation (7) is the expression of the differential of the restriction of J
(relative to XI) to EI . By the uniqueness of the representation of the last differential as an inner product in EI , it
follows that YI is precisely the gradient of the restriction of the funtional J to EI , that is, YI is the projection of ∇X J
onto EI . Then, one obtains

YI = ∇X J (8)

Therefore, using the Adjoint Equation Method, one projects the solution set C2([t1, t2] × V,V) onto C2(t1 × V,V),
which represents, from the computational viewpoint,a considerable reduction in the number of variables in the dis-
crete problem. Besides, this projection transforms a constraint minimization problem in one unconstraint problem,
namely, the problem of minimizing equation (2) with the restriction equation (1), becomes

min
δX∈XI
⟨∇XI J, δX⟩

The problem MR, involving the quadratic functional J, defined in equation (2), has the existence of its solution
guaranteed but not its uniqueness. In order to obtain the uniqueness of the solution of MR, and of MU , one
redefines the problem using the following quadratic functional:

J′ :E → R (9)
X 7→ JB(X) + J(X)

where, Xb is an available estimate of the initial configuration of X, and B ∈ L(V) is the operator determined by the
available statistical information on the estimate of Xb and

J′ :E → R (10)

X 7→ 1
2

∫
D
⟨B(X1 − Xb), B(X1 − Xb)⟩EI dx

Then, one obtains the following result:

Theorem 2: Given
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Problem MR′ : find the solution of equation (1) that minimizes equation (10),

there exists a unique solution of MR′ , and X1 = X
∣∣∣
EI
∈ EI is the solution of the following unconstrait minimization

problem

Problem MU′: find the δX1 ∈ EI that minimizes ⟨∇XI J
′, δX1⟩EI .

Proof: It is only necessary to redefine the inner product on E as

⟨X(·, ·),Y(·, ·)⟩E =
1
2

∫
D
⟨B(X(t1, ·)), B(Y(t1, ·))⟩EI + ⟨B(X(·, ·)), B(Y(·, ·))⟩dD

Let Xb be the available estimate of the initial configuration of X. The problem of optimal solution will be iteratively
solved by shearching the perturbation δXI ∈ EI of δX ∈ E such that (Xb + δX) will be the solution of MU′ .

Let us emphasize once again this very important point: we need the adjoint code (of a giving code) in order to
obtain de differential of the functional J with respect to the initial conditions XI ∈ EI

3. Implementing the Adjoint Equation Method

Another interesting and also important feature of the implementation of Variational Data Assimilation is the devel-
opment of automatic routines to perform the data assimilation using the Adjoint Equation Method. Nowadays, due
to the several academic and industrial application of the method and considering, the extension of the work needed
to produce such computational routine, the automatic generation of the adjoint to a given code can be realized by
computational codes developed for this task (Faure and Papegay, 1998). As a good knowledge of the rules used
in the preparation of the linear and the adjoint programs to a given computational code precede the correct use of
such automatic routines, it is presented here some illustrative examples of the rules to be followed when manually
generating these codes. Of course, the rules are the same used by automatic routines.

3.1 The Linear Code

A computational code in, exempli gratia, FORTRAN language is nothing but an ordered sequence of command
lines and sometimes one or more subroutines or functions, which are also made of an ordered sequence of command
lines. One begins defining a rule to obtain the adjoint instruction to a given command line, and, in the sequel, it is
derived the adjoint instruction to the instruction resulting of two consecutive command lines. Let one consider the
following FORTRAN command line,

Z=2*X+Y**3

which can be identified with the fuction

f :R2 → R (11)

(x, y) 7→ 2x + y3

or even with the function

g :R3 → R3 (12)

(x, y, z) 7→ (x, y, 2x + y3),

a very useful process in order to clarify the many stages in the work out of the adjoint instruction and its imple-
mentation, decreasing the possibility of errors when writing the computational code.

Although equation (11) and equation (12) are mathematically equivalents, notation in the latter is much more
convenient to write the computational codes.

As g is a nonlinear operator, and nonlinear operators do not posses adjoint, when a command line is involves one
nonlinear operation, the first action to do is to take the linear version of the nonlinear declaration. This can be
achieved simply taking the differential of the operator, or in matrix notation, much more useful for the adjoint
process, considering the jacobian matrix of the operator. In the case of function g, its jacobian is given by 1 0 0

0 1 0
2 3y2 0

 (13)
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Then the linear of the instruction g, dg, is dx
dy
dz


o

=

 1 0 0
0 1 0

2 3y2
i 0


 dx

dy
dz


i

(14)

where the subscripts o and i denote, respectively, the output and the input amounts stored in the variables, just after
and before the execution of the command line, that is,

dxo = dxi

dyo = dyi

dzo = 2dxi + 3y2
i dyi

(15)

Continuing to associate each instruction line of the code to a function, which means that a program is a composition
of functions, so the linear version of the given program is obtained by using the Chain Rule of the Calculus, while
the adjoint of a given code, by multiplying the reverse order the adjoint matrices that correspond to each command
line. The processes, although simple, demands careful, since one outside variable in a command line can or not be
defined using the same variable (in this case, seem as na inside variable), as it will be considered later.

Consider, for example, the following sequence of instructions{
Z = X + 2 ∗ Y

W = Y + Z ∗ ∗2,

with the associated functions

f :R4 → R4

(x, y, z,w) 7→ (x, y, x + 2y,w),

g :R4 → R4

(x, y, z,w) 7→ (x, y, z, y + z2).

that we will refer as i1 and i2, respectively.

To make clearer the processes of taking the linear (and later also the adjoint) of a given instruction, as well as the
writing of the correspondent instructions in FORTRAN, one adopts the following convention: let Ei, Ein and Eo,
respectively, the input, the intermediate and the output spaces, that is, the sequence i2 ◦ i1, meaning, applying first
i1 and then i2, will represent by

f1 :Ei → Ein

(x, y, z,w) 7→ (x, y, x + 2y,w),

f2 :Ein → Eo

(x, y, z,w) 7→ (x, y, z, y + z2),

so that

i2 ◦ i1 = f2 ◦ f1(x, y, z,w) = f2(x, y, x + 2y,w) = (x, y, x + 2y, y + (x + 2y)2).

Therefore, writing vi ∈ Ei, vin ∈ Ein and v0 ∈ Eo, and as its known the relations between them, given the perturba-
tion data di ∈ Ei, din ∈ Ein and do ∈ Eo, we have, by the Chain Rule, that

d( f2 ◦ f1)(vi) · di = d f2( f1(vi)) · d f1(vi) · di = d f2(vin) · din = d0.

Computing the jacobian matrices of d f2(vin) and d f1(vi), we obtain

d f2(vin) =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 2(x + 2y) 0

 and d f1(vi) =


1 0 0 0
0 1 0 0
1 2 0 0
0 0 0 1


So that the sequencial instructions give i2 ◦ i1 = f2 ◦ f1(x, y, z,w) = f2(x, y, x + 2y,w) = (x, y, x + 2y, y + (x + 2y)2).
And in matricial form, the sequencial instructions produce, being di = (dxi, dyi, dzi, dwi), such that
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di = (dxi, dyi, dzi, dwi) =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 2(x + 2y) 0




1 0 0 0
0 1 0 0
0 2 0 0
0 0 0 1

 ,
that is 

dxo = dxi

dyo = dyi

dzo = dxi + 2dyi

dzo = (2xi + 4yi)dxo + (4xi + 8yi + 1)dyi

Leaving the input and output indexes (which are not written in a real code) and discarding the unchanged variables,
as dx = dx and dy = dy, the linear instruction of instructions i1 and i2 above are the following FORTRAN
instructions: {

dZ = dX + 2 ∗ dY
dW = (2 ∗ X + 4 ∗ Y) ∗ dX + (4 ∗ X + 8 ∗ Y + 1)dY,

as it was expected.

3.2 The Adjoint Code

The linear code is an intermediate step in order to obtain the adjoint of a given code. Considering again the
sequence of i1 and i2 instructions, we have the following adjoint operators

[d fi(vi)]∗ =


1 0 1 0
0 1 2 0
0 0 0 0
0 0 0 1

 and [d f2(vin)∗] =


1 0 0 0
0 1 0 1
0 0 1 2zin

0 0 0 0


As the adjoint of d( f2 ◦ f1)(dvi), [d( f2 ◦ f1)]∗(dvo), is given by

[d( f2 ◦ f1)]∗(dv0) = [d f1]∗(dvin) · [d f2]∗(dvo)

Then, given the vector dvo = (dxo, dyo, dzo, dwo) ∈ Eo, we obtains (dxo, dyo, dzo, dwo) = [d f2(vin)]∗(dvin). There-
fore,

[d( f2 ◦ f1)]∗(dvo) = [d f1]∗(dvi) · [d f2]∗(dvin) =

=


1 0 1 2zo

0 1 2 4zo

0 0 0 0
0 0 0 0




dxo

dyo

dzo

dw0

 =


dxo + dz0 + 2zodw0
dyo + 2dzo + 4zodwo

0
0

 ,
that is {

dxi = dxo + dzo + 2zodwo

dyi = dyo + 2dzo + 4zodwo.

Considering that vo = (xi + 2yi) and leaving the indexes, one obtains the adjoint instruction in FORTRAN as:{
dX = dX + dZ + 2 ∗ (X + 2 ∗ Y) ∗ dW
dY = dY + 2 ∗ dZ + 4 ∗ (X + 2 ∗ Y) ∗ dW.

A more complex situation, demanding a careful scrutiny, arises when one of the variables appears in one command
line as an output variable and as an input variable in the following command line, will be considered in the sequel.
So, let i3 and i4 be, respectively, the instructions:{

X = X ∗ Y ∗ ∗2
Y = Y ∗ ∗3 ∗ x ∗ ∗2.
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Consider again the input, intermediate and output spaces, Ei, Ein and Eo, all of them isomorphs to R2, and the
functions representing the instructions i3 and i4

f3 :Ei → Ein

(x, y) 7→ (x, xy2),

f4 :Ein → Eo

(x, y) 7→ (x, x2y3).

We define the function associate with the sequential action of i3 and i4 instructions, which gives, for any vi ∈ Ei,

f :Ei → Eo

vI 7→ vo = ( f4 ◦ f3)(vi).

And, applying the Chain Rule, we obtain, for a given vector di = (dxi, dyi),

d f (vi) = d f4( f3(vi))(dvi)d f3(vi)(dvi), (16)

d f3(vi) =
(

1 0
y2 2xy

)
and d f4( f3(vi)) =

(
1 0
2x(xy2)3 3x2(xy2)2

)
. (17)

Therefore, expression (16) is given by(
1 0
2x(xy2)3 3x2(xy2)2

) (
1 0
y2 2xy

) (
dxi

dyi

)
=

(
dxo

dyo

)
,

that is {
dxo = dxi

dyo = 5x4
i y6

i dxi + 6x5
i y5

i dxi.

So, in FORTRAN, the linear of the commands i3 and i4 is given by
dY = Y ∗ ∗2 ∗ dX + 2 ∗ X ∗ Y ∗ dY
Y = X ∗ Y ∗ ∗2
dY = 2 ∗ X ∗ Y ∗ ∗3 ∗ dX + 3 ∗ Y ∗ ∗2 ∗ X ∗ ∗2 ∗ dY
Y = Y ∗ ∗3 ∗ X ∗ ∗2.

Now we can proceed to derive the adjoint instructions of i3 and i4.Taking the adjoint of matrices in (17),we have

[d f4]∗(v0) : E0 → Ein and [d f3]∗(vin) : Ein → Ei

such that

d f3(vi) =
(

1 y2

0 2xy

)
and d f4( f3(vi)) =

(
1 2x(xy2)3

0 3x2(xy2)2

)
,

and, then, we obtain (
1 y2

0 2xy

) (
1 2x(xy2)3

0 3x2(xy2)2

) (
dxo

dyo

)
=

(
dxi

dyi

)
,

that is, in FORTRAN language, 

I0 = Y
Y = X ∗ Y ∗ ∗2
I1 = Y
Y = Y ∗ ∗3 ∗ X ∗ ∗2

Y = I1
dX = dX + 2 ∗ X ∗ Y ∗ ∗3 ∗ dY
dY = 3 ∗ Y ∗ ∗2 ∗ X ∗ ∗2 ∗ dY

Y = I0
dX = dX + Y ∗ ∗2 ∗ dY
dY = 2 ∗ ∗Y ∗ X ∗ dY.
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4. Results

4.1 A Very Simple Numerical Experiment

One studied the oil stain trajectory determination based on a a posteriori simulation of the Guanabara Bay accident
in 2000. We use a number of 16 computer generated oil spot as the the observation within the time interval [t1, t2],
were t1 = 19 : 00h (January, 18) and t2 = 19 : 00h (January, 22).

The transport of the oil spot was described by the bi-dimensional advection-diffusion

∂C
∂t
+ u
∂C
∂x
+ v
∂C
∂y
− D(

∂2C
∂x2 +

∂2C
∂y2 ) = 0, (18)

which is the universal transport model of oil in the sea surface (Lehr and Cekirge, 1980).

One has integrated then the Equation (18) using as initial condition the artificial oil spill (Figure 2), and, after
the integration of Equation (18) (in G(U)), we storage these configurations as observations of the oil stain, for
example, the configurations obtained at the times t = 6 × i, i = 1, ..., 16, which is one observation (for t = 19 :
00h, January, 19) and is shown in (Figure 3). After we performed the direct integration, we use a perturbed initial
configuration, shown in (Figure 4), as new initial condition, integrate Equation (18), again using G(U) routine, and
we compare the discrepancies between the correspondents configurations, that is, ”observational” configurations
and new computer generated with the perturbed initial conditions at the same time in J(G(U)) routine. If the value
measured after J(G(U)) routine is above the a priori tolerance, the main program calls the subroutine [D(G(U))]∗,
in order to obtain the integration backward in time of the adjoint Equation (6), which gives the gradient of the
functional J in relation to the initial conditions of the problem, which is then sent to the minimization subroutine
(L-BFGS), giving a new initial configuration U which, after integration in G(U), possible will decrease the value
of J(G(U)). When the error generated by the two configurations, model generated and observations, measured in
J(G(U)), is bellow the tolerance, the process of Data Assimilation stopped, producing the optimal initial condition
(Figure 5).

Figure 2. Guanabara Bay at instant t = 19 : 00h; January, 18

As we can see in Figure , the error between initial and retrieved configuration is acceptable.
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Figure 3. Guanabara Bay at instant t = 19 : 00h; January; 19

Figure 4. Configuration of Guanabara Bay at instant t = 19 : 00h; January; 18 perturbed
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Figure 5. Initial configuration of Guanabara Bay, at instant t = 19 : 00h; January; 18, retrieved (compare with
Figure 2)

Figure 6. Flux of FORTRAN routines used in the simulations

5. Discussion

Despite the simplicity of the numerical experiment we realized, Data Assimilation, process in which observations
of the studied systems are considered as conditions to the computational simulation must verify, together with Ad-
joint Equation Method, produce a methodology to obtain reliable and highly accurate computational configurations
of a system at a feasible computational cost and within a time interval that allows an effective decision in an oil
spill. A further question, also in the realm of the formalism presented here, is the optimal location of measurement
instruments, enhancing an existing network.
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And now we present the scheme of the flux we have used in the simulation.
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