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Abstract 

One of the challenges faced by forest managers is the inability to quickly interpret forest ecosystem attributes 
and vegetation responses to climate change. This research aims to address this challenge by characterizing the 
phenological metrics and evaluating the temporal and spatial dynamics of vegetation over 12 years (2000-2011) 
under climate change effects in Hovsgol, Mongolia. Time series Normalized Difference Vegetation Index 
(NDVI) was used as an indicator to monitor vegetation response in the area. The effects of climatic variations on 
vegetation growth were considered through the relationship between climatic variables and NDVI. Results 
indicate that the growing season commonly starts in late April and ends in late October with full growth by July, 
and as a consequence of climate change in the area, the growing season in recent years seems to be beginning 
earlier. Plant stress caused by higher temperature was the most significant contributor to earlier vegetation green 
up since NDVI, length, and starting point of the growing season strongly depend on air temperature. Analysis of 
spatio-temporal heterogeneity indicates some areas with highly dynamic NDVI, particularly in the western part 
of the Hovsgol Lake, the high mountainous areas, and the Darhad valley. Our results suggest that temperature 
variations mainly determine the pattern of vegetation responses in the Hovsgol area. 
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1. Introduction 

The climate of Mongolia has undergone significant changes over the last few decades. Batima et al. (2005) 
reported that Mongolia’s average temperature has increased by 1.7oC since the 1940s, while the precipitation has 
tended to decrease slightly. The temperature is predicted to increase by 2oC in summer and 1oC in winter during 
the next 80 years (Sato et al., 2006). These changes are the likely causes of the summer droughts and directly 
affect vegetation growth, biodiversity, and human socioeconomics in Mongolia (Batima et al., 2005; James, 
2011; Yu et al., 2003). The results of tree-ring analyses of single areas in Mongolia (Dulamsuren et al., 2010; 
James, 2011) suggest that forests generally respond to global warming with very high variations depending on 
the regional variations of temperature, precipitation, and land cover types.  

Some recent studies in Mongolia have explored the use of time-series remotely sensed data to investigate 
vegetation response to climatic variation and other disturbances such as wildfires. Erdenesaikhan (2002) used 
National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer 
(AVHRR) time series data from 1991 to 2001 to estimate vegetation greenness and variation based on 
Normalized Difference Vegetation Index (NDVI) for the entirety of Mongolia. The result showed that there were 
high spectral and greenness variations in the northern part of the country, including the high mountains and taiga 
forest during the maximum vegetation growing seasons in Mongolia (July to August). Yu et al. (2003, 2004) 
examined the seasonal vegetation response to climatic variations on the Mongolia steppes using time series 
analysis of AVHRR NDVI data, and proposed that the taiga forest of the northern Mongolia steppes experienced 
an earlier onset of green up. The authors assumed that the precipitation was the most significant factor 
determining the pattern of vegetation responses to global warming. Other studies in Mongolia related to active 
forest and steppe fires detection by using thermal infrared NOAA AVHRR bands (IFFN, 1999; Magsar 
Erdenetuya, 1999; Sanjaa Tuya, 2002). 

There are a number of studies around the world which have successfully applied remote sensing techniques not 
only in identifying disturbance events, but also in vegetation trajectory responses in which NDVI is the most 
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was downloaded from the website http://daac.ornl.gov/MODIS/modis.html. This resulted in 23 subsets of 250 m 
spatial resolution, 16 day MODIS NDVI images each year, except for the three missing NDVI images between 
January and February, 2000. The subset was selected as a representative for the entire area to extract 
phenological parameters. 

Air temperature is commonly used to analyze climatic conditions within a geographic extent (Ravenscroft et al., 
2010; Vancutsem et al., 2010). Monthly mean maximum air temperature and monthly sum precipitation in 
Hatgal (50.4N, 100.2E) and Rinchinlhumble (51.1N, 99.7E) weather stations in Hovsgol province were 
downloaded from the Weather Underground website http://www.wunderground.com. However, due to the 
insufficiency of these data from January 2000 to May, 2004, this study estimated missing monthly air 
temperature based on the Temperature Vegetation Index (TVX) method (Nieto et al., 2011; Prihodko et al., 
1997). This approach derives air temperature based on the correlation between LST and NDVI. 

2.3 Data Analysis Approach 

2.3.1 Preprocessing 

All downloaded MODIS LST and MODIS NDVI time series data in sinusoidal projection were reprojected into 
the UTM projection using MRTtools (USGS, 2011). 1km spatial 8 day MODIS LST was resampled to 250m 16 
day MODIS LST data in order to be compatible with the 250m 16 day MODIS NDVI data. This preprocessing 
resulted in a time series of 336 MODIS images (168 NDVI and 168 LST) during the study area’s growing season 
over 12 years. Following this preprocessing, 150 sample sites were then randomly selected in the time series 
images to collect LST and NDVI samples for the statistical descriptions and models calibration. For the subset 
MODIS data representing the study area, mean NDVI for each 16 day period from January to December over 12 
years was extracted to derive phenological metrics. 

2.3.2 Estimation of Air Temperature Using the TVX Method 

Corresponding with observed air temperature from 2004 to 2011 at Rinchinlhumbe weather station, land surface 
temperature and NDVI were collected to derive the TVX regression model. Air temperature at pixel level for the 
entire area can be estimated using the equation below (2.1). The model was validated by the measured air 
temperature at Hatgal weather station with a mean absolute error of 2.2oC (RMSE = 2.4oC). Compared with the 
other studies from the literature review (i.e. Nieto et al., 2011; Vancutsem et al., 2010), this error is acceptable to 
estimate air temperature at any location based on land surface temperature and NDVI values. 

Tair = 23.24*NDVI + 0.307*LST – 2.96 (R2 = 0.89, Adjusted R2=0.88, p<0.001)       (2.1) 

The study used climatic variables including temperature and precipitation employed at Rinchinlhumbe weather 
station for the assessment of climate change effects since this station is located near Darhad valley in the centre 
of the study area. Missing air temperature from 2000 to 2004 in the Rinchinlhumbe station was estimated using 
the TVX equation above. 

2.3.3 Extracting Phenological Metrics 

Onset and end of growing season were decided by analyzing NDVI time series data based on curve derivative 
methods in the TIMESAT software (Jonsson et al., 2002; 2004). For the analysis of seasonal and interannual 
vegetation dynamics, this technique facilitates the evaluation of variability and trends of vegetation phenology in 
relation to climate change and disturbances (Jonsson & Eklundh, 2004). All monthly extracted mean NDVI data 
during January to December (2000-2011) from the subset MODIS data were imported into the software to 
identify the onset and end of the growing season each year. The Savitsky-Golay curve derivative method was 
used to describe vegetation phenometrics for the area (Figure 2). The start and end of the growing season was 
defined as the point in time for which the NDVI value had increased by 20% of the distance between the 
minimum NDVI value and the maximum NDVI value (Zhang et al., 2008; Van Leeuwen et al., 2010). 

In addition to the graphical model (Figure 2), the seasonal phenometrics in Hovsgol were extracted including the 
start and end of the growing season, the time of peak growing season, the length of the growing season, the 
amplitude of the growing season, the large and small integral metric of NDVI values, the rate of green up (left 
derivative), and the rate of senescence (right derivative) (Table 1). 
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Figure 2. Graphical of the phenological metrics derived from NDVI time series; input NDVI time series data 

from January to December, 2000 to 2011; SG - Savitsky-Golay fitted curve with the points identifying the onset 
and end of growing season in Hovsgol, Mongolia 

 

Table 1. Phenological metrics of vegetation growing in Hovsgol area extracted from NDVI time series data 
(January to December, 2000-2011)* 

Year Start End Length Peak time Peak NDVI Ampl. L.derive R.derive 

2000 113 295 182 193 0.66 0.63 0.15 0.10 

2001 115 313 198 199 0.67 0.65 0.15 0.08 

2002 113 292 179 195 0.65 0.61 0.16 0.12 

2003 118 284 166 196 0.66 0.61 0.17 0.13 

2004 116 299 182 199 0.66 0.62 0.15 0.09 

2005 119 291 171 204 0.66 0.62 0.13 0.13 

2006 129 306 177 206 0.67 0.63 0.14 0.09 

2007 102 300 198 201 0.65 0.60 0.10 0.10 

2008 105 294 189 201 0.65 0.61 0.11 0.11 

2009 105 294 189 201 0.64 0.62 0.10 0.12 

2010 123 302 179 204 0.68 0.65 0.18 0.10 

Mean 114 297 183 200 0.66 0.62 0.14 0.11 

* TIMESAT derives (n-1) result time series data from n input data; Start and End are the onset and end of 
growing season (in Julian date); Length: length of growing season (day); Peak time: Time of peak growing 
season – NDVI max (in Julian date); Peak NDVI: maximum NDVI during growing season; Ampl.: Amplitude of 
the growing season = NDVIpeak – NDVIbase, NDVIbase=(NDVIstart+NDVIend)/2; L.derive and R.derive: the 
rate of green up, and the rate of senescence respectively. 

 

2.3.3 Analyzing of Spatial and Temporal Dynamics 

The temporal dynamics of vegetation in the study area was assessed based on the extracted phenological 
parameters from the time series data in relation to climate change. The monthly mean of air temperature and 
NDVI during growing season of each year were calculated to analyze the relationship between climate variations 
and vegetation dynamics. Missing air temperature data in 2000-2003 were estimated using the TVX regression 
model calibrated in the Rinchinlhumbe weather station with validation by data from the Hatgal weather station. 
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The relationship between NDVI, air temperature, and precipitation was also derived using multiple linear 
regression models to explain the variation of NDVI caused by climatic variables.  

To detect spatial heterogeneity due to climate change and other disturbances during 2000-2011, time series 
NDVI (NDVIi) data of peak growing season (in July) were employed to estimate a 2000-2011 coefficient of 
variation map (COVNDVI) (2.2) for which a Standard Deviation map (STDNDVI) (2.4), derived from NDVI time 
series data (00-11), was divided by the average NDVI during the study period (MEANNDVI) (2.3). The COVNDVI 
was calculated by each pixel over 12 year NDVI values (in July) for the entire area. 

COVNDVI = STDNDVI / MEANNDVI                           (2.2) 

In which: MEANNDVI = ∑ /12;                         (2.3) 

STDNDVI = ∑ /11                       (2.4) 

i – Year ith. 

To detect site-specific vegetation cover anomalies in each year, the departure from mean NDVI method was 
applied for which the difference between yearly mean NDVI (MEANNDVI) from 2000 to 2011 and July mean 
NDVI values for each year (NDVIyear ith) were calculated as (2.5). 

dNDVIyear ith, mean = NDVIyear ith - MEANNDVI                      (2.5) 
3. Results and Discussions 

3.1 Phenological Metrics and Climate Variation 

The growing season in the area normally starts in late April (114 in Julian date) and ends in late October (297 in 
Julian date). The peak of the growing season is in the middle of July (200 in Julian date) (Table 1). The duration 
of the growing season in Hovsgol was unstable from 2000 to 2010 (Figure 3a). The longest growing seasons 
were witnessed in 2001 and 2007, 198 days each, while the 2003 growing season was the shortest with 166 days. 
However, the growing season in 2001 started and ended later than in 2007 and 2003. The fluctuation of the 
growing season length could be partially explained by the annual mean air temperature over 12 years as the 
length of the growing season was positively correlated with air temperature measured at the Rinchinlhumbe 
weather station (R2 = 0.5) (Figure 3b). The timing of the earlier growing season start from 2007 to 2009 (105 in 
Julian date) revealed phenological trends that very likely reflect responses to recent climate change of vegetation 
in the area (Table 1). In general, higher annual mean temperature resulted in the earlier growing season in 
Hovsgol area (Timestart = -7.7*Tair + 212.6, R2 = 0.58). According to results of Walther et al. (2002) and Yu et al. 
(2003), climate change studies in Europe, North America, and Central Asia revealed phenological trends that 
showed that the timing of the growing season is occurring earlier than ever before. A similar trend can be 
observed in the Hovsgol area including the earlier growth of plants in recent years (2007-2009). 

 

 

Figure 3. Length of growing season (day) and average air temperature (included the predicted Tair from January 
2000- May 2004) (a); and correlation between length and mean air temperature of growing season (only 

available observed Tair data from 2004-2010 at Rinchinlhumbe) (b) 
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In terms of growing rate, the high rates of green up (L. derive) were witnessed in almost all years, except from 
2007 to 2009. The rate of green up was much higher than that of senescence, average 0.14 and 0.1, respectively 
(Table 1). Compared to the length of growing season and air temperature, the lower rate of green up and 
senescence seems to be the longer growing season with higher temperature (R2=0.12-0.34). There is no evidence 
of relationship between precipitation and phenological variables. This is probably because of the strong influence 
by permafrost and soil moisture coupled with temperature rather than precipitation in the area. 

3.2 Seasonal NDVI and Climate Variation 

Temperature and NDVI have illustrated strong yearly cyclic variation for the past 12 years (Figure 4). 
Furthermore, the lack of lag between air temperature and NDVI also revealed that temperature is the limiting 
factor influencing vegetation greenness in the area. Maximum average temperature values measured at the 
Rinchinlhumbe weather station (2000-2011) in April, May, June, July, August, September, and October were 
5.5oC, 13.2oC, 19oC, 20.6oC, 17.8oC, 11.7oC, and 2.3oC respectively, with July being the highest. In relation to 
temperature, average NDVI values for the entire area in April, May, June, July, August, September, and October 
were 0.16, 0.32, 0.6, 0.67, 0.58, 0.34, and 0.2 respectively, with July being the highest as the full growing season. 
Compared with temperature and NDVI, precipitation values show a similar trend, but with larger variations. 
Total precipitation values in April, May, June, July, August, September, and October were 17, 34, 149, 222, 162, 
100, and 23 mm respectively, and the highest amount of monthly precipitation for each year appeared in June 
and July.  

 

 

Figure 4. Monthly maximum mean air temperature measured (2004-2011) and estimated (January 2000- May 
2004) at Rinchinlhumbe and mean NDVI for the entire area from April to October (2000-2011) 

 

A positive high correlation between NDVI and independent temperature and precipitation variables (R2 = 0.92, 
Adjusted R2 = 0.91, p<0.0001, very low precipitation slope only significant at 0.001 level; no autocorrelation 
evidence between variables, p=0.1 with Durbin Watson test) was described using the equation below (3.1). This 
result is consistent with other published studies showing that Larix forest growing in the area responds positively 
with summer warming (James, 2011). 

NDVI = 0.025*Temperature + 0.002*Precipitation + 0.062                 (3.1) 

The result reveals that about 90% of the variation in NDVI can be explained by changes in temperature and 
precipitation which indicates their important influence on vegetation growth in the area. However, other factors 
such as soil moisture related to permafrost, land cover types, and fire events are also interrelated with vegetation 
growth and require further examining in the area. 
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3.3 NDVI Temporal Heterogeneity  

The temporal forest heterogeneity in the study area showed a yearly variation. The high variation was witnessed 
in the onset of the growing season (late April) and the end of the growing season (late October) due to the green 
up and the senescence processes of vegetation, respectively, whereas the lowest variation occurred in July during 
the peak of the growing season (Figure 5). The high variation was also observed from late 2000 to 2003 and in 
late 2009, which may be due to the high frequency of fire occurrence reported during this period for which some 
locations were heavily affected (Farukh et al., 2009). In relation to climatic variables, however, there is evidence 
of the strong negative relationship between temperature during the growing season and NDVI heterogeneity 
(COVNDVI = 0.001*Tair2 – 0.065*Tair + 1.125, R2 = 0.77). In other words, lower temperature in the early and 
late periods of the growing season is correlated with more vegetation dynamics.  

 

 

Figure 5. Temporal heterogeneity of NDVI in Hovsgol forest during the growing season from April to October 
(2000-2011) – COV was derived from NDVI values of 150 random samples within the area during the growing 

season over 12 years 

 

3.4 Spatial Pattern of Annual NDVI Changes  

Distribution of the high NDVI variation is shown in the western part of the Hovsgol Lake, including Darhad 
valley (Figure 6). According to the land cover map in 2005 (http://daac.ornl.gov/), the high variation areas are 
mainly covered by grassland and open shrublands. The result infers that these areas were highly affected by 
disturbances from 2000 to 2011. 

In order to develop support for the findings of temporal heterogeneity in the area, the departure from average 
July NDVI images were derived (Figure 7). The below average values stand for negative changes, while above 
average values correspond to positive vegetation growth. Forest areas in 2002, 2003, 2005, 2007, 2008, 2009, 
and 2011 experienced severe growth conditions as illustrated by the large area of below average NDVI. On the 
other hand, a high proportion of positive changes were witnessed in 2000, 2001, 2004, 2006, and 2010 as a result 
of vegetation responses following a heavy disturbance event (i.e. severe condition in 2002, 2003 following by 
vegetation regrowth in 2004). Post disturbance landscapes caused by fire or climate change are typically 
characterized by a high degree of spatial variability immediately following the disturbance due to the response 
and distribution of biotic and abiotic factors (Liu et al., 2009; Van Leeuwen et al., 2010). This statement may be 
correct in this study. However, in order to fully understand the effects of climate change and other disturbances 
on spatial variation, land cover type, species components, and biophysical variables should be investigated and 
considered interrelated. 

Finally, the average vegetation growth dynamics over 12 years was assessed based on the July 2000 NDVI 
image and July 2011 NDVI image. Overall, the large amount of vegetation negatively responds to growth 
conditions over 12 years, particularly in Darhad valley with 15-35% of losses being greenness (Figure 8). 
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Figure 6. Coefficient of variation of NDVI values over 12 years (2000-2011) in Hovsgol area 
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Figure 7. Departure from average July NDVI images (2000-2011), Hovsgol, Mongolia 

 

 

Figure 8. NDVI difference image of Hovsgol, Mongolia between 2000 and 2011 

 

4. Conclusion and Future Work 

Remotely sensed time series data from the MODIS sensor were used to estimate air temperature at the pixel level, 
extract the phenological metrics, characterize the temporal and spatial dynamics of vegetation, and evaluate the 
effects of climate change on vegetation in the Hovsgol area. Air temperature can be well estimated using the 
TVX regression model with a mean absolute error of 2.2oC. The growing season in the area normally starts in 
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late April and ends in late October, and the peak of the growing season is reached in July. However, due to 
climate change and other disturbances, the length of the growing season among the observed years fluctuated 
between 166 and 198 days. The higher temperature results in a longer and earlier growing season (correlation 
between the length and temperature, the timing start and temperature with R2 = 0.5 and 0.58 respectively). 
Precipitation, on the other hand, was insignificant with phenological variables dynamics. 

Temperature and NDVI have illustrated strong yearly cyclic variation for the past 12 years. The highest mean air 
temperature during the growing season was witnessed in July at 20.6oC and the lowest was in October at 2.3oC. 
There was a strongly positive relationship between NDVI, air temperature, and precipitation during the growing 
season. Air temperature; however, seems to be the main factor contributing to NDVI variation in the area. In 
order to have strong evidence of climate change effects on vegetation growth, longer time series of satellite data 
such as NOAA AVHRR should be included to increase the observed timeframe probably up to 30 years. This is 
entirely possible as available daily NOAA AVHRR data can be downloaded for the area. 

A high degree of NDVI variation was estimated in early April and late October of the growing seasons of 2000, 
2001, 2002, 2003, and 2009. This may show the degree of vegetation response post disturbances in previous 
months and years, except for 2000 and 2001, as the spatial pattern of NDVI in July 2002, 2003, 2005, 2007, 
2008, 2009, and 2011 illustrated the high level of degradation departing from average NDVI. However, 
identifying of disturbed areas by wildfire, logging, or climate change in specific and longer timeframes will be 
necessary to fully explain the interrelationship between disturbance events and vegetation responses. Finally, 
analysis of spatio-temporal heterogeneity using NDVI time series over 12 years also indicated that some areas 
with high variation of vegetation growth, particularly in the western part of the Hovsgol lake and Darhad valley. 

Further explanations of climatic change and other disturbances such as wildfires and deforestation effects on 
vegetation dynamics and recovery will require the consideration of land use, land cover types, vegetation 
community, and structure for a certain time period. Because of remote sensing tool capabilities, these types of 
investigations can be conducted spatially and temporally by different sensors and scales, providing the 
opportunity to understand vegetation response after disturbances, especially following wildfires in Mongolia.  
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