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Abstract 

This research paper discusses possible seismic cluster formation and evolution in the vicinity of the Hellenic 
seismic arc and proposes a graphical user-interface monitoring and analysis tool based on various commercial 
and self-developed clustering algorithms for cluster discrimination, evolution and visualization. Self-developed 
algorithms enable the processing of both a) all recorder earthquakes and b) main seismic events alone, excluding 
foreshocks and aftershocks, by incorporating dynamic filters in space and time. The user can also import external 
formulae for the computation of the total earthquake preparation time, aftershocks duration and radius of the 
sphere of earthquake preparation region, and can also select specific regions of interest as well as the entire 
seismic map. The seismic imaging tool also addresses the concept of topical seismic cluster formation. 
Seismological maps indicate the presence of several seismic swarms forming within the region of the Hellenic 
arc, which appear to be either distinct or interacting together in groups of two or more. The identification of the 
number of possibly individual seismic clusters in a seismological area is a very challenging task by itself, which 
becomes even more complicated when investigating their outer boundaries especially in the case of multiple 
interacting clusters. The proposed imaging tool incorporates clustering algorithms that allow the user to apply 
various techniques for cluster identification, such as density based functions, gradient descent, centre of gravity, 
evolutionary allocation, and even import expert knowledge regarding the number of individual seismic clusters 
present.  

Keywords: seismic epicentre clustering, spatial distribution, distinct earthquake regions, intelligent clustering 
algorithms 

1. Introduction 

Seismic cluster discrimination is of outmost importance in seismology as it can provide valuable information 
regarding the topology of the seismic phenomenon in relation with underlying faults. In most cases, little 
detailed information is readily available regarding the underground structure of a seismogenic region of interest, 
which in terms of epicenter depth extends from a few meters to several tens of kilometers below sea level. What 
is made apparent is a distorted reflection of the underlying faults’ network on the surface of the planet painted by 
numerous compact seismic swarms that extend all the way across all active tectonic regions. The fact that 
underground faults are rarely distinct and in most cases they tend to form large topical or extent interacting 
networks complicates the process of surface seismic cluster discrimination as it is very difficult to identify 
discrete cluster boundaries. To make matters even more complex interacting clusters penetrate well into the 
stronghold vicinity of their companion and vice versa which can result in faulty allocations of seismic events to a 
particular cluster.  

To evaluate this problem this paper applies a number of state-of-the-art clustering algorithms on seismic maps 
and proposes an intelligent platform allowing clusters to compete for newly existing seismic data points. Seismic 
data are made available either as distinct points or grouped together in seismic sequences, i.e. foreshocks, main 
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earthquake and aftershocks, in which case the user can select to work with main earthquakes only. Work can be 
carried out upon the entire seismic map or within any user-specified orthogonal region of interest. 
State-of-the-art clustering algorithms, such as fuzzy C-means clustering (Dunn, 1973; Bezdek, 1981), 
density-based spatial clustering (Ester et al., 1996), quantum clustering (Horn et al., 2002; Horn et al., 2003) and 
a self-developed dynamic spatial clustering algorithm are then applied comparatively upon the seismic data 
deriving distinct clusters of various shapes and dimensions. Furthermore, an intelligent platform has been 
developed to simplify the processes of dynamic evolutionary clustering at the appearance of new earthquakes 
upon the seismic clustering map by using a semi-automated interface. The platform applies contours and labels 
initial clusters predefined by the aforementioned clustering algorithms and enables them to compete for cluster 
allocation of new seismic events presented upon the seismic map using the centre-of-gravity algorithm. This 
approach allows irregularly shaped clusters to blend together and potential interact with each other depending 
upon the topology of initial cluster formation and the location of newly emerging earthquakes. 

2. Epicentre Clustering 

In order to identify regions of increased seismic activity we have implemented in our software a series of 
advanced clustering algorithms to cluster in the spatial domain, earthquake events identified as main events with 
the dynamic spatial clustering method. Since all spatial clustering algorithms rely on distance calculations 
between points, our software uses an ellipsoidal earth projected to a plane formula to estimate distance between 
earthquake events based on their geographical coordinates. The data throughout the paper have been obtained by 
the National Observatory of Athens Institute of Geodynamics seismicity catalogue (available online: 
http://www.gein.noa.gr/services/cat.html) for the entire Greek vicinity during the year 2009. 

2.1 Fuzzy C-Means Clustering 

The Fuzzy C-Means algorithm (Dunn, 1973; Bezdek, 1981) requires a specific number of cluster centers to be 
provided on initialization and is implemented so that for each cluster k the grade of cluster membership uk for 
each earthquake event x is related to the inverse of its distance from the cluster center (1): 

uk(x) = 
),(

1
xcenterd k

        (1) 

In our current implementation (Figure 1) each event is assigned to the cluster with the highest grade of 
membership but since cluster membership ambiguities occur quite often, future implementations could take 
advantage of partial membership grades.  

 

Figure 1. Spatial clustering indicative results using the Fuzzy C-Means algorithm with 15 cluster centres applied 
upon the entire dataset of earthquake events. Each colour indicates a distinct seismic cluster 
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2.2 Density-Based Spatial Clustering 

The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm (Ester et al., 1996) 
(Figure 2) does not require the number of clusters to be specified a priori as opposed to Fuzzy C-Means. Instead 
it clusters events spatially based on the notions of density reachability, density connectivity with respect to 
parameters Eps-neighborhood radius and the minimal number of objects considered as a cluster (MinPts). The 
Eps neighborhood of a point p, denoted by NEps(p), is defined by (2) : 

NEps(p) = {qD | dist(p,q) Eps}       (2) 

A cluster C is defined as a non-empty subset of a database of points D with respect to Eps and MinPts satisfying 
the following conditions: 

a) p, q: if p  C and q is density-reachable from p wrt. Eps and MinPts, then q  C.  

b) p, q  C: p is density-connected to q wrt. Eps and MinPts. 

 

Figure 2. Spatial clustering indicative results using the DBSCAN algorithm applied upon the entire dataset of 
earthquake events. Yellow indicates noise - each other colour indicates a distinct seismic cluster 

 

2.3 Quantum Clustering 

The Quantum Clustering (QC) algorithm (Horn & Gottlieb, 2002; Horn & Axel, 2003) (Figure 3) starts out with 
a Parzen window approach assigning to each data-point a Gaussian of width σ which can be represented up to an 
overall normalization by the following Parzen-window estimator (3), )(x :  







i
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where ix  are the data points.  

This can serve as a probability density function generating the data. One then proceeds to construct a potential 
function (4), )(xV : 
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where 



 2
2

2min


           (5) 

thus rendering V positive definite (5). In fact V has a global minimum at zero, and grows as a polynomial of 
second order outside the domain over which the data points are defined. Within this domain, V develops minima 
that are identified with cluster centres. 

 

 

Figure 3. Spatial clustering indicative results using the Quantum Clustering algorithm applied upon the entire 
dataset of earthquake events. Each colour indicates a distinct seismic cluster 

 

2.4 Dynamic Spatial Clustering 

The self-developed dynamic spatial clustering algorithm is based on the concept of earthquake strain radii. The 
strain radius of an earthquake is defined as the radius of a hypothetical circle, centred at the epicentre of said 
earthquake, which encloses the zone of effective manifestation of the precursor deformations (Dobrovolsky et al., 
1979). 

Two different strain radius calculation methods (6, 7) have been implemented into the clustering solution using 
the following formulas based on event magnitude: 

a) ρ = 10 0.43 Μ km (Dobrovolsky et al., 1979)      (6) 

b) ρ = 10 0.414 Μ – 1.696 km (Dobrovolsky et al., 1989)      (7) 

where M is the event magnitude. 

The time window can be a) either specified as a static period of days common to all events before and after the 
time of occurrence or b) dynamically calculated (Zubkov, 1987; Stein & Liu, 2009; Alden, 2009) for the time 
intervals before (8) and after (9) the main earthquake, respectively, where: 

tbefore = 10 (0.5 M -2.1) * 365 days        (8) 

tafter = 10 years         (9) 

where tafter applies specifically to the current seismological region under investigation.  
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The dynamic spatial clustering algorithm works as follows: 

1) Earthquake events are sorted in chronologically ascending order. 

2) Events that do not belong to a cluster are processed individually, starting with the event that occurred first. 
That event becomes the currently processed event. 

3) The strain radius and time window of the currently processed event are calculated. A new cluster is created 
and all events that occurred within the strain radius area and time window of the currently processed event are 
assigned to the new cluster. 

4) The event with the greatest magnitude in the newly created cluster is determined. That event becomes the 
cluster’s main event. If the main event is the currently processed event, the process advances, otherwise the 
cluster main event becomes the currently processed event. The process returns to step 3).  

5) The next event in the dataset that does not belong to a cluster becomes the currently processed event and the 
process returns to step 5. 

The above process is repeated until all events are assigned to a cluster. 

Since expandability of the software solution was one of the key factors considered at the time of development, 
additional strain radius and time window calculation methods (Konstantaras et al., 2008) can be easily appended 
in the future. Furthermore a spatial filter capability is available to reduce large-territory datasets by processing 
only events in a smaller rectangular geographical region of interest, defined by its upper-left and lower-right 
corners’ latitude and longitude (Figure 4).  

 

 
Figure 4. Dynamic spatial clustering applied upon a reduced version of the dataset using the spatial filter feature 
of our clustering software to focus on a smaller geographical region of interest ranging from 36°80''N, 20°50''E 

to 34°N, 29°20''E. Each colour indicates a distinct seismic cluster 

 

The dynamic spatial clustering algorithm is an iterative agglomerative clustering algorithm. Initially, strain 
radius and time-window values are calculated for every event on the dataset and events are ordered by their time 
of occurrence and processed in the following manner: an unclustered event becomes the centre of a new cluster 
and all events within its strain radius and time-window become cluster members. At this point a competitive 
process begins where we look for the event with the highest magnitude within the newly-formed cluster. If that 
event is not the current cluster centre, a new cluster is formed and the aforementioned competitive process is 
repeated recursively. With the formation of a new cluster seismic events spatially and temporally located 
towards the far outer region of the initial cluster with respect to the new spatio-temporal cluster centre might not 
fall within the strain radius and/or the time window of the new cluster; therefore they remain as members of the 
initial cluster. Consequently, the dynamic spatial clustering algorithm forms irregularly-shaped seismic clusters 
allowing cluster interaction by enabling multiple clusters to occupy the same geographical area by exploiting 
time as an additional physical layer. Indicative results of our dynamic spatial clustering algorithm applied on the 
National Observatory of Athens Institute of Geodynamics seismicity catalogue (available online: 
http://www.gein.noa.gr/services/cat.html) throughout the Greek vicinity during 2009 using the first strain radius 
equation can be examined in Figure 5. 
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Figure 5. Dynamic spatial clustering applied upon entire dataset of earthquake events. Each colour indicates a 
distinct seismic cluster, cluster overlapping within the same region but at a different time frame is made apparent 

by the invasion of different colour data points well into the vicinity of compact clusters 

 

3. Evolutionary Clustering Multifunctional Process 

In order to identify and extract information from complex seismic images, we have developed the intelligent 
platform proposed below. This platform simplifies the processes of grouping and labelling several areas into a 
seismic image by using a semi-automated interface. The platform is based on the .NET framework architecture 
(available online: http://msdn.microsoft.com/en-us/kb/kb00829019.aspx) and can be used in any Windows-based 
computer with the .NET framework ver. 2.0 or later. However, .NET framework permits, in concept, the porting 
of the application in many other Linux based environments, using the Mono project (available online: 
http://msdn.microsoft.com/en-us/kb/kb00829019.aspx) functionality and libraries, so the user can run an 
application using the No-Touch Deployment (available online: 
http://msdn.microsoft.com/en-us/kb/kb00829019.aspx). 

Three different phases explain the sequence of the processes shown in Figure 6 and Figure 7. 

 Phase 1: The seismic data of an area which are depicted on a seismic data map are processed with several 
segmentation algorithms in order to produce seismic clustering maps such as the one shown in Figure 7 
using quantum clustering. This procedure implemented by Phase 1 of the Seismic Monitor Organizer 
divides a given image into separate regions forming an initial set of clusters. 

 Phase 2: The resulting seismic clustering map from the above procedure is loaded onto the platform for 
further analysis. By applying a fast multifunctional version of the classical region-growing segmentation 
algorithm, we can define precisely and apply contours and labels to various areas of interest.  

 Phase 3: The region-growing algorithm is assigned to allocate new earthquakes to a particular cluster based 
upon the magnitude of the centre of gravity of the existing clusters; or create a new cluster if all centers of 
gravity are above a predefined by the user upper threshold point. 
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When new points are being introduced into the seismic clustering map, e.g. after a new earthquake (see arrows in 
Figure 7), the platform allows for either their definition as new seismic clusters, or their mergence with one of 
the predefined seismic cluster. This can be achieved either semi-automatically, allowing for user interaction, or 
automatically by selecting the cluster with the minimum centre of gravity value for mergence or by defining a 
new cluster if the value of the centre of gravity exceeds a certain upper threshold induced by the user. The centre 
of gravity (CoG) of a region defines the centre of a region, and it is important in localizing that region. The 
centre coordinates rG (10) and cG (11) are given by:  
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       (11) 

r and c are the coordinates of the image, N represents the number of pixels of the region and f(r,c) is the image 
function. These formulae yield an ‘1’ if the current pixel (r,c) falls within the region of a particular cluster, 
otherwise a’0’ is obtained. The platform calculates the CoG of all the presented areas as well as the distances 
between the CoG of the new area and the existing ones automatically and presents a list of the proposed areas to 
be merged in, as shown in Figure 7. 

3.2 Experimental Procedure 

The experimental procedure comprises of six steps: 

Step 1: The original “Seismic Data Map” is used to produce “Seismic Group Maps” by using several 
segmentation algorithms. 

Step 2: A “Seismic Group Map” from the above procedure, is loaded on the platform. 

Step 3: The right click on the list area of the platform enables the labelling (name & colour) of a newly 
introduced area on the “Seismic Group Map”. 

Step 4: The zoom and pan controls which are integrated in the platform allow a more detailed view of the region 
of interest on the map, and render its processing more efficient. 

Step 5: The application of the region – growing algorithm to a region of interest on the “Seismic Group Map” 
leads to the definition of that area. The option to adjust the tolerance level of the gray-level differences is 
available during this process. The “add” and “remove” options can also be used to define more complex areas. 

Step 6: A switch between “contour” and “area” of the selected areas is also available. 

Steps 3 to 6 can be repeated to define new areas on the Seismic Group Map.  

4. Results  

The application of various clustering algorithms on seismic data produces a variety of results with several 
commons and some distinct differences. Larger seismic clusters appear to be depicted by most if not all of the 
clustering algorithms. Such an observation strengthens the possibility that these clusters in particular highlight a 
number of distinct seismic regions possibly baring a largely independent network of underground faults. In 
several cases there are more than one clustering algorithms depicting similar cluster boundaries at close 
proximity with one another, which, when applicable, gives a strong indication of the boarder region between 
neighbouring clusters. The opposite result provides a strong indication that the clusters involved are possible 
strongly interacting together at some part of their vicinity, which might be the result of inter-crossing 
underground faults at that particular region. Furthermore, if the clusters involved do not present a dense seismic 
swarm at some other part of their vicinity then it is possible that the clustering algorithms are at fault and what 
appears as individual seismic clusters might actually be parts of single broader seismic cluster. 

Every clustering algorithm exhibits some particular distinct characteristics in terms of its operation and outcomes 
worth noting. The fuzzy c-means algorithm does not class any cluster point to a particular cluster. Instead it 
assigns to it various degrees of membership for a number of clusters. This principle provides a great means of 
identifying the extent of areas that are in dispute and claimed by various clusters as well as the undisputed 
strongholds that form the core of each cluster. The fuzzy c-means algorithm also allows for expert knowledge to 
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be imported in terms of the number of clusters present. The density based clustering algorithm does not 
necessarily class every cluster point to a particular cluster nor it creates a new cluster for every few scarce points 
throughout the seismic map. Instead it creates an open cluster to which, in effect, all un-classed seismic events 
are allocated. This principle reduces significantly the overall number of seismic clusters with respect to other 
clustering algorithms. The sophistication of the quantum clustering algorithm provides data clusters with more 
irregular shapes expanding towards areas that could well have been anticipated to belong to a neighbouring 
cluster. The self developed dynamic spatial clustering algorithm enables multiple clusters to occupy different 
seismic events located within the same geographical area by exploiting time as an additional physical layer.  

The evolutionary clustering multifunctional process is an image processing interactive approach to the problem 
of cluster formation working in a genesis and growth manner. It relies on an existing clustering algorithm, e.g. 
quantum clustering, to create early seismic clusters at their infancy, i.e. containing few seismic events, and 
encompasses a region-growing algorithm to allocate new seismic data points to existing clusters. The region 
growing algorithm computes the centre of gravity of all existing clusters and measures their distance from the 
location of the next seismic event. That way the infant clusters compete for every new earthquake thereby 
growing in size and at various irregular directions. In the case where the distance from the nearest centre of 
gravity exceeds a maximum user-defined threshold point a new seismic cluster is formed. 

5. Conclusions 

Understanding the seismic phenomenon remains an open front in the scientific community. An insight on the 
environment that hosts the phenomenon could provide valuable information regarding its nature, genesis and 
propagation to the surface. Satellite images and Earth-based investigations of the Earth’s interior have revealed 
the existence of an underground faults network almost throughout the most active seismic regions on the planet 
but they are all conducted at a distance from the source of interest. The work carried out on this paper acts 
complementary to these methods and aims to decode information carried through directly from the source to the 
surface of the planet via seismic waves. The numerous seismic events recorded on the surface of the planet form 
a distorted reflection of the underlying faults network. Perhaps working together these techniques could 
strengthen the validity of observations regarding the identification of the number of possibly individual or 
interacting together seismic clusters of various seismological regions as well as their outer boundaries and areas 
of interaction.  
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