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Abstract 

In this paper, the ultimate pullout capacity of a shallow laid vertical plate strip anchor in cohesion-less soil is 
analyzed with the consideration of active and passive states of limit equilibrium in the soil. Kötter’s equation is 
used to compute the active and passive thrusts, which are subsequently used in the analysis in which, all the 
equation of equilibrium are properly interpreted. The unique failure surfaces under active and passive states of 
limit equilibrium are identified on the basis of force equilibrium conditions. One distinguishing feature of the 
proposed method is its ability to compute the point of application of active/passive thrust using moment 
equilibrium. Another distinguishing feature is the prediction of distribution of soil reactions on the failure 
surface. Comparison of the results of the proposed method with the available experimental results vis-a-vis other 
theoretical methods shows that, up-to embedment ratio of 3.0, the proposed method is capable of making 
reasonably good predictions. 
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1. Introduction  

Generally, earth anchors are used to transmit tensile forces from a structure to the soil and to generate passive 
support to bulkheads, sheet piles and retaining walls (Figures 1 and 2). Their pullout capacity is obtained through 
the shear strength and dead weight of the surrounding soil. Plate anchors may be made of a steel plate and precast 
or cast in situ concrete slabs. These anchors can be installed by excavating the ground to the required depth 
followed by back filling and compacting with a good quality soil.  

In the analysis of estimation of ultimate pullout capacity, the vertical plate anchors can be divided in shallow and 
deep categories. In case of shallow anchors, the embedment ratio is such that, soil above the anchor top can be 
replaced as a surcharge without shear strength; whereas in case of deep anchors, the embedment ratio is such that, 
failure surface does not reach the ground surface at limit equilibrium (Das, 1990).  

The proposed analysis is confined to shallow laid plate anchors in cohesion-less soil. 

2. Previous Experimental Investigations  

A number of investigations are reported by several researches to evaluate the ultimate pullout capacity of 
shallow laid vertical plate anchors. 

Ovesen and Stromann (1964, 1972) used the failure mechanism proposed by Hansen (1953) to estimate the earth 
pressures for the case of a continuous shallow plate anchor flushing with the cohesion-less ground surface, 
termed as the basic case (H/h = 1), where h is the height of the plate anchor with embedment depth, H (Figure 3). 
The failure mechanism consists of Rankine (1857) and logarithmic spiral zones (Prandtl-zone) as shown in 
Figure 3. Based on the above failure mechanism, the ultimate pullout capacity, Tu(B) per unit length of a strip 
anchor was estimated by Ovesen and Stromann (1964, 1972) by the following expression using horizontal force 
equilibrium. 

aHpHu(B) PPT                                     (1) 
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In the above expression, PpH and PaH are the horizontal components of the passive and active thrusts, which can 
be estimated using the earth pressure coefficients reported by Caquot and Kerisel (1948). 

The expression given in Equation 1 was further modified to estimate the ultimate pullout capacity, Tu per unit 
width of a strip anchor of width B in cohesion-less soil as, 

u(B)0vTRTu                                      (2)
 

The parameter, R0v in the above equation is given by Dickin and Leung (1985) based on the experimental 
evidence. 
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Where, C0v = 19 for dense sand and 14 for loose sand. 

Neely et al. (1973) performed laboratory tests on plate anchors in dry sand and ultimate resistances of these 
plates were examined using both limit analysis and the method of stress characteristics. Results of tests on rigid 
anchor plates in terms of M q　 , a dimensionless force coefficient, were expressed as 2

u hγ/ BTM q  , where  is 
unit weight of soil and B is width of plate anchor. 

Das and Seeley (1975) conducted several laboratory model tests to determine the ultimate pullout resistance of 
shallow vertical anchors and suggested a simple semi-empirical relation for the pullout resistance in a 
non-dimensional form as the ratio of Tu /Bh2 for square and rectangular anchors. Ultimate pull out capacity for a 
single anchor of width B was expressed by the following semi-empirical relation. 

    222.35 hγh/1059.4 BHST n
u                             (4) 

Where, S is the shape factor which is a function of H/h and  is angle of soil friction in degrees. The value of n 
varies linearly from 1.8, for B/h = 1 to about 1.68 for B/h = 5.  

The capacity of deeper vertical anchors in medium dense sand was investigated by Akinmusuru (1978) for 
square, circular and rectangular anchors. On the basis of experimental findings, the variation of Tu/h3, a 
non-dimensional anchor load at ultimate failure with , a non-dimensional embedment coefficient ( = H/h) was 
presented for an anchor length of 10h in the form of a chart. Akinmusuru (1978) clearly defined the critical 
embedment depth as the one corresponding to  = 6.5. 

Dickin and Leung (1983) conducted both centrifuge and conventional chamber tests and reported very thorough 
investigations on the behaviour of vertical square and rectangular anchors in dense sand. The variations of 
breakout factor Nγq, and the force coefficient Mq with embedment ratio were separately reported in the form of a 
chart with Nγq = Tu/γBhH and Mγq = Tu/γBh2. The results obtained by them suggested potentially serious over- 
predictions of pullout resistance and underestimations of the failure displacements. Such errors arose due to the 
characteristic stress- dependent behaviour of dense soils. 

Hoshiya & Mandal (1984) investigated the capacity of square and rectangular anchors in loose sand. The size of 
box (40 cm x 30 cm x 40 cm deep) used for testing was very small, which facilitated the testing of 2.54 cm wide 
and 15.24 cm long plates. This was likely to introduce edge effects into the results. They concluded that, anchor 
break-out factor, Nγq increased with embedment depth up to a certain embedment ratio before reaching a 
constant value thereafter. 

Naser (2006) carried out theoretical as well as experimental studies on the ultimate pullout capacity of an anchor 
block of concrete embedded in sand and observed that, anchor thickness contributed to the pullout capacity 
through base friction forces. This effect was not significant as compared to the passive resistance. Uplifting and 
tilting of the block at failure was also observed. 

3. Previous Theoretical Investigations 

Terzaghi (1943) evaluated the resistance of vertical strip anchor plates assuming Rankine (1857) states of 
passive and active pressures. This approach was adopted in the British civil engineering code of practice. The net 
resistance Tu, per unit length of a vertical strip anchor was given as )( ap PP  , where Pp and Pa are the passive 
and active thrusts (kN/m) acting on the anchor plate. 
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Teng (1962) estimated holding capacity of a vertical (strip) plate anchor embedded in granular soil at a relatively 
shallow depth ( h/H ≤ 1/3 to 1/2), based on Rankine’s (1857) theory of lateral earth pressures. He obtained the 
expression for ultimate holding capacity as, 

apu PPT                                       (5) 

Where, Pp and Pa are the passive and active pressure thrusts (kN/m) acting on the anchor plate.  

In case of shallow strip anchors, Meyerhof (1968, 1973) used the passive and active coefficients of earth 
pressure proposed by Caqout and Kerisel (1948) and Sokolovskii (1965) and proposed the following simple 
relationship for ultimate holding capacity per unit length of a vertical plate anchor in cohesion-less soil. 

b
2K2/1 HTu                                     (6) 

Where, Kb is the pullout coefficient that can be obtained from a graph using soil friction angle. 

Using limit analysis and plasticity solutions, Neely et al. (1973) determined the theoretical resistance of 
continuous (strip) vertical plate anchors in cohesion-less soils for two cases. In the first case, failure surface was 
assumed to be consisting of a logarithmic spirals and its tangent inclined at (45°-/2) to the horizontal as shown 
in Figure 4. Soil above top of the anchor was considered to act as a simple surcharge, q {(H-h)} and therefore, 
the method was termed as the surcharge method. 

Shearing resistance of the soil above the anchor top is ignored when H/h is small; therefore the method was 
subsequently modified by considering shear strength above the top of anchor plate when H/h is considerable and 
was defined as the Equivalent Free Surface method. The assumed failure surface in soil (Figure 5) is an arc of 
logarithmic spiral with pole at top of the wall. OB is a straight line which is an equivalent free surface. The 
shearing resistance of upper layers of soil was included in the calculation by making use of the equivalent free 
surface concept proposed by Meyerhof (1951) in connection with the bearing capacity of shallow foundations. 
The normal and shear stresses along OB (p0 and s0, respectively) were calculated using Rankine (1857) active 
stresses on the vertical surface, OA above the top of the anchor plate as shown in Figure 5. 

The above analysis is based on the method of stress characteristics and represents a more refined analytical and 
numerical attempt to predict the ultimate capacity of the vertical plate anchors but it ignores the active earth 
pressure distribution behind the anchor plate and the kinematic behaviour of the material.  

Rowe and Davis (1982b) reported a two-dimensional finite element analysis incorporating an elasto-plastic soil 
model. For a continuous vertical plate anchor assumed to be thin and perfectly rigid, the resistance is as given by 
the following expression. 

KRψγγq RRRFM                                    (7) 

Where, Fγ is the capacity factor of a smooth anchor resting on soil which deforms plastically at a constant 
volume ( = 0°), with coefficient of earth pressure at rest, K0 = 1 and Rψ, RR and RK are correction factors for the 
effects of sand dilatancy, anchor plate roughness and initial stress state respectively. The theoretical data was 
presented in the form of design charts.  

A comparative study of the force coefficient, Mq as obtained from experimental investigations and theoretical 
methods proposed by Ovesen and Stromann (1972), Neely et al., (1973) was carried out by Dickin and Leung 
(1983). Significant disparity was observed in the results because they were based on two- dimensional analysis 
and their application to single anchors required a suitable shape factor. Dickin and Leung (1985) observed that, 
effect of anchor shape on dimensionless coefficients was due to side shear resistance. They observed failure 
planes radiating outward involving a soil mass wider than a single anchor itself in the failed body. A 
dimensionless factor, R0v to account for the influence of anchor geometry on the ultimate resistance was 
introduced by them as stated previously.  

Finite element method is also used by various researchers such as Vemeer and Sutjiadi (1985), Tagaya et al. 
(1983, 1988), Dickin and King (1997) and Sakai and Tanaka (1998). Unfortunately, only limited results are 
available from these studies.  

Upper and lower bound limit analyses are also reported by Murray and Geddes (1987, 1989), Basudhar and 
Singh (1994) and Smith (1998) to estimate the capacity of vertical strip anchor plates. Basudhar and Singh (1994) 
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obtained estimates with a generalized lower bound procedure based on finite element method and non-linear 
programming similar to that of Sloan (1988a). The solutions proposed by Murray and Geddes (1987, 1989) are 
based on kinematically admissible failure mechanisms (upper bound).  

Merifield et al. (2006) presented the results of a rigorous numerical work (linear finite elements coupled with 
upper and lower bound limit analyses, nonlinear finite elements coupled with lower bound limit analyses and 
displacement finite elements using Solid Nonlinear Analysis Code (SNAC) - an algorithm developed by Abbo 
and Sloan, 2000) to estimate the ultimate pullout capacity Tu, for a vertical strip anchor plate in the cohesion-less 
material. For comparison purposes, numerical and theoretical results of the break-out factor were presented in 
the form analogous to Terzaghi’s (1943) equation of the bearing capacity of shallow foundations. 

Tu = γHhNγ                                     (8) 

Where, Nγ is the anchor break-out factor that can be obtained from a graph using soil friction angle  

The failure mode (Figure 6) reported by Merifield et al. (2006) for vertical plate anchors indicates that, the soil 
retained behind the anchor can significantly affect the estimated capacity of shallow anchors. This is particularly 
the case for loose sands, where the development of a significant active zone behind the anchor is observed. 
Changing the interface roughness from perfectly rough ( = ) to perfectly smooth ( = 0) led to a reduction in 
the anchor capacity by as much as 65%.  

Naser (2006) analyzed pullout capacity of an anchor block (Figure 7) using limit equilibrium approach.The 
ultimate pullout capacity (Pu) of a block anchor was obtained from the equilibrium of forces acting on the block 
by summing them along the horizontal direction and multiplying the lateral earth pressures (passive and active) 
by the 3-D corrections factor M, to yield the following equation. 

  bstahphu FFFPPMP                             (9) 

Where, Ft, Fb and Fs are the effective friction forces at the top, bottom and at two sides of the block, N is the 
normal force, Pph is the effective horizontal passive thrust and Pah is the effective horizontal active thrust (Figure 
7). For Coulomb (1776) and log spiral theories, Fb = 0 (as N=0). Pullout capacity of block anchor with Rankine’s 
theory (1857), corrected for the 3-D effect with the contribution of friction, showed a close agreement with 
experimental results. 

More recently Kumar and Sahoo (2011) used an upper bound theorem of the limit analysis in combination with 
finite elements for estimation of horizontal pullout capacity of vertical plate anchors embedded in sand. The 
results were plotted for various combinations of embedment ratio, internal friction angle,  of sand, and the 
anchor-soil interface friction angle, δ. It was observed that, the pullout resistance increased with increasing 
embedment ratio, friction angle of sand and anchor-soil interface friction angle. 

4. Proposed Method  

In the proposed analysis of the estimation of pullout capacity of a strip anchor in cohesion-less soil, all the three 
equation of equilibrium are utilized to obtain the required solution. Both passive and active states of equilibrium 
on the two sides of anchors are considered in the analysis. The active/passive thrusts along with their points of 
application are evaluated using Kötter’s (1903) equation. This equation has been used by other researchers such 
as Dewaikar and Mohapatro (2003) for the computation of bearing capacity factor, Nγ, Deshmukh et al. (2010) 
for the estimation of breakout capacity of horizontal rectangular/square anchors in cohesion-less soils, Rangari et 
al. (2010) for the computation of seismic vertical uplift capacity factor for horizontal strip anchors and Kame, 
Dewaikar and Choudhury (2010a) for the estimation of active thrust and its point of application on a vertical 
retaining wall with horizontal cohesion-less backfill. 

4.1 Geometry of the problem 

In Figure 8 is shown a shallow laid continuous (strip) plate anchor buried vertically. The bottom of plate is at a 
depth, H below the ground surface and h is the height of plate anchor. In case of shallow laid anchors, the 
ultimate pullout capacity (Tu) is mainly derived from the passive and active resistances of cohesion-less soil in 
the front and on the back of the anchor plate respectively. The solution to the problem is proposed using Kötter’s 
(1903) equation coupled with limit equilibrium analysis. 

In Figure 9, the failure mechanism adopted in the analysis is shown. In the passive state of equilibrium, the 
failure surface consists of a log spiral followed by its tangent that meets the ground surface. In the active state of 
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equilibrium the failure surface is plane as per the Coulomb (1773) mechanism. The anchor plate is shallow laid 
with embedment ratio, H/h up to 5. 

In Figure 10, free body diagram of the strip anchor is shown from which, the following information is generated. 

PPq = resultant passive thrust per unit length of the plate anchor 

Paq = resultant active thrust per unit length of the plate anchor 

 = interfacial friction angle  

 = angle of soil friction  

hpq = distance of point of application of passive thrust, Ppq from the anchor base 

haq = distance of point of application of active thrust, Paq from the anchor base 

Wp = weight of the anchor plate per unit length 

t = thickness of the anchor plate 

N = upward soil reaction 

The parameters Ppq , Paq , hpq and haq are computed using Kötter’s (1903) equation for embedment ratio, H/h 
up to 5. 

4.2 Kötter’s (1903) equation  

In a cohesion-less soil medium with passive and active states of equilibrium under plane strain condition, 
Kötter’s (1903) equation is given as,  

   sinγ
d

d
tan2

d

d

s
p

s

p
 for the passive state (Figure 11a)              (10a) 

And 

   sinγ
d

d
tan2

d

d

s
p

s

p
 for the active state (Figure 11 b)               (10b) 

In the above equations, 

dp = differential reactive pressure on the failure surface 

ds = differential length of arc of failure surface 

 = angle of soil internal friction 

dα = differential angle and, 

α = inclination of the tangent at the point of interest with the horizontal 

For the determination of ultimate pullout capacity using limit equilibrium, the failure mechanism adopted 
consists of combination of logarithmic spiral and straight lines inclined at 45-/2 to the horizontal in case of 
passive state of equilibrium and a plane failure surface (Coulomb mechanism, 1773) in case of active state of 
equilibrium. The soil above the level of the top of the anchor plate is assumed to act as simple surcharge, q kN/m. 
Contributions to the active/passive thrusts due to surcharge and self-weight are estimated separately using 
Kötter’s (1903) equation.  

4.3 Failure mechanism under the surcharge effect-passive state of equilibrium 

In Figure 12 is shown a vertical plate anchor DE, with a horizontal cohesion-less backfill under surcharge 
loading. Soil unit weight is not considered in the analysis. The failure surface consists of log spiral EA, that 
originates from the anchor base with tangent AB meeting the ground surface at an angle, (45- /2). At point A, 
there is a conjugate failure plane AD, passing through the anchor top. Thus, as seen from the figure, ABD is a 
passive Rankine zone and pole of the log spiral lies on the line AD or its extension. 

From Figure 12, the following information is generated. 

α = inclination of the tangent to the log spiral at point G with the horizontal  

r0 = starting radius of the log spiral at the anchor base (at  = 0) 

 = spiral angle measured from the starting radius  

r = radius of log spiral at point G corresponding to the spiral angle  
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m = maximum spiral angle 

r1 = radius of the maximum spiral angle at  = m 

v = angle between vertical face of the plate anchor and the starting radius r0 

From Figure 13, which shows the free body diagrams of failure wedge, EACD, the following information is 
generated.  

PpqH, PpqV = horizontal and vertical components of resultant passive thrust, Ppq due to surcharge effect 

RpqH, RpqV = horizontal and vertical components of resultant soil reaction, Rpq acting on the curved part of the 
failure surface 

Pq = pasive thrust exerted by the backfill on the Rankine wall, AC  

Q = resultant force due to surcharge 

In Figure 13, line AC represents the Rankine wall and force, Pq as described above, is the force exerted on this 
wall by the backfill it retains. With this consideration and also considering that, pole of the log spiral lies above 
the anchor top on line AD, the dispositions of various forces are shown in the same figure. 

4.3.1 Geometry of the failure surface 

Referring to Figure 13 and considering triangle, ODE, 

mmv sin

h

sin

DE

2)/-135(sin

OE

sin

OD


                          (11) 

Where, angles, m and v are as shown in the same figure. 

From the above expression, 

m

v




sin

sinh
OD   

The initial radius, OE = r0 of the log spiral is given as, 

m
0 sin

2)/-135(sinh 
OE




 r  

Also, from the equation of the log spiral, 

 tan
0 .OA mer                                   (12) 

And  

AD = OA – OD 

4.3.2 Computation of vertical and horizontal components of reaction on curved failure surface EA under the 
effect of surcharge 

For the curved failure surface, EGA (Figure 13), Kötter’s (1903) equation (Eq. 10a) takes the following form. 

0
d

d
tan2

d

d


s
p

s

p                                   (13) 

From quadrilateral, OEJG (Figure 12) 

36090180)90(   v  

With simplification, 

0  v  

Or, 

v   

Differentiation with respect to  gives,  

 dd                                        (14) 
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Combining Eq. 14 with Eq. 13, and multiplying throughout by ds/dα, the following equation is obtained. 

 d
p

 tan2
p

d
                                   (15) 

For integration over the curved failure surface, EGA, the above equation is written as, 


mA

d
p

dpp

p




tan2  

Where, pA is the pressure intensity at point A (Figure 13). 

Integration yields 

 tan)(2  mepp A                                 (16) 

From Eq. 16, the resultant soil reaction, Rpq on curved surface, EGA is given as, 

 pdsR pq                                     (17) 

Or 


 dsepR m

Apq
 tan)(2  

From the geometry of log spiral, 

dsecd rs                                      (18) 

Using above equation, Rpq is obtained as, 


  dsectan)(2 repR m

Apq                              (19) 

With 
 tan

0err  the above equation is transformed to, 


  dsectan

0
tan)(2 erepR m

Apq                          (20) 

From Figure 13, considering  DEO 

)2/4590(180   vm  

Or,  

vm   2/45  

The angle (FOG) made by the resultant, Rpq (Figure 13) with the horizontal can be obtained from the following 
expression. 

  ]2/45[)2/45( vFOG  

  vFOG 90  

Or,  

  LFOG  

Where, 

 VL 90    

The vertical component, RpqV (Figure 13) of resultant soil reaction is then obtained as, 
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 
m

dRR Lpq




0
pqV )sin(                              (21) 

Similarly, the horizontal component, RpqH (Figure 4) of soil reaction is obtained as, 

 
m

dRR LpqpqH




0
)cos(                              (22) 

4.3.3 Computation of reactive pressure distribution on the plane failure surface AB and reactive pressure at point 
A under the effect of surcharge 

From the geometry of the problem, 0
ds

d
 and Kötter’s (1903) equation (Eq. 10a) takes the following form for a 

weightless medium. 

0
d


ds

p
                                      (23) 

Integration yields,  

constantp                                    (24) 

Thus, the reactive pressure, p is uniformly distributed on the failure surface, AB and the resultant reaction, R 
acts at the mid-point of AB. 

To find the reactive pressure, p, equilibrium of failure wedge ABC is considered (Figure 16) 

According to Rankine’s theory, the passive thrust, Pq on the wall, AC is given as, 

pq KACqP                                    (25) 

Where, Kp is the coefficient of passive earth pressure for a horizontal cohesion-less backfill and it is as given by 
the following expression. 




sin1

sin1




pK  

Horizontal equilibrium of the failure wedge ABC gives  

)2/45cos(  RPq                                 (26) 

From Eqs. 26 and 27 R  is obtained as  

pKABqR )2/45tan(                              (27) 

The uniformly distributed soil pressure, p is then obtained as, 

ABRp /  

Or, 

pKqp )2/45tan(                                  (28) 

The intensity of reactive pressure, pA at point A (Figures 12 and 14) is as given by the above expression. 

From Figure 14, it is further seen that, the three-force equilibrium of the failure wedge, ABC gives the point of 
application of Pq at mid-point of the wall, AC. 

4.4 Failure mechanism under the effect of soil self weight - passive state of equilibrium 

Figure 15 shows the failure mechanism similar to that adopted for the analysis of the plate anchor with a 
horizontal cohesion-less backfill under surcharge effect. Using the above failure mechanism, the authors (2010 b) 
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have reported a method based on the application of Kötter’s (1903) equation for the estimation of passive thrust 
on a vertical wall retaining horizontal cohesion-less backfill. The unique failure surface consisting of a log spiral 
and its tangent is identified on the basis of force equilibrium conditions and point of application of the passive 
thrust is computed using moment equilibrium. In the proposed analysis, this procedure is adopted to compute the 
values of passive thrust, Pp under the effect of soil self weight and its point of application. The final expression 
for the reactive passive pressure distribution at any point on the curved failure surface, EA using Kötter’s (1903) 
equation is obtained with the following expression. 
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Where, K is the parameter indicating location of the pole of the log spiral along line AO in terms of starting 
radius of log spiral r0 as measured from point D (Figure 13) and L = (90-V) 

The distribution of reactive passive pressure on the failure surface is as shown in Figure 16. The magnitude of 
passive thrust on the vertical anchor plate and its point of application are thus obtained using Kötter’s (1903) 
equation.  

From Figure 17, the following information is generated.  

PpH, PpV = horizontal and vertical components of resultant passive thrust, Pp 

R pH, R pV = horizontal and vertical components of resultant soil reaction, Rp acting on the curved part of the 
failure surface 

H1 = passive thrust exerted by the backfill on the Rankine wall AC  

WACD = weight of soil in the failure wedge, forming a part of the Rankine zone 

WADE = weight of soil in the zone, EAD of the failure wedge, EABCD 

Ypp = the distance of point of application of Pp from the anchor top  

X  = the distance from pole O to the centroid of sector, OEA formed by the log spiral  

hp = distance of point of application of passive thrust, Pp from the anchor base 

 = varying angle of inclination of reactive pressure with the vertical 

The resultant soil reaction, Rp (Figure 17) on the failure surface is obtained as, 

 spRp d.γ                                      (30) 

The vertical and horizontal components, RpV and R pH of resultant reaction are obtained as,  

spR
m

d.cos
0

Vpγ 


                                   (31) 

spR
m

Hp d.sin
0

γ 


                                   (32) 

Where, ds is the length of failure surface and  is the varying angle of inclination of reactive pressure with 
vertical (Figure 17). The detailed calculations for estimation of the passive thrust are reported in the paper 
“Passive thrust on a vertical retaining wall with horizontal cohesion-less backfill” accepted for publication in 
Soils and Rocks, An International Journal of Geotechnical and Geo-environmental Engineering, Brazil. (Kame, 
Dewaikar and Choudhury, 2010-b) 
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4.5 Failure mechanism under combined effect of uniform surcharge loading and soil self weight -passive state of 
equilibrium 

The distribution of reactive pressure on the failure surface is computed using Kötter’s (1903) equation under the 
effect of uniform surcharge and soil self weight. 

In Figure 18 is shown the free body diagram of failure wedge EACD for combined effect. The following 
information is generated from the figure.  

PpqH, PpqV = horizontal and vertical components of resultant passive thrust, Ppq under the combined effect. 

Rpq = resultant reactive pressure on curved failure surface 

4.5.1 Computation of reaction due to combined effect on the curved failure surface EA 

The magnitude of vertical component of soil reaction, RpqV for the combined effect is obtained by adding up Eqs. 
21 and 31 as, 

RpqV = RpqV+ RpV 

Or  

 
m

dRR Lpqpq




0
Vγ )sin( sp

m

d.cos
0



                          (33) 

Similarly the horizontal component soil reaction, R pqH is obtained by adding Eqs. 22 and 32 as, 

 
m

dRR Lpqpq




0
Hγ )cos( sp

m

d.sin
0



                          (34) 

4.5.2 Magnitude of passive thrust under the combined effect 

In Figure 18, the passive Rankine thrust, H1 under the effect of soil self weight and passive thrust, Pq on the wall, 
AC under the effect of surcharge loading (Eq. 25) act at a distance 1/2AC

 
and 2/3AC respectively from point, C. 

Equilibrium of wedge, EACD is then considered. 

Vertical force equilibrium condition gives  

QWWsin ADEACDVpqγpqγVpqγ  RPP                        (35) 

From which, Ppq is obtained as, 

sin

QWW ADEACDVpqγ
pqγ




R
P                            (36) 

In the above equation, Q is the equivalent force due to surcharge (Q = q.DC). It acts at the mid-point of DC. 

Horizontal force equilibrium condition gives  

1HpqγpqγHpqγ Hcos  qPRPP                           (37) 

From which, Ppq is obtained as, 

cos

H1Hpqγ
pqγ


 qPR

P                              (38) 

It may be noted that, both Eqs. 36 and 38 give the magnitude of unknown thrust, Ppq. These two equations will 
yield the same and unique value of Ppq only when the equilibrium conditions correspond to those at failure, 
which are uniquely defined by a characteristic value of V and this value can be determined by trial and error 
procedure. 

4.5.3 Trial and error procedure for combined analysis - passive state of equilibrium 

In this procedure, first a trial value of V (Figure 18) is assumed and corresponding weight of trial failure wedge, 
EACD and resultant force due to surcharge (Figure 18) are computed. Using Eqs. 33 and 34, magnitudes of 
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vertical and horizontal components of soil reaction (RpqV and R pqH) are computed and from Eqs. 36 and 38, 
values of Ppq are determined. If the trial value of V is equal to its characteristic value corresponding to the 
failure condition, the two computed values of Ppq will be the same; otherwise, they will be different. For various 
trial values of V, computations are carried out till the convergence is reached to a specified (third) decimal 
accuracy. Thus, in this method of analysis, the unique failure surface (Figure 19) is identified by locating the 
pole of log spiral in such a manner that, force equilibrium condition of failure wedge, EACD is satisfied.  

4.5.4 Point of application of passive thrust under the combined effect  

Moment equilibrium condition is now used to compute the point of application of passive thrust by considering 
moments of forces and reactions about the pole of the log spiral. 

Referring to Figure 18, for pole above anchor top, the following moment equilibrium equation is obtained by 
considering moment of the various forces about the pole of the log spiral. 
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In the above equation, terms on the right hand side represent moment of weight of soil in the failure wedge, 
EACD, moment of the force Q, moment of the forces H1 and Pq and moment due to vertical component of the 
resultant passive thrust, PpqV about the pole, O. The term on the left hand side of the above expression is the 
moment due to horizontal component of the resultant passive thrust, PpqH about the pole, O. From the above 
equation, Ypq (which is the distance of point of application of Ppq from the anchor top), is obtained as,
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The height, hpq of the passive thrust, Pp from the anchor base is then obtained as, 

pqγγ Yh pqh
 

The basic purpose of this analysis was to compute passive pressure thrust, Ppq along with its location and study 
their variation with respect to the parameters involved in the analysis. The height, hpq of point of application of 
passive thrust from the anchor base is expressed in terms of its ratio with respect to the height, h of the plate 
anchor in a non-dimensional form (hrq = h pq /h).  

4.6 Failure mechanism under the surcharge effect - active state of equilibrium 

In Figure 20 is shown a vertical anchor plate DE, with horizontal cohesion-less backfill under surcharge loading. 
Soil unit weight is not considered in the analysis. The failure surface, EL is assumed to be plane (Das, 1990). 
The reaction, Raq on the failure surface is inclined with normal at an angle,  (Coulomb, 1776). 

4.6.1 Computation of active thrust 

The inclination, cr of the failure plane EL, with the horizontal gives maximum value of Paq as per the procedure 
available in any text book.  

4.6.2 Point of application of Paq 

This computation is facilitated using Kötter’s (1903) equation (Figure 11 b) for a cohesion-less soil medium 
under active condition as given below. 

For the present analysis  = 0 and with this modification Eq. 10b is written as, 
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


tan2p
d

dp
                                   (41) 

Or 

dpdp tan2                                  (42) 

For a plane failure surface, d is zero and the above equation finally becomes, 

dp = 0                                    (43) 

The corresponding solution is obtained as,  

p = constant                                    (44) 

The above solution indicates that, soil reactive pressure; p is uniformly distributed along the failure plane, EL. 
Therefore, the resultant soil reaction, Raq acts at the mid-point of the failure plane. Free body diagram of the 
failure wedge is shown in Figure 21. 

In Figure 21 the distance, TU is 0.5DL or 0.5h/tancr. The force, Q of surcharge acts at the mid-point of DL and 
therefore, meets the force, Raq at U. The three force equilibrium requires that, line of the active thrust, Paq should 
also pass through point U and this facilitates computation of its point of application. 

The distance haq of point of application of Paq as measured from the wall base is then given as,  











crtan

 tan
15.0




hhaq                                (45) 

4.6.3 Active thrust under the effect of soil self weight 

For this analysis, the method proposed by Dewaikar et al. (2003) is used. The angle, θcr of the failure plane EL is 
obtained using trial and error procedure, coupled with Kötter’s (1903) equation. 

For a plane failure surface, d is zero and Kötter’s (1903) equation as given above takes the following form. 

dsdp ).sin(                                   (46) 

Integration yields, 

1).sin( Csp                                  (47) 

At point L, both p and s are zero and with this condition the constant C1 works out to be zero. Therefore, the 
reactive pressure, p on the failure surface is finally expressed as, 

sp ).sin(                                   (48) 

To compute reaction, Ra, the above expression is integrated within the limits s = 0 (at point L) to s = length EL 
(at point E). 

dssR
AC

a  
0

).sin(                                (49) 

2)sin(5.0 ACRa                                (50) 

From Figure 23, length EL can be written as, 

EL = h/sin                                  (51) 

Substitution of the above value of EL in the expression for Ra gives  


22

a  /sinh )-(sin   γ0.5 = R                           (52) 

Now referring to Figure 23, the vertical force equilibrium gives 
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0)90sin(sin    aa RPW                        (53) 

In the above equation, W is the weight of the wedge, DLE. 

Or 
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From which, Pa is obtained as, 
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Again refering to Figure 23, horizontal force equilibrium gives, 
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Eqs. (55) and (56) will yield the same value of Pa for the critical value of θ, denoted as θcr. 

Therefore in the analysis, various trial values of θ are chosen and when the two values of Pa (Eqs. 55 and 56) 
match each other (up-to three decimal places), trials are terminated.  

The reaction Ra corresponding to θcr is then computed as, 
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4.6.4 Point of application of Pa 

For this purpose, first point of application of Ra is computed. Referring to Figure 23, in which the angle,  is 
now θcr, moments of elemental reactive forces about the anchor base are considered. 

The elemental reaction, dRa at any point on the failure plane EL is computed as 

dsscr  )sin(dRa                                 (58) 

The moment, dM1 of normal component of elemental reaction about the wall base is given as,  
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Integration yields the total moment M1. 
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The moment, M2 of normal component of total reaction, Ra about the anchor base is expressed as,  
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Where, x is the distance of Ra from the anchor base, along the failure surface, EL. 

Equating the expressions as given by Eqs. 61 and 62, x is finally computed as, 

 
3

EL

3

sin
 crh

x


                                 (63) 

Thus, the reactive force, Ra acts at a distance of 1/3 EL as measured from the anchor base. From Figure 23, it is 
further seen that, distance ET is equal to h/3, since forces Pa, W and Ra meet at point U which is located such 
that EU = EL /3. 

The point of application of Pa is finally computed by considering the following geometry from Figure 23. 

 tan.UTETha   and UT = 1/3DL = h/(3tan)                    (64) 

Where ha is the height of Pa above the anchor base. 

4.7 Active thrust under combined effect 

The values of Paq and Raq (Figure 24) can be obtained by varying the inclination of failure plane EL so as to 
identify critical value cr giving maximum value of Paq and corresponding value of R aq. 

From the results obtained for Paq, Pa it is seen that, the angle cr that maximizes the active thrust, remains the 
same in all the cases (surcharge effect, soil self weight effect and combined effect) and therefore the summation 
of active thrust values (Paq, Pa) exactly matches with the values Paq that is computed for the combined effect.  

4.7.1 Point of application of Paq 

The principle of superposition leads to the computation of point of application of active thrust, Paq using 
moment equilibrium about the anchor base. The following expression is obtained. 






aq

aaaqaq
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                                (65) 

Where,haq is the distance of point of application of Paq as measured from anchor base. 

4.8 Analysis of the plate anchor 

Referring to Figure 10, all the three equilibrium conditions are examined. 

4.8.1 Vertical equilibrium 

The forces involved are Ppqsin and N in the vertically upward direction and Paqsin and Wp in the vertically 
downward direction. Since Ppq sin > Paq sin and weight, Wp of the plate is small enough, there is no 
equilibrium of the forces in the vertical direction. The reaction, N is zero and the plate accelerates in the 
vertically upward direction. This agrees well with the experimental observation (Naser, 2006).  

4.8.2 Moment equilibrium 

The forces N and Ntan now can be considered to be zero and the moment equilibrium is considered about the 
point, A as shown in Figure 10. The only forces that contribute to the moment equilibrium are Paq and Ppq and 
since Ppq > Paq, clearly moment equilibrium is also not satisfied. The plate rotates at limit equilibrium and this 
agrees well with the experimental observation (Naser, 2006).  

4.8.3 Horizontal equilibrium 

Summing up the forces in horizontal direction the following expression is obtained. 

  coscos aqpqu PPT                               (66) 

As stated earlier, Paq and Ppq are evaluated using Kötter’s (1903) equation and thus Tu is determined from the 
horizontal equilibrium condition. 

The values of Tu are computed using the available experimental data and comparisons with the available 
theoretical solutions are made. 

5. Results and Discussions 

For the purpose of comparison, detailed information on the available theoretical solutions and the proposed 
method is reported in Table 1. 
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The non-dimensional pullout force coefficient, Mq is defined using following expression. 

2Bh

T
qM u


                                      (67) 

In the present analysis, for a vertical strip plate anchor (H/h = 1 to 5) a total of eight experimental studies (Neely 
et al., 1973; Das and Seeley, 1975; Akinmusuru, 1978; Ovesen and Stroman, 1964; Dickin and Leung, 1985; 
Hoshiya and Mandal, 1984; Murray and Geddes, 1987; Rowe and Davis, 1982 and Basudhar and Singh, 1994) 
and a total of eight theoretical methods (Ovesen and Stroman, 1964; Meyerhof, 1973; Neely et al., 1973, 
Surcharge method; Neely et al., 1973, Equivalent Free Surface Method (m = 0); Neely et al., 1973, Equivalent 
Free Surface Method (m = 1); Das and Seeley, 1975; Rowe and Davis, 1982 and Merifield and Sloan, 2005, 
SNAC) are referred for comparison with the proposed solution and the results are reported in Table 3. In addition 
to this, computations are performed for (i) different values of H/h ranging from 0 to 5, (ii) different values of  
varying from 20 to 45 with an interval of 5, and (iii) three values of δ, namely 0, 0.5 and . The numerical 
results obtained from the analysis are summarized below 

In Table 2, the results reported by Kumar and Sahoo (2011), Soubra (2000), and Chen (1975) using the upper 
bound limit analysis are compared with those obtained by the proposed method. The results obtained by Kumar 
(2002) using upper bound analysis based on bilinear and composite logarithmic spiral failure are also reported in 
the table. 

The comparison shows that, proposed values are higher than all the earlier reported values. However with 
increasing  and , the difference becomes less.  

The values of force coefficient (Mq) as computed by the proposed method are reported in Table 3 along with 
corresponding experimental results and the prediction based on the available theoretical methods. A wide 
variation is seen in the results. However it is seen that, up-to the embedment ratio of H/h = 3, the proposed 
method shows a reasonable agreement with the available experimental data. 

In Figure 25, the results obtained by the proposed method are compared with the experimental results reported 
by Ovesen and Stroman (1964) vis-a-vis other theoretical predictions. It is seen that, there is a large difference 
between the theoretical predictions and the experimental results in respect to value of Mq. As compared to the 
proposed method, the experimental results of Ovesen and Stroman (1964) are on the lower side.  

As seen from Table 3, results of the proposed method compare well with the theoretical results reported by Neely 
et al. (1973, surcharge method, equivalent free surface method with m = 0) up to the embedment ratio of 3. From 
Table 2 it is further seen that, there is a good agreement between results of the proposed method and the 
Meyerhof’s (1973) method up-to embedment ratio of 5 with the maximum difference of 14%. 

In Figure 26, the experimental results of Neely et al. (1973) are compared with the results predicted by various 
available theoretical methods. 

It is seen that, the proposed method and methods proposed by Ovesen and Stroman (1964), Meyerhof (1973), 
Neely et al. (1973) show a good agreement with the experimental results up to the embedment ratio of 3.  

The data reported in Table 3 further shows that, results of the proposed method and the other theoretical methods 
when compared with the experimental data of Akinmusuru (1978) and Hoshiya and Mandal (1984) show large 
differences. However, the values of Mq as obtained by the proposed method and those of Ovesen and Stroman 
(1964) and Meyerhof (1973), show a reasonably good agreement up-to the embedment ratio of 3.  

In Figure 27, a comparison is shown between the experimental results reported by Das and Seeley (1975) and the 
results predicted by various theoretical methods. It is seen that, the methods proposed by Rowe and Davis (1982) 
and Merifield and Sloan (2005) show a better agreement with experimental results for all embedment depths. The 
methods proposed by Neely et al. (1973, m = 0 and 1), Das and Seeley (1975) and the proposed method show a 
fair agreement with experimental results up-to embedment ratio of 3.0. 

The experimental data reported by Dickin and Leung (1985) is compared with the available theoretical solutions 
as shown Figure 28. The proposed method and the method by Neely et al. (1973, surcharge method) perform 
better than the other methods whereas, the method of Ovesen and Stroman (1964) and Neely et al. (1973, 
equivalent free surface method, m = 0) show a reasonably good agreement with the experimental results. The 
equivalent free surface method Neely et al. (1973, m = 1), method of Das and Seeley (1975), Rowe and Davis 
(1982) and Merifield and Sloan (2005) overestimate the results.  

From the above discussion it is clearly seen that, there is no unique theoretical solution for the analysis of a vertical 
plate anchor in cohesion-less soil. The proposed method is intended for shallow laid anchors only and with this 
limitation, it shows a reasonably good agreement with some of the experimental/theoretical results up-to the 
embedment ratio of 3.0. 
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6. Conclusions 

A numerical method based on the application of Kötter’s (1903) equation is proposed for the estimation of 
pullout capacity of shallow laid vertical plate anchors in cohesion-less soil. The unique failure surfaces under 
active and passive state of limit equilibrium are identified on the basis of force equilibrium conditions. Kötter’s 
(1903) equation facilitates the computation of point of application of active and passive thrusts. 

Comparison of the results of the proposed method with the available experimental results vis-a-vis other 
theoretical methods shows that, up-to embedment ratio of 3.0, the proposed method is capable of making 
reasonably good predictions. 
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Table 1. Comparison of the proposed method with the available theoretical solutions  

Name Authors Method adopted 
Failure mechanism/ 
model adopted 

Comments 

Method 1 
Ovesen and 
Stromann 
(1964) 

Limit equilibrium 
(1948) 

Failure mechanism 
proposed by Hansen 
(1953) 

Use of earth pressure 
coefficients reported by 
Caquot and Kerisel (1948) 

Method 2 
Meyerhof 
(1973) 

Semi-empirical (1965) Logarithmic spiral 

Use of earth pressure 
coefficients reported by 
Caquot and Kerisel (1948) 
and Sokolovskii (1965) 

Method 3 
Neely et al. 
(1973) 

Surcharge method 
(limit analysis and 
plasticity solutions) 

Logarithmic spiral and 
its tangent 

Pole of the logarithmic spiral 
is assumed to be located at 
anchor top and resistance 
due to active earth pressures 
is neglected  

Methods 4 
and 5 

Neely et al. 
(1973) 

Equivalent free surface 
method (m = 0, 1) 

m=degree of 
mobilization of shear 
strength 

Logarithmic spiral  

Pole of the logarithmic spiral 
is assumed to be located at 
anchor top and resistance 
due to active earth pressures 
is neglected 

Method 6 
Das and 
Seeley 
(1975) 

Semi-empirical 
Based on laboratory 
model tests 

Use of chart/graph 

Method 7 
Rowe and 
Davis (1982) 

Two-dimensional 
finite element analysis 

Elasto-plastic soil 
model 

Use of design charts 

Method 8 
Merifield and 
Sloan (2005) 

Finite element analysis
Solid Nonlinear 
Analysis Code (SNAC)

Use of chart/graph 

Method 9 
Kumar and 
Sahoo (2011) 

Upper bound theorem 
of the limit analysis in 
combination with finite 
elements 

Elasto-plastic soil 
model 

Use of chart/graph 

Proposed 
method  

Kame et al. 
(2011) 

Kötter’s (1903) 
equation coupled with 
limit equilibrium 
analysis 

Log spiral and its 
tangent 

All equilibrium equations 
are used. 

 

Table 2. Comparison of force coefficient (Mq) for H/h = 1 

 / 
Proposed 
method 

Kumar and Sahoo 
(2011) 

Method 9 

Kumar (2002) Chen (1975) 
Soubra 
(2000) Bilinear Log-spiral Bilinear Log-spiral 

30 

0 1.71 1.37 1.50 1.50 1.50 1.50 1.50 

0.5 2.42 2.15 2.28 2.28 2.28 2.28 2.27 

1 3.16 2.80 3.14 3.07 3.14 3.07 2.97 

40 

0 2.73 2.24 2.30 2.30 2.30 2.30 2.30 

0.5 4.96 4.64 4.76 4.74 4.75 4.75 4.70 

1 8.14 7.42 8.71 8.01 8.70 8.01 7.51 
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Table 3. Comparison of force coefficient (Mq) – Experimental results and theoretical methods 

Exp. 

Method 

Anchor parameters 
Exp. 

results

Proposed 

method 

Method 

 1 

Method

 2 

Method

 3 

Method

 4 

Method 

 5 

Method 

 6 

Method

 7 

Method

 8 

 kN/m3   H/h Mq Mq Mq Mq Mq Mq Mq Mq Mq Mq 

Ovesen and 

Stroman 

(1964) 

16.77 42° 38.66° 

1 2.83 9.43 2.96 2.56 9.26 9.90 9.90 7.59 8.77 10.08 

2 7.6 21.73 12.16 10.24 21.72 22.60 27.00 24.31 29.56 29.52 

3 15 34.22 27.65 23.04 36.85 41.60 53.00 48.04 60.43 55.20 

4 23.6 46.75 49.50 40.96 54.20 64.00 80.80 77.90 92.15 84.64 

5 32.87 59.29 77.81 64 75.13 89.20 109.20 113.33 129.17 119.70 

Neely et al. 

(1973) 
15.9 38.5° 21° 

1 3.5 4.61 2.44 2.18 5.05 5.70 5.70 5.73 6.15 8.19 

2 13.5 11.55 10.03 8.72 12.17 16.30 20.00 18.37 20.77 24.06 

3 27 18.70 22.63 19.62 20.55 28.30 39.00 36.30 42.49 45.23 

4 45 25.90 40.22 34.88 30.05 43.00 58.40 58.86 64.01 69.52 

5 75 33.11 62.77 54.5 41.41 59.10 79.10 85.64 88.93 98.35 

Das and 

Seeley 

(1975) 

15.92 34° 34° 

1 5.1 4.47 1.96 1.82 4.48 4.62 4.70 3.84 3.93 5.76 

2 16 10.91 8.19 7.28 11.16 11.80 14.00 12.31 12.84 17.04 

3 31 16.37 18.55 16.38 18.70 20.80 26.00 24.33 25.99 32.40 

4 50 21.03 33.00 29.12 28.00 31.60 39.00 39.45 40.21 50.08 

5 74 25.17 51.53 45.5 37.60 45.60 53.60 57.39 56.94 70.90 

Akinmusuru 

(1978) 
15.55 35° 29° 

1 8 4.37 1.95 1.9 4.42 5.10 5.10 4.22 4.23 6.30 

2 21 10.73 7.94 7.6 10.97 13.00 15.00 13.52 13.83 18.60 

3 38 17.23 17.59 17.1 18.29 23.00 28.00 26.71 28.01 35.25 

4 60 23.77 30.71 30.4 27.26 35.00 42.00 43.31 43.12 54.40 

5 88 30.31 47.10 47.5 36.57 50.00 58.00 63.01 60.84 77.00 

Hoshiya and  

Mandal 

(1984) 

14.12 29.5° 29.5° 

1 3.4 3.03 1.54 1.465 5.50 2.90 2.90 2.43 2.74 3.50 

2 14.5 7.49 6.58 5.86 13.53 8.05 9.50 7.79 8.93 10.52 

3 34 11.24 14.87 13.185 22.18 14.20 17.00 15.40 18.06 20.46 

4 62 14.43 26.34 23.44 33.13 20.70 25.50 24.97 28.67 31.96 

5 99 17.27 40.93 36.625 44.37 28.00 33.80 36.33 41.31 45.30 

 

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 

Ovesen 
and 
Stroman 
(1964) 

Meyerhof 
(1973) 

Neely et al. 
(1973) 
Surcharge 
method 

Neely et al. 
(1973) 
- Equivalent free 
surface method 
(m = 0) 

Neely et al. 
(1973) 
- Equivalent free 
surface method 
(m = 1) 

Das and 
Seeley 
(1975) 

Rowe and 
Davis 
(1982) 

Merifield 
and Sloan 
(2005) – 
SNAC 

m = degree of mobilization 
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Table 3. Comparison of force coefficient (Mq) – Experimental results and theoretical methods (Continued) 

Exp. 

Method 

Anchor parameters 
Exp. 

results 

Proposed 

method 

Method

 1 

Method 

2 

Method 

 3 

Method 

 4 

Method 

 5 

Method 

 6 

Method 

 7 

Method

 8 

 kN/m3   H/h Mq Mq Mq Mq Mq Mq Mq Mq Mq Mq 

Dickin 

and Leung 

(1985) 

16 41° 29° 

1 3.8 6.77 2.75 2.43 7.05 8.70 8.70 7.02 8.15 9.54 

2 14.6 16.43 11.23 9.72 16.69 20.80 25.00 22.50 27.40 27.96 

3 28.2 26.31 25.31 21.87 28.43 37.80 49.00 44.46 56.00 52.35 

4 44 36.23 44.97 38.88 41.99 58.00 74.40 72.08 84.87 80.32 

5 62.5 46.18 70.16 60.75 58.65 80.60 100.60 104.87 118.43 113.60 

Murry and 

Geddes 

(1989) 

16.5 43.6° 10.6° 

1 3.5 4.69 2.97 2.77 5.05 11.82 11.82 8.56 9.83 10.94 

2 7.8 11.94 11.80 11.08 12.23 25.48 30.20 27.42 33.18 32.02 

3 12 19.52 26.04 24.93 21.74 47.68 59.40 54.19 67.87 59.76 

4 16.5 27.15 45.37 44.32 33.84 73.60 91.04 87.87 104.40 91.55 

5 21.5 34.80 69.54 69.25 48.60 102.96 122.96 127.83 147.25 129.46 

Basudhar 

and Singh 

(1994) 

16 38.5° 21° 

1 3 4.61 2.21 2.18 5.05 5.70 5.70 5.73 6.15 8.19 

2 15 11.55 8.68 8.72 12.17 16.30 20.00 18.37 20.77 24.06 

3 27.6 18.70 18.74 19.62 20.55 28.30 39.00 36.30 42.49 45.23 

4 46 25.91 31.92 34.88 30.05 43.00 58.40 58.86 64.01 69.52 

5 78.5 33.12 47.84 54.5 41.41 59.10 79.10 85.64 88.93 98.35 

 

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 Method 8 

Ovesen 
and 
Stroman 
(1964) 

Meyerhof 
(1973) 

Neely et al. 
(1973) 
Surcharge 
method 

Neely et al. 
(1973) 
- Equivalent free 
surface method 
(m = 0) 

Neely et al. 
(1973) 
- Equivalent free 
surface method 
(m = 1) 

Das and 
Seeley 
(1975) 

Rowe and 
Davis 
(1982) 

Merifield 
and Sloan 
(2005) – 
SNAC 

m = degree of mobilization 
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Figure 8. Anchor plate – Definition of basic parameters 
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Figure 9. Failure mechanism at ultimate load for a continuous (strip) vertical plate anchor in cohesion-less soil 
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Figure 10. Free body diagram of the anchor plate 
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Figure 11. (a) Reactive pressure distribution on the failure surface for passive case  

(Kame, Dewaikar and Choudhury, 2010-b) 
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Figure 11. (b) Reactive pressure distribution on the failure surface for active case  

(Kame, Dewaikar and Choudhury, 2010-a) 
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Figure 12. Surcharge effect – failure mechanism 
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Figure 13. Free body diagram of failure wedge EACD – surcharge effect 
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Figure 14. Free body diagram of failure wedge ABC 
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Figure 15. Soil self weight effect - failure mechanism 
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Figure 16. Reactive passive pressure distribution on the failure under the effect of soil self weight  
using Kötter’s (1903) equation (Kame, Dewaikar and Choudhury, 2010-b) 
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Figure 17. Free body diagram of failure wedge EACD - soil self weight effect 
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Figure 18. Free body diagram of failure wedge EACD - combined effect 
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Figure 19. Trial procedure for locating pole of the log spiral - passive state of equilibrium 
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Figure 20. Surcharge effect – failure mechanism 
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Figure 21. Free body diagram of the failure wedge, ABC 
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Figure 22. Soil self weight effect – failure mechanism 
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Figure 23. Free body diagram of failure wedge DEL 
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Figure 24. Combined effect – failure mechanism 
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Figure 25. Comparison of theoretical methods with experimental results of Ovesen and Stroman (1964) 

 

 

 

Figure 26. Comparison of theoretical methods with experimental results of Neely et al. (1973) 
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Figure 27. Comparison of theoretical methods with experimental results of Das and Seeley (1975) 

 

 

 

Figure 28. Comparison of theoretical methods with experimental results of Dickin and Leung (1985) 

 

  


