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Abstract  

The granitoids of Guéra Massif are composed of biotite-granite, amphibole-biotite granite and gabbro-diorite and 

commonly contain micro granular mafic enclaves which vary from monzogabbro to syenite composition. They are 

metaluminous, high-K calc-alkaline to shoshonitic series. Gabbro-diorite rocks are magnesian while amphibole-biotite 

granites are magnesian to ferroan, and biotite granites are ferroan. They are enriched in LREEs relative to HREE and 

display negative anomalies in Nb, Ta and Ti. Fields relationships, petrology and geochemistry indicate that mixing and 

mingling processes could be more relevant for the genesis of granitoids associated to fractional crystallization. Thus, the 

presence of mafic enclaves of gabbro-diorite composition in the granites, the resumption of alkaline feldspar xenocrystals 

in the gabbro-diorites, as well as the linear correlation between the granites and the gabbro-diorites and the intermediate 

position of the mafic enclaves between the two formations, enable us to propose magmatic mixing as the major process 

that presided over the evolution of the Guéra granitoids. The delamination of the continental lithosphere during the 

post-collisional phase of the Pan-African orogeny would have caused the partial melting of the subduction-modofied 

mantle and lower continental crust and thus produced the magmas of the Guéra granitoids. 

Keywords: Guéra massif, gabbro-diorite, enclaves, high-k magnesian-ferroan granitoids, mixing 

1. Introduction 

Granitoids form the major part of continents (Clarke, 1992). They show in addition, a very great diversity in their 

petrogenesis and geochemistry. This diversity was used to determine their source, origin and evolution in relation to their 

geodynamic environment of genesis and emplacement (Hutton, 1988; Barbarin, 1999). Another characteristic of these 

granites is their richness in hosted mafic enclave that may retain important information on crust-mantle interaction and 

thus are significant for study of crustal growth and differentiation. Furthermore, magma mixing and mingling between 

mantle-derived mafic magmas and crust-derived felsic magmas is one of the key processes underlying magma 

differentiation and have been used widely to explain the origin of granitoids (Collins, 1996; Elburg and Nicholls, 1995; 

Keay et al., 1997; Kemp et al., 2007). The Precambrian basement exposed in the Guéra massif in central Chad is part of 

the Pan-African Central Africa Orogenic Belt (Fig. 1) separating the Congo craton to the south, the West African craton to 

the west and the Sahara metacraton to the north (Bessoles et Trompette, 1980; Black et Liégeois, 1993; Abdelsalam et al., 

2002, Liégeois et al., 2013). It is made of Neoproterozoic juvenile crust composed of granitoids and enclaves (Kasser, 

1995; Doumnang, 2006; Penaye et al., 2006; Isseini, 2011). Field relationships and geochemical trends have led many 

authors to argue that mixing between two end-member magmas underlies the evolution of granitoid (Collins, 1998; Gray, 

1984; Gray and Kemp, 2009; Keay et al., 1997). Moreover, the heat sources for the production of its magma still 

remaining controversial (Nabelek and Liu, 2004).  

Contrary to previous works that proposed magmatic mixing to explain isotope heterogeneities, this paper is essentially 

based on good field observations. Thus, this paper investigates magma mixing and mingling by linking better field 

observation and petrographic evidence with whole rock major and trace-element from granitoids of Guéra massif in which 

mafic enclaves are commonly observed in order to better constraints their source nature and their mechanism for the 

formation, which in turn might have great significance in understanding of the Proterozoic crustal evolution in the 
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southern of Sahara Metacraton. Indeed, in the locality of Bitkine outcrop large slabs and domes of granitoids that offer 

very good structures of magmatic breccias and swarms of microgranular basic enclaves in the granites reminiscent of 

incomplete mixing of magmas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Geological sketch map of west-central Africa with cratonic areas and the Pan-African-Brasiliano provinces of 

the Pan-Gondwana belt in a Pangea reconstruction; modified from Castaing et al. (1994) and Abdelsalam et al. (2002), 

after (Liégeois et al., 2013) 

2. Geological Background 

The Precambrian basement in Chad is comprised of four major massifs. The Tibesti massif (located in the north), the 

Ouaddaï massif (located in the east), the Guéra massif in the centre and the Mayo Kebbi massifs in the south and 

southwest (Fig. 1). The Guéra Massif, one of the smallest massifs within the Saharan Metacraton, is composed about of 90% 

of magmatic and metamorphic rocks (Fig. 2) and inferred Neoproterozoic age buried under a sedimentary cover 

dominated by Quaternary alluvium. In addition, the Guéra Massif is comprised of volcanic and intrusive facies and 

meta-sedimentary (schist, marbles, quartzite, paragneiss and orthogneiss) and meta-volcanic (amphibolite, meta-andesite) 

sequences that are partially buried under Quaternary alluvium (Fig. 2; Isseini et al., 2013). They are composed of two 

types of granite (older granite and younger ones).The older granites (595 ± 8 Ma, 589 ± 6 Ma, method U-Pb on insitu 

zircons) are metaluminous to peraluminous, magnesian and alkali-calcic to calc-alkalic in composition (Pham et al., 2017). 

They are volcanic-arc-type, indicating the subduction zone and the subsequent collision between the southern Saharan 

Metacraton and the Congo Craton continued in the east after collision occurred in the west (Cameroon). The younger ones 

can be separated into two groups based on their emplacement age (570 Ma or ≤560 Ma). They are peraluminous, ferroan 

and calc-alkalic. Whole rock compositions and petrological modeling indicate that these granites were derived by melting 

of crustal materials but the whole rock are characteristic of a mantle source. The granitic rocks of the Guéra Massif range 

in age from 595 ± 8 Ma to 556 ± 7 Ma (method U-Pb on insitu zircons) indicating they are related to tectonomagmatic 

processes associated with the collisional (> 590 Ma) and post collisional (< 590 Ma) stages of the Central African Fold 

Belt (Pin and Poidevin, 1987; Kusnir and Moutaye, 1997; Abdelsalam et al., 2002; Toteu et al., 2004; Pouclet et al., 2006; 

Ngako et al., 2008; Shellnutt et al., 2017). Based on geophysical studies, Louis (1970) suggests the existence of a suture 

zone in the region, as evidenced by Bouger anomalies positive Ounianga-Massenya. The contrasting inheritance-rich 

nature of the granites with a juvenile Nd isotopic signature is likely due to mixing between magmas derived from juvenile 

(Neoproterozoic) arc-related crust and asthenospheric magmas (Shellnutt al., 2017).  
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Figure 2. Geological map of the Guéra Massif  

3. Fields Relationship and Petrography 

In the Guéra massif, the main rocks type (crop out as flagstone or bowls) consists of biotite-granite (BG), 

amphibole-biotite granite (ABG) and gabbro-diorite (GD) (Fig. 2). The contacts between GD and ABG are brecciated 

(Fig. 3a). ABG are crosscut by sinistral N-S trending mafic dykes (GD) and E-W aplitic dykes (consisted of BG), which 

can exhibit cooling rims (Fig. 3d). Textures of granitoid vary from preserved igneous fabric with K-feldspar defining 

strongly magmatic fabric in the porphyritic sample to strongly foliated (Fig. 3e). Rapakivi feldspars occurring in the ABG 

(Fig. 3f). Microgranular mafic enclaves (MMEs) are common in ABG and in GD, but scarce in the BG. The MMEs are 

mostly more mafic than their host-rocks. They are rounded lens shaped or angular and brecciated and centimeter to 

decimeter in size. Some of them are elongated-ellipsoidal shaped. Size of long axis of enclaves is ranging from centimeter 

to meter and defined N-S magma foliation (Fig. 3b). The boundaries between mafic enclaves and host rock commonly 

have sharp; seldom gradually. The sharp contacts with granitoid are sometimes locate and commonly underlined by 

finer-grain-rize. A mafic intruded and mingled with the host granite which were partially crystallized because phenocryst 

of host granite was transferred to microgranular enclaves as xenocryst (Fig.3b). Plutonic dykes often disrupted into 

enclave swarms exchange of crystals (xenocrysts) of K- feldspar were observed (Fig. 3f).  

3.1 Amphibole-Biotite Granite (ABG) 

ABG outcrop as bowls and flagstone at Doli, Ambasera, Banala, Bokio and Morgue localities (Fig. 2 and 3d). In the field, 

they are grey to dark-grey in colour and made up of K-feldspar megacryst (up to 2 cm), quartz, plagioclase, amphibole and 

biotite as major minerals with porphyritic texture while zircon, apatite and oxides occurred as accessory minerals. The 

preferred orientation of those K-feldspar megacryst define a magmatic foliation. Some crystals display micro-fractures 

filled with quartz. Under the petrographic microscope, K-feldspar (40%) is euhedral to subhedral and contains inclusions 

of grains of quartz. Quartz (25%) is anhedral and present as large crystals with homogeneous extinction. Plagioclase (18%) 

forms automorphic tabular crystals. Some crystals are zoned and altered to sericite (Fig. 4a). Plagioclase phenocrysts were 

rim resorbed. Sometimes it develops pertithic texture. Amphibole (15%) is euhedral and subhedral and is partially 

chloritized. Biotite (6%) forms small dark brown crystals dispersed in the rock. Its abundance is variable, giving to this 

granite a mesocratic to leucocratic aspect. Biotite occurs as flakes of various dimensions that may be clustered.  

3.2 Biotite Granites (BG) 

BG are common in the Arangha and Mataya localities in the north part of the pluton (Fig. 2). They are small grain size (40 

x 60 cm) and outcrop as vein oriented E-W, showing clear contact with the biotite orthogneiss and gabbro-diorite (Fig. 2 

and 3d). Rocks are grey to grey-dark in color medium-to fine-grained, displaying granular textures. They are also 
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composed of quartz (25-30%), K-feldspars (45-50%), plagioclase (15-20%) and biotite (3%). as ABG, but differ by the 

absence of amphibole (Fig. 4b). The accessory minerals are represented by zircon, apatite and oxides. Microscopic 

observation shows that, quartz occurs as anhedral to subhedral with homogeneous extinction and a late interstitial phase 

crystals with homogeneous extinction. Biotite is pleochroic from brown to yellow and partially chloritized. Some 

plagioclase grains contain small anhedral K-feldspath crystals. K-Alkali feldspars are large, anhedral to subhedral.  

3.3 Gabbro-Diorite (GD) 

Gabbro-diorite outcrop as elongated bands along the north and south part of the pluton (Fig. 2 and 3c-d). Apart from the 

presence of clinopyroxene, these rocks contains a similar mineralogical assemblage with ABG. The rocks are dark-grey in 

color and display fine to coarse grain texture. Plagioclase (30-40%) occurs mainly as medium to coarse, tabular, 

subautomorphic grains forming aggregates with other groundmass minerals, mainly quartz, biotite and sometimes 

amphibole. Some of the plagioclase grains contain inclusions of quartz and biotite while small plagioclase is observed in 

inclusions in larger crystals. Amphibole (20-25%) is yellowish green to brownish green or dark green and occurs as 

xenomorphic to subautomorphic, medium-to coarse grains, commonly associated with clinopyroxene and biotite (Fig. 4c). 

Amphibole is sometimes appears to be replaced by biotite xenomorphs (Fig. 4c). Pyroxene (10-15%) is the clinopyroxene 

and occurs as sometimes relics in the amphibole (Fig. 4d). Biotite (5-15%) (yellow-brown) occurs as medium-grained size, 

blade or flakes. It is intimately associated with hornblendes and pyroxene to which it replaces. K-feldspar (>15%) appears 

as phenocryst euhedral rimmed by plagioclase crystals and sometimes were rim resorbed. The quartz (>10%) occurs as 

rounded or ovoid to subhedral crystals (Fig. 4d). The accessory minerals are zircon, apatite and oxides. 

3.4 Enclaves (MMEs) 

The enclaves have black to dark gray color and are melanocratic and fine grained. They have generally microgranular but 

sometimes porphyritic textures due to the presence of plagioclase phenocrystal (Fig. 4e). Enclaves range in composition 

from monzogabbro in host gabbro-diorite, syenite in amphibole-granite and gabbro-diorite in biotite-granite. Most of the 

enclaves are microgranular and mafic than the host rock and are composed of plagioclase (40-45%), amphibole (25-30%), 

biotite (10-15%), K-feldspar (>10%), clinopyroxene (10-15%) and quartz (>5%). Zircon, acicular apatite (Fig. 4f) and 

oxides are accessory minerals. Chlorite is only secondary mineral which resulted from the hornblende alteration. 

K-feldspar is as anhedral to subhedral crystals and sometimes contains mafic mineral inclusions. Alkali feldspar 

phenocrysts were rim resorbed (Fig. 4e). Plagioclase occurs mainly as medium to coarse, tabular, subautomorphic grains 

forming aggregates with other groundmass minerals, mainly quartz and biotite, occasionally hornblende. Some of the 

plagioclase grains contain inclusions of subrounded quartz and biotite. Amphibole is yellowish green to brownish green 

or dark green in color and occurs as subautomorphic to xenomorphic medium to coarse grains and commonly associated 

with pyroxene and biotite. Clinoyroxene occurs as phenocryst euhedral to subhedral. It is generally rimmed by amphibole. 

Some aggregates of hornblende and biotite interpreted to represent pseudomorphose after clinopyroxene are observed 

(Fig. 4g). Quartz is rounded and every so often occurs as ovoid grains (Fig. 4h). Biotite is yellow-brown and occurs as 

medium grained size. It appears as late mineral sometimes result of alteration of amphibole or pyroxene (Fig. 4h). The 

mineral assemblages of enclaves show that their chemical composition is similar to gabbro-diorite. They specific rocks 

are gabbroic-diorite and amphibole-biotite and biotite-granite. All the microgranular studied are enriched biotite and 

contain abundant green hornblende and small amount quartz. Monzogabbroic- and dioritic enclaves have I-type mineral 

assemblages that are broadly similar to those in the host granitoids except for the greater abundance of mafic minerals, 

such as biotite. They are mostly more mafic than their host rocks.  

4. Analytical Methods 

Twenty-five samples were collected from different petrographic types including (5 samples) for gabbro-diorite, (5 

samples) for biotite granite, (5 samples) for amphibole biotite granite and (10 samples) for enclaves. Seventeen 

representative samples were analyse in the commercial ACME Analytical Laboratories Ltd, Vancouver, Canada, for 

whole-rock chemical analysises and results are in Table 1. Representative Major and trace elements data of granitoids 

from the Guéra Massif are listed in Table 1. Whole rock analyses for major and trace elements were carried out by 

Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) from pulps. 0.2g of rock powder was fused with 1.5g LiBO2 

and then dissolved in 100 mm3 5%HNO3. The REE contents were determined by ICP-MS from pulps after 0.25g 

rock-powder was dissolved with 4 acid digestions. Analytical precisions vary from 0.1% to 0.04% for major elements; 

from 0.1 to 0.5ppm for trace elements and from 0.01 to 0.5 ppm for rare earth elements. More information on the 

procedure, precision and accuracy of ACTLABS FUS- ICP and FUS-MS analyses could be found at www.actlabs.com. 
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Table 1. Results of major and trace elements analyse  
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5. Whole Rock Geochemistry 

5.1 Major Elements 

In the Q’-ANOR diagram (Fig. 5a) after Streikeisen and Le Maître (1979), the gabbro-diorite samples plot 

predominantly into the field of quartz monzodiorite to monzogabbro while amphibole biotite granite plots in to 

syenogranite-monzogranite fields. Biotite granite scatter within the fields of monzogranite and granodiorite (Fig. 

5a). The enclaves are classified as tonalite, quartz syenite, syenite, monzodiorite and monzogabbro. The rocks 

show mostly subalkaline affinity, in the Total-Alkali-Silica (TAS) diagram (Fig. 5b; Middlemost 1985). They are 

high-K calc-alkalines to shoshonitic (Fig. 5c) and metaluminous to weakly peraluminous I-type granitoids 

(A/CNK= 0.59 - 1.03; Fig. 6a). According to the classification of granitoids by Frost et al. (2001) using SiO2 vs 

Fe* number [molar FeOt/(FeOt +MgO)], gabbro-diorites and amphibole-biotite granite belong to mangnesian group and 

biotite granites are ferroan (Fig. 6c). Such in MALI diagram (Modified Alkali lime Index) of Frost et al. (2001) with 

increasing SiO2 composition of granitoids evolve mostly from calc-alkalic to alkali-calcic (Fig. 6b). SiO2 contents range 

from 49-61 wt.% in enclaves to 52.32 - 61.04 wt.% in the gabbro-diorites, are higher in the amphibole-biotite granite 

(60.04-70.84 wt.%) and biotite granite (70.86-73.86 wt.%). Harker diagrams show two groups with a general linear 

decrease in TiO2, Fe2O3, CaO, MnO, MgO (Fig. 7). Al2O3 and P2O5 increase in Gabbro-diorite and Enclaves, and 

decrease in both granites with increasing SiO2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Field photographic showing, (a) Magmatic breccias. Noticeable acidic magma was then forcibly intruded into 

the solid mafic mass, (b) enclave swarms within amphibole-biotite granite, (c) late-stage mafic dyke in granite. Noticeable 

is the brittle fracturing displayed by the dyke, (d) gabbrodiorite and amphibole biotite crosscut ENE-WSW trending by 

biotite granite, (e) Rapakivi feldspar occurring in the amphibole biotite granite, (f) Dispersed euhedral K-feldspar 

megacrysts aligned in a magmatic flow foliation oriented N-S. Noticeable: the agreement between enclave and feldspar 

foliation orientations is magmatic flow. (Hammer length 23cm, pencil length 10cm) 
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Figure 4. photomicrographs showing typical textures of mixing and mingling structure, (a) plagioclase zoning within 

amphibole biotite granite, (b) Plagioclase phenocrysts were rim resorbed, (c) biotization of amphibole in mafic enclave, (d) 

relics of clinopyroxene in the amphibole within gabbro-diorite, (e) The ovoid grains of quartz in the gabbro-diorite, (f) 

Alkali feldspar phenocrysts were rim resorbed in the mafic enclaves, (g) dendritic plagioclase in within mafic enclave, (h) 

aggregates of hornblende (Hbl) and biotite (Bt) interpreted to represent pseudomorphs after clinopyroxene (cpx) within 

mafic enclaves 
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Figure 5. Plots of granitoids of Guéra massif in the rock classification diagrams (a) Q-ANOR diagram (after Streckeisen 

and Le Maitre, 1979), 1a : Alkali-feldspar granite,1b :Syenogranite, 1c :Monzogranite, 2 : Granodiorite, 3a : Tonalite, 3b : 

calcic tonalite, 4: alkali-feldspar Quartz Syenite, 5 : Quartz syenite, 6 : Quartz Monzonite,7 :Quartz Monzodiorite, 8 : 

Quartz Diorite ,9 : Quartz Gabbro, 10 : alkali-feldspar 11 :Syenite, 12 :Monzonite,13 : Monzogabbro, 14 :Diorite, 15 : 

Gabbro. (b) TAS diagram (Middlemost (1985): (c) K2O vs SiO2 diagram (after Rickwood, 1989). (Square: Enclaves, 

Solid square: gabbro-diorites, solid circle: amphibole-biotite granites and circle: biotite granites) 
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Figure 6. (a) A/NK vs A/CNK diagram after Maniar and Piccoli (1989), (b) SiO2 vs.(Na2O + K2O-CaO) diagram (Frost et 

al., 2001) and (c) SiO2 vs Fe*number diagram (Frost et al., 2001). (Square: Enclaves, Solid square: gabbro-diorites, solid 

circle: amphibole-biotite granites and circle: biotite granites) 
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Figure 7. Harker variation diagrams for selected major elements expressed in oxides (weight %) of granitoids from Guéra 

massif. Both granites and some enclaves samples are aligned to mixing trend I-type granitoids on P2O5 vs SiO2 plot 

(Chappell and White, 1992). (Square: Enclaves, Solid square: gabbro-diorites, solid circle: amphibole-biotite granites and 

circle: biotite granites) 

5.2 Trace and Rare Earth Elements 

They are highly variable from a group to another and even within each group. Primitive-normalized REE spider diagram 

(McDonough and Sun, 1995) show that (Fig. 8), the enclaves are enriched in LREE relative to HREE, have no negative 

Eu anomaly (Eu/Eu*= 0.84-1.00), a steep HREE pattern, have a moderate fractionation with (La/Yb)N = 5.55-13.6 (see 

table 1). The microgranular mafic enclaves are characterized by higher REE (∑REE=134-207 ppm) contents and a 

distribution profile comparable to that of the host rocks. Gabbro-diorites have high REE (∑REE = 126 - 436 ppm) than 

microgranular enclaves. They are enriched in LREEs relative to HREE ((La/Yb)N = 14.61-37.01), have no negative Eu 

anomaly (Eu/Eu* = 0.81-1.08). Amphibolite-biotite granites are moderated rich in REE (∑REE = 120-331ppm). They 

have a steep HREE pattern, are high fractionated ((La/Yb)N = 12.49-24.61) with strongly to moderated negative Eu 

anomalies (Eu/Eu* = 0.40-0.96). Biotite-granites have less REE contents (∑REE = 135-163ppm). They are enriched in 

LREEs relative to HREE ((La/Yb)N = 9.89-24.98), have strongly and moderated negative Eu anomaly (Eu/Eu* = 

0.25-0.81), a steep HREE pattern, are high fractionated (La/Yb)N = 10.91-27.57). Both granites display sub-parallel REE 

patterns and strong negative Eu anomalies suggesting plagioclase crystallization. The primitive mantle-normalized 

multi-element diagram of McDonough and Sun (1995) shows a more pronounced enrichment in Large Ion Lithophile 

Elements (LILE) than high field strength elements (HFSE) relatively to the primitive mantle (Fig. 8). Enclaves display 

strongly positive anomaly in Ba and Pb while gabbro-diorite rocks show slightly positive anomaly in Ba and negative 

anomaly in P and Zr correlated to apatite and zircon crystallization. Both granites display negative anomalies in Ba 

associated to positive anomaly in Pb. In addition, all analyzed samples show negative anomalies in Nb-Ta, P, Ti that could 

been related to their tectonic environment. 

6. Discussion 

6.1 Evidences of Mixing and Mingling 

Field observations such as those in Figure 3a and b are quite significant of the coexistence of two magmatic liquids, basic 

and acidic. Brecciated structures and swarms of microgranular mafic enclaves in the granite are clear evidence of 

magmatic mixing. These types of structures are well documented by several authors (Rollinson 1993; Castro et al., 1990; 

1991a; Didier, 1987; Wiebe, 1996; Tobisch et al., 1997; Poli and Tommasini, 1999; Vernon, 1983; Wyllie, 1984; Barbarin 

and Didier, 1992). The presence of the syn-plutonic mafic dyke and enclaves in granitoids indicate contemporaneous 

presence of mafic and felsic magmas and magma mingling and mixing processes (Fig.3b, c and d). The presence of 

K-feldspar megacrysts in the mafic enclave may imply that they had a similar origin (Vernon, 1991), because K-feldspar 
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megacryst-bearing microgranular enclaves are common in K-feldspar megacrystic granites. K-feldspar forms in the early 

stages of crystallization; moreover, the mechanical transfer of K-feldspar megacrysts from a more felsic magma into 

mafic magma has been suggested as a likely process (Fig.3f). The rimming of K-feldspars by plagioclase (Fig. 3f) is 

usually a result of magma mixing (Silva et al., 2000). Wiebe (1991 and 1994) and Hibbard (1991) have believed that 

chilled margin of mafic enclaves is a mingling evidence. Field relations show that the enclaves and foliation defined by 

aligned feldspars have similar orientations, suggesting either magmatic flow or crystal settling within the magma chamber 

(Fig.3b). The granitoid of Guéra massif have a mineralogical compositions dominated by abundant biotite, K-feldspar, 

subordinate amphibole and clinopyroxene. Therefore they may be compared to I-types series (Chappell and White, 1992) 

and more precisely to the KCG (K-rich and feldspar porphyritic calc-alkaline granitoids) or ACG (Amphibole-bearing 

calc-alkaline Granitoids) that result from mixing mantle and crustal magmas (Barbarin, 1999). One of the most important 

petrographic features observed in these samples is the presence of abundant resorbed crystals of plagioclase, 

alkali-feldspar and quartz (Fig.4). The zoning of plagioclase phenocryts in amphibole-biotite granite suggest involvement 

mixing process (Barbarin and Didier, 1992). The swarms of mafic enclaves in the granite and the clinopyroxene cores in 

the hornblende indicate that the hybridization process was not complete (Fig.3b). The presence of amphibole-rich 

enclaves within amphibole-biotite granite and gabbro-diorite indicate that fractional crystallization played a role during 

the early stages of the granitoid petrogenesis. Acicular apatite in mafic enclaves has also been identified as a 

mixing/mingling texture (Fig.4f). 

Evidence for mixing between basic and acidic melts can be seen on both the outcrop and microscopic scales, and is also 

supported by linear and curvilinear differentiation trends on variation diagrams. A considerable good rectilinear trend has 

been obtained in the TAS plot for the granitoid of Guéra, strongly marking mixing of magma (Fig.5b). In Harker's 

diagrams the two lines of evolution converge towards the granites, thus attesting that the latter result from the mixing of 

two very different magma sources. This is best expressed in the SiO2 vs P2O5 diagram (Fig.7) where the two granites and 

some enclave samples are aligned on the mixing line and the gabbro-diorites follow the line of unsaturated apatite rocks. 

In addition, plots of MgO vs. Fe2O3t diagram (Fig.9) after Zorpi et al. (1989) suggest that magma mixing was a major 

mechanism in the formation of the Guéra granitoids according to Langmuir et al. (1978). This magma mixing is further 

suggested by linear array of plots on the Al2O3/TiO2 vs. CaO/Na2O (Fig.9a) and Na2O/CaO vs. Al2O3/CaO (Fig.9b), 

(Chappell & White, 1992 and Sylvester, 1998) diagrams (Fig.9). The enrichment in large ion lithophile elements and 

depletion in high field strength elements (e.g., Nb, Ta, and Ti) of granitoid that imply a significant amount of crust 

material (Fig.8 and Fig.10c), was involved in their genesis most probably as a result of magma mixing (Langmuir et al., 

1978; Pearce et al., 1984). The mafic enclaves are characterized by higher REE contents and a distribution profile 

comparable to that of the host rocks. Such geochemical similarity between mafic enclave and host rock is very common 

and testifies to mixing between the two magmas (Tindle, 1991). All of these data indicate significant magma mixing and 

mingling processes during the history of the Guéra granitoids. 

6.2 Evidences of Fractional Crystallization 

Whereas we have demonstrated above mixing and mingling magmas were important processes affecting the geochemical 

evolution of the granitoids, the inverse variation of MgO, Fe2O3t, and CaO with silica suggests that the primary minerals 

observed in thin section (plagioclase, biotite, and hornblende) accumulated or fractionated to produce the observed 

chemical variation (Fig.7, Fig. 9d and Fig. 10 a and b). General negative Nb, Ta, P, Ti anomalies in gabbro-diorites and 

granites attested the crystallization of accessory minerals like apatite, Ti-Fe oxide associated to the essential’s minerals 

(biotite, hornblende; Fig.8). It is evident that fractional crystallization controlled much of the evolution of the magmas in 

the Guéra massif. The behaviour of Al2O3 compared to the behaviour of CaO, MgO (Fig. 7), suggests that clinopyroxene 

controls the first phase of fractional crystallization followed by plagioclase (Fig. 10 a and b). Indeed, Al2O3 content 

increases in Gabbro-Diorites and microgranular mafic enclaves and decreases in both granites with increasing SiO2 

content.  

6.3 Source Rock Characteristics 

The investigated granitoids of Guéra Massif exhibit petrographical and chemical compositions characteristic of high-K 

calc-alkaline to shoshonitic I-type granitoids (Chappell and White, 1992 and 1974) derived from partial melting of 

igneous protoliths. From the several studies carried out to constrain the generation of high-K magmas in convergent 

tectonic settings, two main processes are commonly recognized (Altherr et al., 2000): (i) in continental arc settings, where 

mantle melts can be enriched by slab-derived fluids and further may become contaminated with crustal material during 

ascent (De Paolo, 1981); (ii) in syn- to post-collisional settings, crustal source rocks may melt as a consequence of 

decompression following delamination of the lithospheric root or slab break off (e.g. Roberts and Clemens, 1993; 

Liegeois et al.,1994; kwékam et al., 2013). 

The high-K calc-alkaline to shoshonite nature of granitoids of Guéra massif suggests that the most suitable protholiths 
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could be ancient rocks (Roberts and Clemens, 1993). Compositional differences of melts produced by partial melting of 

different source rocks, such as amphibolites, tonalitic gneisses, metapelites and metagreywackes, under variable melting 

conditions can be visualized in terms of molar CaO/(MgO + FeOt) vs. molar Al2O3/(MgO + FeOt) (Altherr et al.,2000; 

Fig.11a). In this diagram, most of the samples of the granitoids plot in the field of partial melting from metabasaltic to 

metatonalitic sources. Few samples of biotite granite and amphibole-biotite granite plot in the field of partial melts from 

metagreywackes (Fig.11a). This distribution could portray the contribution of the crustal material to its source. Such 

granite of crustal origin and the contribution of crustal material to the source of granitoids have been demonstrated in the 

Cameroonian portion of the Adamawa-Yade Domain (Tchameni et al., 2006; Ganwa, 2005). Many I-type granitoids e.g. 

Ngondo, Batié and Fomopéa (Talla, 1995; Kwékam et al., 2010 and 2013) of west Cameroon show the same 

characteristics. Intermediate to felsic composition of granitoid is consistent with a derivation from the ancient source of 

tonalitic to granodioritic composition (Singh and Johannes, 1996). These source rocks are predominantly found in the 

lower part of the continental crust and we suggest that the source for the biotite granite and amphibole biotite granite was 

lower amphibolite continental crustal. The abundance of hydrated minerals (amphibole and biotite) in the plutonic rocks 

suggests that the melting of the protolith took place under hydrous conditions. This source can correspond either to a 

juvenile crust composed of high-K andesites (Roberts and Clemens, 1993) or to phlogopite-K-richterite enriched 

lithospheric mantle. In both cases, the main point is that the generation of the high K calc-alkaline magma needs the 

former existence of an important subduction phase to generate its source. Gabbro-diorites and amphibole-biotite granites 

show a moderate negative Zr anomaly that would suggest a mantle signature. In addition, the position of these rocks in the 

diagram in figure 8 leads to propose a mantle source for the gabbro-diorites. Highly potassic magnesian characteristics 

underline their shoshonite affinity. Shoshonites generally result from related subduction enriched lithospheric mantle. 

This hypothesis is supported by the positions of the Guéra granitoids in the Ce/Pb versus Pb and La/Ba versus La/Nb 

diagrams in Figure 10 c and d (Langmuir et al. 1978). In Figure 10d, especially all samples are plotted in the 

modified-subduction sub-continental lithospheric mantle domain. This domain is the MORB domain enriched by the 

subduction trench sediments. In addition, the negative Nb-Ta and Ti anomalies and the positive Pb anomalies (Fig.8), 

indicate that this mantle source has been modified by the addition of material related to subduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Spider diagrams: Primitive-normalized rare-earth-element diagrams and multi-element plots, values of 

normalization are from McDonough and Sun (1995) 
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Figure 9. Modelling of mixing, (a) Al2O3/TiO2 vs CaO/Na2O diagram (Chappell and White, 1992 and Sylvester, 1998), 

(b) Na2O/CaO vs Al2O3/CaO diagram (Chappell and White, 1992) diagrams, (c) MgO vs FeOt diagram, the magma 

mixing curves and fractional curves after Langmuir et al. (1978) and (d) Sr/Y vs Eu/Eu* diagram shows fractional 

crystallization trend of plagioclase. (Square: Enclaves, Solid square: gabbro-diorites, solid circle: amphibole-biotite 

granites and circle: biotite granites) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Binary diagrams show evolution of magmas of Guéra granitoids. (a) Plots CaO/Al2O3 vs SiO2 and (b) Ba vs 

Rb display fractionational crystallization of clinopyroxene and plagioclase respectively (Ol, Olivine, Cpx, 

Clinopyroxene, Pl, Plagioclase, Amp, Amphibole, Bi, Biotite, Kf, K-feldspar, PM, Partial melting, FC, fractional 

crystallization) , (c) Ce/Pb vs Pb binary mixing diagram (Langmuir et al., 1978) (MORB and sediment values are from 

Normand and Garcia (1999) and Gamble et al. (1996), respectively), (d) plot of La/Ba vs La/Nb, sub-continental 

lithospheric mantle (SCLM) and reference fields for OIB, MORB and high U/Pb mantle source (HIMU) are from 

Sauders et al. (1992). (Square: Enclaves, Solid square: gabbro-diorites, solid circle: amphibole-biotite granites and 

circle: biotite granites) 
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6.4 Tectonic Settings 

The Guéra massif is composed of high-K calc-alkaline granitoids that show a volcanic arc geochemical signature (Pearce 

et al., 1984; Fig. 11b) and are classified as magnesian to ferroan granites. Ferroan granitoids reflect a close affinity to 

relatively anhydrous, reduced magma and source region. Such conditions are common in extensional environments. 

Because, these magmas also generally hotter, they are likely to undergo extensive fractionation towards iron-rich, alkali 

compositions (Forts and Forts, 1997). In contrast, a magnesium series reflects a close affinity to relatively hydrous, 

oxidizing magmas and region source (Forts and Lindsley, 1991), which is consistent with origins that are broadly 

subduction related. High-K calc-alkaline magmatism extensively occurs at post-collisional stages (e.g Barbarin,1999, 

Liégeois et al.,1998) but it also occurs at active continental margins (e.g Barbarin,1999; Wilson, 1989). Strongly 

magnesian to little ferroan transitional character of granitoid suggests their emplacement during a shift in tectonic regime 

from a compressive regime to an extensional regime commonly seen in the post-collisional setting of an orogeny (Bonin, 

1990). So we can summarize that the granitoids of present study emplaced in the post-collisional setting (Fig. 11b). 

Futhermore, granitoids of Guéra massif were formed at post-orogenic tectonic environment. Post-orogenic extension is 

always triggered by the delamination of the subducted slab (Sylvester, 1998; Kwékam et al., 2013; Shellnutt et al., 2017). 

Thus, delamination inducing an asthenospheric upwelling. Such an upwelling could have caused partial melting of the 

lithospheric mantle previously metasomatized by subducted materials (Kwékam et al., 2013), forming basaltic magma 

enriched in LREE, LILE, H2O but depleted in Nb, Ta and Ti. The underplating of such basic magma under the lower crust 

could have triggered partial melting of the mafic lower crust, forming a silicic magma. Mixing and mingling between the 

basic magma and the silicic magma, followed by crystal fractionation of mafic minerals and accessory minerals, may have 

led to the formation and evolution of the granitoids of the present area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. (a) molar CaO/(MgO + FeOt) vs molar Al2O3/(MgO + FeOt) diagram (Altherr et al., 2000) showing probable 

magma sources of granitoids, (b) tectonic discrimination diagram (Pearce et al.,1984). (Square: Enclaves, Solid square: 

gabbro-diorites, solid circle: amphibole-biotite granites and circle: biotite granites) 

7. Conclusion 

Considering the field and petrographic data obtained for the Guéra massif, three groups of granitoid can be distinguished: 

gabbro-diorite, amphibole-biotite granite and the biotite granite. The main mineral phases that characterize these rocks are 

alkaline feldspar, quartz, plagioclase, clinopyroxene, with subordinated hornblende and biotite, besides of accessory 

apatite, zircon and opaque minerals. Whole-rock geochemical data reveal a sub-alkaline affinity for the rocks of the Guéra 
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massif, which belongs to high-K calc-alkaline to shoshonitic series. In combination, the field, petrographic and 

geochemical evidence presented here suggests that mingling and mixing magma processes could be more relevant for the 

genesis of granitoids of Guéra massif with minor fractionation of plagioclase, clinopyroxene. Although the rocks of the 

massif appear to have been emplaced in a post-collision context, their magmas have the characteristics of a mantle source 

modified by the subduction-material. This modified source would have undergone partial melting during the lithospheric 

delamination of the post-collisional phase of the Pan-African orogeny in Chad.  
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