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Abstract 

Isotopic labels are widely used to trace the fate and cycling of common environmental contaminants. Many of 
the labeled materials are not available commercially and, depending on the complexity of the substance, the label 
and the enrichment level, custom syntheses are costly. A simple, straightforward, and cost effective method for 
the preparation of a highly enriched, 15N-labeled potassium ferrocyanide (K4[Fe(C15N)6]*3H2O) has been 
developed to meet the requirements of related tracer experiments and minimize their costs. In this case, the 15N 
label was used to quantify iron cyanide detoxification (biodegradation and/or transformation) within 
soil-plant-systems. 15N-labeled potassium cyanide (KC15N) and a ferrous iron salt have been used for the 
synthesis. Extensive qualitative and quantitative analyses showed a product, entirely identical in its functional 
and elemental components to commercial non-labeled K4[Fe(CN)6]*3H2O and in its 15N enrichment to the 
KC15N used for its synthesis. To investigate their behavior and fate in various environmental compartments, 
other labeled iron or metal cyanide complexes might be synthesized in analogous manner. 
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1. Introduction 

Iron cyanide contamination in the environment is primarily of anthropogenic origin. One of the greatest iron 
cyanide sources are the sites of former manufactured gas plants and coke ovens, existing in a high number 
(>8700) in Europe and the United States (Wehrer, Rennert, Mansfeldt & Totsche 2011). Due to their high 
stability and complex behavior, iron cyanides might both be very persistent (Meeussen, Keizer, van Riemsdijk & 
de Haan 1992) or migrate from one environmental compartment to another (Meeussen, van Riemsdijk & van der 
Zee 1995; Theis, Young, Huang & Knutsen 1994) and pose serious wildlife and human health risks by releasing 
toxic free cyanide (Kjeldsen 1999). To better understand and predict the complex behavior of contaminants, 
isotopic tracers have increasingly been applied in the past decades, including in studies on biodegradation and 
detoxification of simple and complexed cyanide species within plant tissue (Ebbs, Bushey, Poston, Kosma, 
Samiotakis & Dzombak 2003; Ebbs, Piccinin, Goodger, Kolev, Woodrow & Baker 2008; Ebbs, Kosma, Nielson, 
Machingura, Baker & Woodrow 2010; Ebel, Evangelou & Schaeffer 2007; Samiotakis & Ebbs 2004). Yet, 
labeled complexed (including iron) cyanides are not commercially available and custom label costs are rather 
high, which might cause extensive study limitations. Therefore, a novel procedure has been developed for the 
synthesis of potassium ferrocyanide (K4[Fe(CN)6]), incorporating the stable 15N isotope of nitrogen. There exist 
a few K4[Fe(CN)6] synthesis methods described so far, incorporating a 57Fe complex label and intended for 
Mössbauer spectroscopy studies (Jaskula & Petlicki 1978; Ganguli, Das & Bhattacharya 1998). However, 
including a 57Fe label in the complex requires several preparation steps, special laboratory conditions, and 
consumables. The synthesis method described in this paper is simple, straightforward, effective and can be 
conducted under standard laboratory conditions. Qualitative and quantitative analyses of the product showed that 
it is entirely identical in its functional and elemental components and 15N enrichment to commercial products. 
This is the first summary of such a synthesis procedure. It saves time and costs, thus facilitating further research 
on the fate of iron (complex) cyanides in the environment. Particularly the low costs and the high yield allow for 
the application of the product in large scale studies or even directly under real field conditions. Both have so far 
not been possible. 
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into account for the qualitative and quantitative analyses: 

(i) Fundamental vibrational modes: to identify the presence of the fundamental vibrational modes 
characteristic for ferrocyanide ions, the synthesized K4[Fe(C15N)6]*3H2O was scanned on a Fourier transform 
infrared spectrometer (FTIR) and the resulting spectrum was compared to that of the commercial 
K4[Fe(CN)6]*3H2O. In addition, commercial potassium ferricyanide (K3[Fe(CN)6]) and the KC15N used for the 
synthesis were scanned to identify the presence of ferric iron or simply bound cyanide in the synthesized product. 

(ii) CN: the total water soluble (CNT H₂O) and weak acid dissociable CN (CNWAD) concentration and content of 
the synthesized K4[Fe(C15N)6]*3H2O and the commercial K4[Fe(CN)6]*3H2O were measured in standard 
solutions, prepared with the two substances and the results were compared. 

(iii) Elemental components: iron (Fe2+), potassium (K+) and chlorine (Cl¯) concentrations and contents of the 
synthesized K4[Fe(C15N)6]*3H2O and the commercial K4[Fe(CN)6]*3H2O were measured in standard solutions, 
prepared with the two substances and the results were compared. 

(iv) 15N enrichment: the dry product was measured on an isotope ratio mass spectrometer (IRMS) together with 
KC15N and commercial K4[Fe(CN)6]*3H2O and the results were compared. 

2.4 Analytical Procedures 

FTIR Analysis. Small amount (~100 µg) of the prepared dry K4[Fe(C15N)6]*3H2O and the commercial 
K4[Fe(CN)6]*3H2O was scanned on a Tensor 27 FTIR spectrometer (Bruker Optik GmbH, Germany) in 
attenuated total reflection (ATR) mode and the resulting spectra were compared. 

CN Analysis. Weak acid dissociable and total CN concentrations in the prepared standard solutions of the 
synthesized K4[Fe(C15N)6]*3H2O and the commercial K4[Fe(CN)6]*3H2O were determined 
spectrophotometrically on a flow injection analysis system (MLE FIA Compact, Gesellschaft für 
Analysentechnik HLS, Salzwedel, Germany) according to DIN EN ISO 14403:2002. The limits of detection 
(LOD) of the system are 0.01–1.10 mg L-1 with limits of quantification (LOQ) of 0.02–1 mg L-1. 

Total CN was measured following acid digestion and distillation of 5 ml of the standard solutions on a micro 
distillation system (MICRO DIST®, Lachat Instruments, A Hatch Company Brand, US) according to the Lachat 
Equivalent Method QuickChem 10-204-00-1-X. 

Elemental Analysis. Iron (Fe2+) and potassium (K+) concentrations in the prepared standard solutions of the 
synthesized K4[Fe(C15N)6]*3H2O and the commercial K4[Fe(CN)6]*3H2O were determined on a Unicam iCAP 
6000 Duo ICP-AES with a CID68 detector (Thermo Fisher Scientific, Germany). The concentration of chlorine 
(Cl¯) ions in the standard solutions was determined on a Dionex DX 500 and DX 120 IC system (Thermo Fisher 
Scientific, Germany). 

Isotope (15N) Analysis. The 15N enrichment was analysed on a Thermo Delta V Advantage IRMS (Thermo 
Fisher Scientific, Germany) with a ConFlo III open split interface (Finningan, Thermo Electron Bremen, 
Germany) and coupled to a Vario EL III elemental analyzer (Elementar Analysensysteme GmbH Hanau, 
Germany). 

3. Results and Discussion 

3.1 Fundamental Vibrational Modes 

The comparison of the synthesized and the commercial ferrocyanide complexes showed slight but not 
fundamental differences in the vibrational modes of the two substances. 

Figure 2 shows comparatively the absorbance spectra of K4[Fe(C15N)6] (a), K4[Fe(CN)6] (b), K3[Fe(CN)6] (c) 
and KC15N (d). 
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of a K4[Fe(CN)6] spectrum by Klyuev (1965). 

He explained the splitting with disrupted symmetry of the perfect octahedron of the [FeII(CN)6]
4- anion, caused 

by alteration of the valence state of the central atom, due to the small differences in the outer shell of the Fe2+ 
and Fe3+ ions (3d6 in Fe2+ and 3d5 in Fe3+). No explanation could be suggested for the absence of the 2062 cm-1 
band in the spectrum of the K4[Fe(CN)6] (Figure 2 b). In spite of the differences in the main vibrational band of 
the two potassium ferrocyanide substances, they both possessed the fundamental vibrational modes of the 
ferrocyanide ion. Hence, it could be concluded that the two products are qualitatively identical. 

The single, very strong vibrational band at 2116 cm-1 in the spectrum of the commercial potassium ferricyanide 
Figure 2 c is characteristic for the ferricyanide ([FeIII(CN)6]

3-) ion (Klyuev, 1965; Miller & Wilkins, 1952) and 
was not observed in the two potassium ferrocyanide spectra. Hence, oxidation of the ferrous to ferric iron during 
the synthesis was not likely to have taken place and the presence of ferricyanide (FeIII–C≡N) as an impurity 
could be excluded in both products due to the lack of the characteristic band at 2100–2120 cm-1 (Figure 2 a, b). 

The spectrum in Figure 2 d was used as a reference to identify the presence of unreacted KC15N in the 
synthesized product. The absence of the 2077 cm-1 band in the spectrum in Figure 2 a and the very low levels of 
weak acid dissociable CN measured in the synthesized product (Table 1) were evident for the absence of KC15N 
in the synthesized product. These results indicate that the commercial and the synthesized labeled potassium 
ferrocyanide are qualitatively identical. 

3.2 CN and Elemental Components 

Table 1 shows the median concentrations and masses of the elemental components of K4[Fe(CN)6] and 
K4[Fe(C15N)6], calculated according to the mass of the substance used to produce the standard solutions. The 
concentration and mass of the weak acid dissociable CN fraction of the K4[Fe(C15N)6] complex was considered 
equal to the median levels measured in the K4[Fe(CN)6] solutions. That is, provided that all unreacted KC15N has 
been separated in the last steps of the K4[Fe(C15N)6] synthesis, the measured weak acid dissociable CN (CNWAD, 
Table 1) levels in the standard solutions of both complexes should be identical. 

 

Table 1. Median set concentrations and masses of the elemental components of the commercial and the 
synthesized 15N-labeled potassium ferrocyanide (n=5). The values were calculated using the mass of the two 
substances used for the preparation of the standard solutions. Measured values are given in parentheses 

 CNT H₂O CNWAD
 Fe2+ K+ Cl¯ 

 mg L-1 mg mg L-1 mg mg L-1 mg mg L-1 mg mg L-1 mg

K4[Fe(C15N)6] 
101 

(117)

10.1 

(11.7) 

0.03 

(0.07)

0.003

(0.007)

36 

(38) 

3.6

(3.8)

101 

(105)

10.1 

(10.5) 

17 

(1) 

1.7

(0.1)

K4[Fe(CN)6] 
101 

(111)

10.1 

(11.1) 

0.03 

(0.03)

0.003

(0.003)

36 

(35) 

3.6

(3.5)

101 

(97) 

10.1 

(9.7) 

- 

(0) 

- 

(0) 

 

The chemical purity of the commercial K4[Fe(CN)6] complex also excludes the presence of high levels of Cl¯ in 
its standard solution. However, as a by-product of its synthesis (equation 3), Cl¯ might be present in the 
K4[Fe(C15N)6] standard solution. The last two columns of Table 1 show the calculated maximum concentration 
and total mass of Cl¯ ions, which could theoretically be present in the standard solution, provided the KCl 
separation from the final product in the last steps of the synthesis was incomplete. 

The measured concentrations and masses of the elements compiling the synthesized and commercial potassium 
ferrocyanide substances are shown in parentheses in Table 1. Although the measured total CN concentrations 
deviate from the set concentrations, the concentrations measured in the commercial and the synthesized products 
are identical. The mass of weak acid dissociable cyanide in the synthesized product is only slightly higher than that 
of the commercial product and thus comparable to it. The iron and potassium concentrations and masses in the 
standard solutions do not deviate much from the set values and are in the correct stoichiometric relation to the 
measured CN levels. 

The actual Cl¯ content of the synthesized product was with ~1.6 mg less than the theoretical content (Table 1), 
which would have been measured, provided incomplete separation of the target product (K4[Fe(C15N)6]) from the 
by-product (KCl) has taken place. Thus, the presence of high levels of Cl¯ impurity in the synthesized product 
could be excluded. The above-described results showed that although not of high chemical purity and with small 
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deviations, the synthesized 15N-labeled potassium ferrocyanide is quantitatively identical in its elemental 
components to commercial potassium ferrocyanide. 

3.3 15N Enrichment 

The 15N enrichment of the synthesized K4[Fe(C15N)6]*3H2O was determined to ensure it was identical in 
enrichment to the 15N-labeled KCN, used for the synthesis. In the K4[Fe(CN)6]*3H2O sample both masses 28 
(14N2) and 29 (15N14N) could be detected, with the 28 signal being stronger than the 29 signal. Although the 
15N-enrichment of the commercial K4[Fe(CN)6]*3H2O was with 0.3836 at% slightly elevated, it was close to that 
of the control (0.3662 at%). Hence, the enrichment of the substance was identical to the natural enrichment 
levels of 0.3663 at%. In the samples of the synthesized K4[Fe(C15N)6]*3H2O and the commercial KC15N, the 28 
mass could not be detected, e.g. the sample signals contained solely the 29 signal. Thus, it could be demonatrated 
that all nitrogen atoms in the two substances were present as the 15N isotope. 

Overall, the results from the qualitative and quantitative analyses of the synthesized potassium ferrocyanide 
showed that with small deviations, the product was, regarding its functional and elemental components, identical 
to the commercial potassium ferrocyanide and regarding its 15N enrichment, identical to the KC15N used for its 
synthesis. 

4. Conclusions 

The above described synthesis method is simple, straightforward, effective and does not require special 
laboratory conditions, equipment or consumables. Nevertheless, it delivers a product, qualitatively and 
quantitatively comparable to commercial ones. In addition, the high custom costs for the label can greatly be 
reduced. To trace their behavior and fate in different environmental compartments, further labeled metal and/or 
iron cyanide species can be synthesized in similar manner to better facilitate cyanide contamination-related 
research. 
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