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Abstract 

Understanding the spatial and temporal pattern of dissolved nitrous oxide (N2O) in groundwater is essential to 
estimate the N2O emissions from groundwater to the unsaturated zone and to the atmosphere. In order to study 
the spatial distribution and seasonal change of dissolved N2O in wetland, a headwater wetland in Ichikawa, 
Chiba Prefecture, Japan, was chosen. Variations of nitrate (NO3

-), dissolved N2O and δ15N-NO3
- indicated that 

the dissolved N2O in the groundwater of study wetland consists of two parts, one from denitrification within the 
wetland, and another from nitrification at upland. Principal component analysis (PCA) was used to assess the 
shallow groundwater parameters in the wetland. And t-test was conducted to find statistically significant 
differences of the variables between the ASW and NS, warm season and cool season. The concentrations of 
dissolved N2O increased from the upland to the zone of adjacent area between slope and wetland (ASW) and 
then decreased at the zone near the stream (NS). In sight of dissolved N2O associated nitrogen migration, 
groundwater in the study area can be divided into three stages: upland as the stage 1, ASW as the stage 2, and 
NS as the stage 3. Higher temperature results in higher denitrification rate, lower dissolved oxygen (DO) and 
oxidation-redox potential (ORP), yielding higher concentration of N2O in the warm season. Therefore, the 
seasonal change of dissolved N2O in study wetland can be mainly interpreted by the variation of temperatures of 
groundwater. 
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1. Introduction 

Over the last few decades, much interest has been focused on specific natural systems, such as wetland (or 
riparian zone) which are vulnerable to improve water quality by physical, chemical and biological process that 
remove N from groundwater (García-García, Gómez, Vidal-Abarca, & Suárez, 2009; Groffman, Gold, & 
Simmons, 1992; Sabater et al., 2003). Wetlands offer an abundant organic C supply and dominated by inherently 
wet surface soil create anaerobic environment to consume nitrate via denitrification that is considered the most 
important reaction for nitrate removal in aquifer (Bastviken, Olsson, & Tranvik, 2003; Burgin & Hamilton, 2007; 
Whitmire & Hamilton, 2005). Especially in the shallow ground water of riparian areas, redox conditions are 
often favorable for intense denitrification processes (Ross, 1995).  

The trace gas N2O is an obligate intermediate product of biological denitrification. And it is known to contribute 
to global warming and the destruction of stratospheric ozone. A significant amount of N2O emissions originates 
denitrification (Mathieu et al., 2006). Emissions from aquifers are most likely to occur from shallow aquifers, 
where N2O can be quickly transferred through the unsaturated zone to the atmosphere by diffusion (Rice & 
Rogers, 1993). N2O emission from wetland system has been estimated by numerous studies (Dhondt, Boeckx, 
Hofman, & Van Cleemput, 2004; Groffman, Gold, & Addy, 2000; Verhoeven, Arheimer, Yin, & Hefting, 2006). 
Understanding the spatial and seasonal pattern of dissolved N2O is essential to assess the indirect emission of 
N2O from groundwater (Geistlinger, Jia, Eisermann, & Florian Stange, 2010). Level of dissolved N2O in 
groundwater has been paid lots of attentions. For example, N2O concentration in groundwater was reported to 
exceed greatly those of atmospheric equilibration (with a mean value of 28.98 µg L-1) under aerobic condtion in 
Kanto district, Japan (Ueda, Ogura, & Yoshinari, 1993), and the maximum up to 30000 times of that in the 
ambient air (Heincke & Kaupenjohann, 1999). However, few studies estimated level of dissolved N2O in 
wetland groundwater. 
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measured in situ with sensors (HIROBA). All water samples were filtered (0.45 µm) before analysis for major 
ions by ion chromatography (Shimadzu CDD-6A and CDD-10Avp). 2 L water for each sample was collected for 
δ15N-NO3

- analysis in March 2012. NO3
- was collected by passing the water through pre-filled, disposable, anion 

exchanging resin columns in the field and then was eluted by 3 M HCl from the column. The nitrate-bearing acid 
eluant was neutralized with Ag2O, filtered to remove the AgCl precipitate, then freeze dried to obtain solid 
AgNO3, which was then combusted to N2 in sealed quartz tubes for analysis by Integra CN mass spectrometer 
(Pdz Europa LTD) at Chiba University, Japan (Yingjie Cao, Tang, Song, Liu, & Zhang, 2012). All the samples 
were measured twice and the result showed the difference between the two measurements was less than ± 5%. 
Then the mean of two measurements was used as the value of δ15N-NO3

- in this study. 

2.3 Statistical Analysis 

Variables were tested using student t-test and principal component analysis (PCA), with SPSS 8.0 for Windows 
(SPSS, 1997, IL, USA). T-test was used to determine if two sets of data are significantly different from each 
other. The PCA is a data transformation technique that attempts to reveal a simple understanding structure that is 
assumed to exist within a multivariate dataset (Davis, 1986).  

3. Results 

3.1 Basic Parameters and Dissolved N2O in Upland Shallow Groundwater 

Samples were taken from W1 in July and November 2012, respectively. DO and ORP concentrations were 
higher in July (Table 1). pH values of groundwater were lower than 7 both in July and November. Groundwater 
temperature was little higher in July than that in November. NO3

--N and N2O-N concentrations were both higher 
in July than that in November.  

 

Table 1. Basic parameters and dissolved N2O of upland shallow groundwater in July and November 2012 

 N2O-N (µg L-1) DO (mg L-1) ORP (mv) NO3
--N(mgL-1) T (°C) pH 

Jul 14.73 9.29 325 34.74 18.3 6.94 

Nov 8.11 5.70 295 17.30 16.9 6.05 

 

3.2 Basic Parameters and Dissolved N2O in Wetland Shallow Groundwater 

Groundwater temperatures in the wetland ranged from 14.2 to 24.8 °C during the study period (Table 2). pH 
values of groundwater ranged from 6.53 to 7.97, indicating that the groundwater was alkaline except S14 which 
pH was lower than 7 during the warm season. DO concentrations ranged from 0.07 to 11.50 mg L-1. It was lower 
than 4 mg L-1, and as low as 0.07 mg L-1 in June at R2. At S4 and S14, the DO concentrations were lower than 5 
mg L-1 in the warm season, but up to 11.5 mg L-1 in the cool season (S14-3 m in November). ORP values ranged 
from -244 to 303 mV. At 1 m and 2m depth of R2, ORP values were below about 0 mV in the warm season with 
the lowest value of -189 mV. However, ORP was up to 175 mV in March. At 3 m depth of R2, ORP was above 
0 mV except in September (-244 mV). The NO3

--N concentration changed from 0 to 114.0 mg L-1 in study sites. 
At S4 and S14, most NO3

--N concentrations are clearly above the standard of the drinking water (10 mg L-1) set 
by United States Environment Protection Agency (Figure 3), whereas NO3

--N concentration was extremely low 
for detection at R2. NH4

+ and NO2
- were also measured with other major ions, and found below the detectable 

limit.  
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The scores represent the influence of the component on the groundwater (Figure 4). It is possible to group the 
samples according to the axes of component 1 and 2. As a result, the samples are classified into four groups to 
showing seasonal and spatial patterns. The samples of NS are plotted at the down-left of the diagram for the 
warm season and the down-middle for the cool season. On the other hand, the samples of ASW are plotted at the 
upper-left of the diagram for the warm season and the upper-right for the cool season.  

As the result of the groups from PCA, mean value, standard deviation and a t-test was conducted to find the 
difference and statistically significant differences of the variables between the ASW and NS, warm season and 
cool season (Table 5). NO3

--N, DO, ORP and N2O-N in groundwater were significantly higher at ASW than 
those at NS, whereas there was no significantly difference of temperature and pH between ASW and NS. For 
N2O-N, NO3

--N concentrations, and DO, variability was higher at ASW than those at NS on the basis of standard 
deviation. In contrast, variability of ORP was lower at ASW than it at NS. In addition, the mean N2O-N 
concentration at ASW was high (36.14 µg L-1), which was about 60 times of that in the ambient air. N2O-N 
concentration and temperature in groundwater were significant higher in warm season than those in cool season, 
and DO, ORP and pH were significantly lower in warm season. There was no significant difference of NO3

--N 
concentrations between two seasons which seems to be the rule rather than the exception. 

 

Table 5. Mean (m) and standard deviation (parentheses) of N2O, DO, ORP, NO3
- and T in shallow groundwater 

of ASW (n=36) and NS (n=18) 

Zone N2O-N (µg L-1) DO (mg L-1) T (°C) ORP (mV) NO3
--N (mg L-1) pH 

ASW 36.14* 5.22* 17.60 n.s. 237.00* 33.00* 7.24 n.s. 

 (23.79) (2.72) (2.84) (52.49) (22.08) (0.37) 

NS 9.27 1.85 19.10 -5.00 0.01 7.42 

 (13.87) (1.36) (2.98) (156.77) (0.36) (0.30) 

Warm 34.19** 2.17* 20.50* 117.19** 23.5n.s. 7.11* 

 (27.01) (1.30) (1.93) (162.66) (28.34) (0.30) 

Cool 20.19 6.03 15.6 209.67 20.6 7.49 

 (19.75) (2.65) (1.12) (135.12) (18.60) (0.31) 

n.s., Not significant (p > 0.05) 

*The difference between mean values is highly significant (p < 0.01) 

** The difference between mean values is significant (p < 0.05) 

 

4. Discussions 

4.1 Source of Dissolved N2O of Shallow Groundwater 

In order to estimate the concentration of N2O in groundwater, it is important to identify its source. Fertilizer and 
manure ammonium-nitrogen applied in the orchard are oxidized to nitrate-nitrogen and nitrous oxide in 
unsaturated zone of the upland. Nitrate leaches to the groundwater from unsaturated zone in the upland. 
δ15N-NO3

- value of W1 is coincided with range of δ15N-NO3
- (+4.5 ‰ to +8.5 ‰ ) in the area effected by mineral 

fertilizer (Cao, Sun, Xing, & Xu, 1991; Choi, Lee, & Ro, 2003; Choi, Han, Lee, Lee, & Yoon; Heaton, 1986; 
Singleton et al., 2007), indicating the dissolved N2O was produced via nitrification in the unsaturated zone of 
upland. DO concentrations were high at W1, indicating that denitrification could not occur. Nitrate and N2O 
transport from upland to wetland with groundwater consequently. N2O is difficult to denitrified to N2 because the 
groundwater in upland is often assumed to have low biological activity due to low C content (Groffman, Gold, & 
Jacinthe, 1998). Geistlinger et al. (2010) found there will be a diffusive N2O flux from the deeper water to the 
capillary fringe. However the time scale of this process is very large i.e., for 10 cm travel distance, the N2O 
molecules need ≈ 230 d. Thus, diffusive loss to upward is considered to have little effect on N2O concentration 
in the groundwater during transporting from upland to wetland.  

At the wetland, denitrification can enrich 15N in the residual nitrate of groundwater (Cey, Rudolph, Aravena, & 
Parkin, 1999; Lehmann, Reichert, Bernasconi, Barbieri, & McKenzie, 2003). δ15N-NO3

- in the residual nitrate 
enriched from 2.8 ‰ to 78.32 ‰ when the concentration of NO3

--N decreased from 35.68 mg L-1 to 0.45 mg L-1 
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in a sand aquifer (Böttcher, Strebel, Voerkelius, & Schmidt, 1990), and from 6.4 ‰ to 24.8 ‰ when the NO3
--N 

concentration decreased from 13.3 to 5.6 mg L-1 in a riparian zone (Cey et al., 1999) . In this study wetland, the 
δ15N-NO3

- enriched by 9.81 ‰ or even higher when the NO3
--N was no longer detectable. Therefore, dissolved 

N2O in the shallow groundwater of wetland consists of two parts, one from denitrification within the wetland, 
and another from the upland where nitrification is dominant.  

4.2 Spatial and Seasonal Pattern of Dissolved N2O in Shallow Groundwater of the Wetland 

The previous section suggested that the source of dissolved N2O of groundwater in wetland comes from 
nitrification in upland and denitrification in wetland. In the study wetland, denitrification controls the behavior of 
dissolved N2O. Because N2O is an intermediate product of denitrification that is producted when nitrate is 
reduced and is consumed by reduction to N2. Denitrification is considered to be related to many factors (DO, 
ORP, T, pH and NO3

-). For example, the highest concentrations of N2O were found in the aerobic section of a 
limestone aquifer with the DO concentration below 4.00 mg L-1 and in a phreatic aerobic aquifers with the DO 
concentration below 3.15 mg L-1 (Deurer et al., 2008; Ronen, Magaritz, & Almon, 1988). However, the optimal 
maximum DO concentration for nitrogen removal was determined to be around 2.0-2.5 mg L-1 in the laboratory 
experiments (Yoo et al., 1999). According the early study, Nelson and Knowles (1978) reported that the startup 
of denitrification can be inhibited while the oxygen level is as low as 0.13 mg L-1 in a dispersed-well sludge 
reactor. In the laboratory experiments, as the ORP drops below 0 mV, the nitrate begins to be converted to nitrite 
and nitrite accumulates continuously for ORP ranging from 0 to -225 mV. From -225 to -400 mV, the 
accumulated nitrite is converted to N2. As the ORP below -400 mV, the nitrate is firstly converted first to nitrite 
then the nitrite is converted immediately to N2 without accumulation (Lee et al., 2000). It also reported that ORP 
below about 200 to 300 mV were found to be conducive to denitrification, and the maximum N2O were found at 
a ORP value of 0 mV (Kralova, Masscheleyn, Lindau, & Patrick Jr, 1992). Therefore, the optimum value of DO 
and ORP for N2O accumulation is not consistent with the value of the optimum for denitrification due to the N2O 
is an intermediate product. For nitrate, DeSimone and Howes (1998) studied that kinetics of denitrification at 
nitrate concentrations >1 mg-N L-1 is zero order and even small amount of nitrate (lower than 2 mg-N kg-1) 
leached was sufficient to create a large amount of N2O in groundwater (Müller, Stevens, Laughlin, & Jäger, 
2004). Many studies suggested that high concentration of NO3

--N inhibits the N2O reductase yielding the higher 
concentration of N2O (Blackmer & Bremner, 1978; Deurer et al., 2008; Heisterkamp, Schramm, de Beer, & Stief, 
2012). At ASW, the DO (m = 5.22 mg L-1) and ORP (m = 237 mV) values were both higher than the optimum 
values respectively, as well as high concentrations of NO3

--N which were conducive to N2O accumulation (m = 
36.14 µg L-1 ) (Table 5). However, the mean value of DO concentrations (2.02 mg L-1) and ORP were much 
lower (-5 mV) at NS. Additionally, NO3

--N is low or undetectable throughout the study. Under these conditions, 
the N2O is used as an electron acceptor instead of nitrate in denitrification process(Ishii, Ohno, Tsuboi, Otsuka, 
& Senoo, 2011), resulting in the lower concentration (m = 13.87 µg L-1). Therefore, ASW and NS can be 
considered as in the stage 2 and stage 3, respectively. In addition, the average flux of N2O was found to be 
higher at ASW than it at NS (Li, Tang, Han, Cao, & Zhang, 2013) which is consistent with the trend of dissolved 
N2O.  

Seasonal changes of dissolved N2O are most associated with NO3
- concentration and water temperature 

(Bouwman, Boumans, & Batjes, 2002; Hinshaw & Dahlgren, 2013; Velthof, Oenema, Postma, & Van 
Beusichem, 1996). The T-test indicates that the concentrations of NO3

--N had no significant difference between 
the two seasons, which suggests NO3

--N is not the limited factor for denitrification rate in study wetland (Table 
5). Temperature affected the dissolved N2O directly by controlling the denitrification rate (Nowicki, 1994; 
Pfenning & McMahon, 1997; Saunders & Kalff, 2001). The threshold temperature for controlling the rate of 
denitrification was 20 °C (Halling-Sørensen & Jorgensen, 1993) or even below 17 °C (McCutchan & Lewis, 
2008; Nowicki, 1994). A study in coarse sandy soils found that the denitrification activity was low at 10 °C and 
completely inhibited at 2 and 5 °C because lower temperature may regulate metabolic rates for denitrifying 
bacteria (Vinther & Søeberg, 1991). Temperature also influences the solubility of oxygen, the rates of aerobic 
respiration of bacteria and the ORP change in groundwater, all of which in turn limit dissolved N2O indirectly. 
For example, the oxygen solubility is 14.60 mg L-1 at 0 °C , about double at 30 °C (7.54 mg L-1)(Weiss, 1970). 
Oxygen consumption by aerobic respiration increases when the temperature increases (Thamdrup, Hansen, & 
Jørgensen, 1998). When the temperature increased from 15 °C to 25 °C, the average ORP decreased from +40 
mV to -60 mV (Zhu, Ndegwa, & Luo, 2002). In warm season, denitrification rate supposed not to be inhibited by 
temperature (m = 20.5 °C). The lower DO and ORP of groundwater could be assumed as a response to the higher 
temperature in the warm season. The characteristics of these factors resulted in the higher N2O concentration in 
the warm season (m = 34.19 µg L-1) than it in cool season (20.19 µg L-1). In addition, the decrease of pH was 



www.ccsenet.org/ep Environment and Pollution Vol. 3, No. 1; 2014 

29 
 

interpreted as a sign of intense denitrification (Ilies & Mavinic, 2001). Mean value of pH is lower in the warm 
season (m = 7.11) than it in the cool season (m = 7.49), which also can explain the higher dissolved N2O 
concentrations in the warm season. The seasonal change of dissolved N2O coincides with N2O flux measured in 
the study wetland. In fact, the average monthly N2O flux ranged from 0.019 to 0.286 mg N m-2 h-1 with the 
highest value in the warm season and the lowest flux appeared in the cool season (Li et al., 2013). 

5. Conclusions 

N2O concentrations, denitrification related factors (NO3
-, DO, ORP, pH and T) and δ15N-NO3

- values were 
investigated in a typical headwater wetland and watershed. The main findings and conclusions are as follows: 

Spatially, NO3
-, DO and ORP are main factors to control the dissolved N2O in groundwater of study area. DO, 

ORP and NO3
- decreased continuously from upland to the wetland. Along the groundwater flow, the dissolved 

N2O was produced through nitrification at the upland and denitrification in the wetland, which is supported by 
the variations of δ15N-NO3

- in the shallow groundwater. The mean value of dissolved N2O-N increased from 
11.42 µg L-1 at upland to 36.14 µg L-1 at the ASW and then decreased to 9.27 µg L-1 at NS. The dissolved N2O in 
the ASW zone is expected to be composed of two parts. One is transported from the upland and the other is 
produced from denitrification in the wetland. As a result, the dissolved N2O in the groundwater can be classified 
into the stage 1 for the upland, the stage 2 for ASW and the stage 3 for NS in the study area. Seasonally, the N2O 
concentration was higher in the warm season (m = 34.19 µg L-1) and lower in the cool season (m = 20.19 µg L-1). 
Temperature and pH are main factors to control the dissolved N2O in groundwater of study area. Higher 
temperature results in higher denitrification rate by elevating metabolic rates for denitrifying bacteria directly, 
and creating the lower DO and ORP environment that affects the N2O concentration indirectly in the warm 
season. In addition, lower pH in the warm season also may explain the higher dissolved N2O concentrations 
because the decrease of pH is interpreted as a sign of intense denitrification. 

This study put forward an understanding of spatial distributions of dissolved N2O from upland (agricultural area) 
which related the materials transformation to groundwater flow system. Temperature is considered as the main 
driver to seasonal change of dissolved N2O in wetland groundwater.  
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