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Abstract 

A novel photocatalyst powder, BiOI/BiOBr/MoS2, was synthesized by a simple solvothermal method. X-ray 
diffraction (XRD), specific surface area and pore size analyses, scanning electron microscopy (SEM), 
transmission electron microscopy (TEM), and X-ray energy spectrometry (EDS) were utilized to characterize the 
prepared samples. After evaluating the photocatalytic performance of the catalyst, it was loaded on the glass 
fiber and carbon fiber by polyvinylidene fluoride (PVDF) and N-methylpyrrolidone, respectively. The 
photocatalytic activity of the composite was investigated by the degradation of ammonia nitrogen wastewater. 
The fiber cloth solved the problem of separation of powder from solution after reaction, and the presence of the 
binder reduces the agglomeration of the nanoparticles in the water. After four times repeated experiments, the 
degradation of simulate ammonia nitrogen wastewater by loaded glass fiber and loaded carbon fiber are 74.1% 
and 60.58%. Fixation of BiOI/BiOBr/MoS2 powders on fiber cloth solve the problem of difficult recovery of 
powder photocatalytic materials and it can be recycled, which has economic valuable. 

Keywords: Bismuth halide complex, BiOI/BiOBr/MoS2 loaded fiber, ammonia nitrogen wastewater, 
photocatalytic 

1. Introduction 

Ammonia is one of the major nitrogen-containing pollutants in wastewater (Lee, Park, & Choi, 2002), Ammonia 
mainly refers to the combined nitrogen in the form of ammonia ions and free nitrogen in water. The content of 
NH3 molecules and NH4+ ions in water mainly depends on the pH value, temperature, salinity and other factors 
of water. When pH<7, NH4+ ions are the main form of ammonia in water; when pH>11, NH3 molecules are the 
main form of ammonia in water (Hedstrom, 2001). NH3 is a nutrient source that can promote eutrophication and 
algal growth in natural water (Xiao, Qu, Zhao, Liu, & Wan, 2009), the occurrence of red tide is because of the 
algae bloom. Excessive amounts of NH3 in the environment can exert harmful on human health (Yuzawa, Mori, 
Itoh, & Yoshida, 2012). NH3 attacks the human respiratory system, skin and eyes, and exposure to high 
concentration (>300 ppm) may cause death (Netting, 2000; Saha & Deng, 2010). To degrade ammonia nitrogen 
in wastewater, several chemical and physical methods have been developed and applied. Such as biological 
denitrification, stripping, breakpoint chlorination and ion exchange (Ahmed & Lan, 2012; Degermenci, Ata, 
Yildiz, & Chemistry, 2012; Eilbeck, 1984; Ricardo, Carvalho, Velizarov, Crespo, & Reis, 2012). However, most 
of these methods produced secondary pollution. In order to find an efficient denitrification technology without 
secondary pollution, researchers began to investigated advanced oxidation processes (AOPs) applicability to the 
removal of ammonia from water (Bonsen, Schroeter, Jacobs, & Broekaert, 1997; Schmelling & Gray, 1995). 
Advanced Oxidation Process (AOPs) refers to a series of redox reactions that treat wastewater by generating and 
utilizing free radicals, such as hydroxyl radicals (Diya’uddeen, Daud, & Aziz, 2011; Fakhru’l-Razi et al., 2009; 
Ribeiro, Nunes, Pereira, & Silva, 2015; Shahidi, Roy, & Azzouz, 2015; Yu, Han, & He, 2017). The advantage of 
using AOPs to treat ammonia nitrogen wastewater is that this method is safety and friendly component for the 
environment. 

Photocatalysis is an advanced oxidation technology that coordinates the action of a catalyst under specific light 

sources to treat wastewater. Akira Fujishima and Kenichi Honda first discovered the phenomenon of light 

electrolysis of water on semiconductor materials in 1972 (Fujishima, Rao, & Tryk, 2000). The principle of 
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photocatalytic degradation of ammonia in water is that the redox reactions between the hydroxyl radicals (HO·), 

superoxide radicals (O ·) generated inorganic nitrogen ions during the photocatalytic process. Photocatalytic 

oxidation is achieved through hydroxyl substitution reactions, dehydrogenation reactions, and electron transfer 

processes. When the light intensity is greater than the semiconductor band gap, electrons are excited and 

electron-hole pairs generated on the catalyst surface. At the same time, the NOx molecules which adsorbed on 

the catalyst surface are seized by the electrons and oxidized (Zhao & Lou, 2008). Photocatalytic reduction refers 

to NO and NO  in wastewater which are reduced to N2 through a photocatalytic reaction. 
Degradation of ammonia nitrogen wastewater by photocatalytic can be expressed as the following formulas: 

NH4
+ + 2OH- → NO2

- + H2                                (1) 

2NO2
- + O2 → 2NO3

-                                   (2) 

NO3
- + 2H+ +2eab

- → NO2
- + H2O                             (3) 

NO3
- + 10H+ +8eab

- → NH4
+ +3H2O                            (4) 

2NO3
- + 12H+ + 10eab

- → 2N2 + 3H2O                           (5) 
Photocatalytic react through semiconductor materials. Semiconductors have a valence band (VB) and an empty 
conduction band (CB), with a forbidden band between them, so they can be used as a photosensitizer in the 
photooxidation process (Hoffmann, Martin, Choi, & Bahnemann, 1995). When a semiconductor material is 
illuminated at or above the bandgap width, the photogenerated holes on the valence band react with H2O to form 
hydroxyl radicals and the conduction band electrons react with O2 in the solution to form superoxide radicals 
(Yang, Wang, Yang & Yang, 2017; Liang & Li, 2009), which can reduce the ammonia in wastewater. Ternary 
semiconductor compound bismuth oxyhalide is a new p-type semiconductor, generally expressed as BiOX, (X=F, 
Cl, Br, I). Bismuth is a ternary semiconductor compound which has a layered structure formed by overlapping 
[Bi2O2]2+ layers and double X ion layers (Chang, Zhu, Fu, & Chu, 2013). Due to the relatively loose structure, 
the morphology of BiOX is usually shown as flakes or nano-flowers (Deng, Chen, Peng, & Tang). The valence 
band of Bi3+ is formed by the hybridization of the 2p orbital of the O atom and the 6s orbital of the Bi atom. The 
polarization between orbitals weakens the symmetry of the electronic structure and forms a dipole moment that 
broadens the valence band of the semiconductor, in that case, semiconductor valence band becomes higher, and 
forbidden band width becomes narrower (Stoltzfus, Woodward, Seshadri, Klepeis, & Bursten, 2007). According 
to the calculation of density functional theory, the band gaps of BiOF, BiOCl, BiOBr, and BiOI are 3.34, 2.92, 
2.65, and 1.75eV, respectively. Compared with TiO2, BiOX has a narrow band gap and a high usage of visible 
light, it is an efficient and economical semiconductor photocatalytic material. 

Heterojunction is a crystalline interface formed by two contacting catalysts which have similar band structure. 
Lin and Lee synthesized a PbO2/BiOBr composite by hydrothermal method, and determined its catalytic 
performance by the degradation efficiency of the crystal violet (CV) under visible light irradiation (Lin et al., 
2016). The experimental results show that the reaction rate of the composite material is three times higher than 
that of PbO2 and two times higher than that of BiOBr, which indicates that the existence of heterojunctions 
inhibits photo-generated electron-hole recombination and improves the catalytic efficiency. 

One of the major limitations in the application of the photocatalytic process in wastewater is the separation of 
powder from solution after reaction (Mohammadi, Sharifnia, & Shavisi, 2016). Immobilization of photocatalysts 
over a support, such as silica, zeolite and polymers have been used to overcome this disadvantage (Ali, Ismail, 
Najmy, Alhajry, & A-chemistry, 2014; Park, Park, Kim, Choi, & Reviews, 2013; Tseng et al., 2012). Shi and Cui 
studied photocatalytic activity of TiO2 coated on an activities carbon fiber, the decoloration of methylene blue by 
TiO2/ACFs showed a high degradation efficiency (Shi et al., 2012). 

In this paper, BiOI, BiOBr and MoS2 composite particles were prepared by a solvothermal method and the 
morphology and structure of the samples were characterized. The simulate ammonia wastewater was degraded 
by composite materials, and the photocatalytic properties of the different samples were compared. To solve a 
problem where the photocatalytic material could not be recovered in practical applications, a photocatalytic 
material with a high degradation performance was selected to be coated on fiber cloth, and examined for its 
degradation efficiency after repeated use. 
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2. Experimental Section 

2.1 Materials 

Bi(NO)3·5H2O (2 mmol) was dissolved in anhydrous ethanol (30 mL) and stirred for 30 min as solution A. KI 
(1.2 mmol) and cetyltrimethylammonium bromide (1 mmol) (CTAB) were weighed and dispersed in deionized 
water (30 mL) and stirred for 30 min as solution B. Solution B was slowly added into A and stirred until the 
liquid turned orange-red. MoS2 with a mass fraction of 0/0.5/1/2 wt% was added into the turbid liquid, mixed 
evenly and transferred to a 100-mL reaction kettle, which was then reacted in an oven at 160°C for 24h. After the 
reaction was completed and the product was cooled, the precipitation was cleaned and dried in an oven at 60°C 
for 12 h. BiOI/BiOBr/MoS2 composites with different proportions were then obtained. 

Glass fiber and carbon cloth were baked in a muffle furnace at 600°C for 3 h as pretreatment. The catalyst 
powder (50 mg) was uniformly mixed with polyvinylidene fluoride (5 mg) (PVDF), and an appropriate amount 
of N-methylpyrrolidone was added. The mixture was uniformly loaded on the fiber cloth with a brush after 
stirring and sonication. 

2.2 Characterization 

The crystal structure of the photocatalyst was examined by X-ray diffraction (XRD, D2-PHASER), with an 
X-ray diffractometer using CuKɑ (λ=1.5406Ȧ) radiation in the 2θ range of 5-40°. The Brunauer-Emmett-Teller 
(BET) method was used to calculate the specific area (SBET) based on the adsorption isotherm. The average pore 
diameter was obtained from the N2 sorption/desorption isotherm, which was measured on a Quantachrome 
NOVA 4000e at -196°C. The morphology and surface characteristics of the sample were observed by scanning 
electron microscopy (SEM, HITACHI TM3030) and transmission electron microscopy (TEM, JEOL-2100F). 
The synthesis status of the composite was determined by energy dispersive spectroscopy (EDS, JOEL 
JPS-9030). 

2.3 Photocatalysis Experiment 

Ammonium chloride (NH4Cl) was used to simulate ammonia nitrogen wastewater, 30 mg/L, 50 mg/L, 70 mg/L, 
and 100 mg/L ammonium chloride solutions were configured. At room temperature, catalyst powder (30 mg) 
was dispersed in simulated wastewater (30 mL) under magnetic stirring. The light source was placed 40 cm 
above the vessels for the catalytic experiment. Before each light experiment, the catalytic system was stirred in 
the dark for 30 min to achieve a dynamic adsorption equilibrium. After the catalysis experiment, the supernatant 
was subjected to a Nessler colorimetric method. 

The removal rate is calculated based on the measured nitrogen concentration of the simulated wastewater, and 
the calculation formula is: 

	 	                                    (6) 

Where C represents the initial nitrogen concentration, C0 represents the testing nitrogen concentration. 

2.4 Loaded Fiber Repetitive Experiments 

When performing repetitive experiments, a simple shallow pool reaction device was established as the reaction 
area, and the simulated ammonia nitrogen wastewater was smoothly and evenly pumped into the shallow tank 
reactor by peristaltic pump. The remainder of the simulated wastewater was stored in a beaker. A 500 W xenon 
lamp was placed 40 cm above the liquid level to simulate sunlight. Samples were taken from the beaker every 30 
min for nitrogen content testing. Four replicate experiments were performed on each fiber, and each result was 
compared with the degradation results of the first experiment to investigate whether the material was reusable. 
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Figure 7. Degradation of simulate ammonia wastewater by loaded glass fiber and loaded carbon fiber 

 

4. Conclusion 

Composites were prepared by a solvothermal method. The photocatalytic performance of different catalytic 
materials was investigated by morphology, structure and their photocatalytic effects on ammonia wastewater. 
Compared to BiOBr monomer, BiOI/BiOBr/x wt% MoS2 have higher photocatalytic activity because of the 
presence of heterojunctions. BiOI/BiOBr/1 wt% MoS2 composite showed the highest photocatalytic efficiency of 
degradation of simulate ammonia wastewater. The addition of MoS2 enhances the nonselective adsorption of 
materials. However, the excessive doping of MoS2 may reduce the pore size and decrease the photocatalytic 
activity of the catalytic. The BiOI/BiOBr/1 wt% MoS2 material retains a degradation efficiency around 80% 
when loaded onto a fiber cloth. After four repeated experiments, the recovery ratio of the loaed glass fiber and 
loaded carbon fiber are 74.1% and 60.58%. The fiber cloth provides more catalytically active sites, and the 
presence of the binder reduces the agglomeration of the nanoparticles in the water. The loaded fiber cloth 
prepared in this paper have high photocatalytic activity and can be repeatedly used, which is an economically 
valuable photocatalytic material. 
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