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Abstract 
Eastern redcedar (Juniperus virginiana L.) is rapidly encroaching and degrading native prairie and rangeland 
landscapes in the Great Plains of the U.S. Little is known concerning the impacts of increasing redcedar density 
and areal coverage on local and regional water budgets through transpiration (Tr) and canopy interception (CI) of 
precipitation. Limited Tr and CI studies have been conducted in dense stands of redcedar but results from these 
studies may not be applicable to redcedar growing in open environments. Four redcedar trees (two large, two 
small) were located in central Oklahoma to measure Tr. Two limbs (one on the north face and one on the south 
face) on each of the large trees were instrumented with sapflux sensors to measure Tr from August 2010 through 
mid-July 2012. Limb level Tr was scaled to tree level Tr using ratios of both leaf and bole areas. Whole tree Tr 
was measured on two small redcedar trees from mid-May 2011 through mid-July 2012. Transpiration of the 
small redcedars was found to respond quickly to precipitation events, while the large redcedars did not. Redcedar 
Tr was compared to that of native grasses. The large redcedars exhibited higher Tr rates than native grasses while 
the small redcedars transpired at rates closely matching native grasses. Four different redcedars were 
instrumented to measure CI from October 2009 through mid-July of 2012. Redcedar canopies were found to 
intercept 100% of precipitation for events ≤ 2.4 mm. Redcedar canopies reduce annual precipitation received at 
the surface by about 33%, and as much as 39% in the western portion of the state. Significant canopy 
interception of precipitation, coupled with Tr rates as large as or larger than native grasses and with year-round Tr, 
suggests increases in redcedar density and areal coverage could affect local water resources (e.g. reducing 
infiltration, runoff, and ground water recharge rates).  
Keywords: juniper, transpiration, canopy interception, leaf area, sap flux, water use 
1. Introduction 
Eastern redcedar (Juniperus virginiana L.), herein referred to as redcedar, is a coniferous evergreen species 
common to the eastern half of the U.S. (Lawson, 1990). In recent decades, it has been rapidly encroaching and 
degrading native prairie and rangeland landscapes in the Great Plains of the U.S. McKinley, Norris, Blair and 
Johnson (2008) state that redcedar has encroached upon about 7 million hectares of grasslands in the eastern 
portion of the Great Plains. Historically, native prairies experienced periodic burns that destroyed redcedar 
seedlings and limited their encroachment (Abrams & Gibson, 1991; Van Auken, 2000). Woody plant invasion of 
prairies and the effects of fire exclusion on structure and function of prairie systems have been clearly 
documented (Bragg & Hulbert, 1976; Abrams & Gibson, 1991). Snook (1985) estimated 600,000 hectares of 
Oklahoma’s native grassland had been encroached upon by redcedar as early as 1950. Recent estimates indicate 
as much as 3.2 million hectares of grassland have been encroached by redcedar in the state (Drake & Todd, 
2002), and suggest an average rate of land encroachment of approximately 121,400 hectares per year. 
Invasive alien and aggressively encroaching native plant species are of worldwide concern (Clout & Poorter, 
2005), as they reduce biodiversity (Horncastle, et al., 2005; Le Maitre et al., 2011), may negatively impact soil 
processes and nutrient cycling (Blank, 2008; Corbin & D’Antonio, 2014), and reduce land available for 
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production of food and fiber (Engle, 1985; Le Maitre et al., 2011). Considerable research has been conducted 
assessing the impacts of invasive plant species on local and regional hydrology (Le Matire et al., 2011). Le 
Maitre et al. (2002) studied the impact of invasive alien trees in the Sonderend, Keurbooms, Upper Wilge, and 
Sabie-Sand catchments in South Africa. At the time of the study (2002), 44, 54, 2, and 23%, respectively, of 
each catchment had been invaded by non-native trees resulting in 7.2, 22.1, 6.0, and 9.4% reductions in river 
flow. These authors stated that given an annual expansion rate of 10–15% that 51, 77, and 70% of the Sonderend, 
Keurbooms, and Upper Wilge catchments would be invaded by alien trees in 13 to 63 years. The invadable areas 
of the Sabie-Sand catchment were deemed already invaded, but tree density would further increase leading to 
100% canopy cover in 26-30 years. Resulting projected reductions in river flows would increase to 41.5, 95.5, 
25.1, and 22.3%. Doody and Benyon (2011) showed that invasive willows (Willow spp.) growing within (i.e., 
with permanent access to water) Australian streams had peak Tr rates of 15.2 mm d-1, and that these willows had 
evapotranspiration (ET) rates greater than open water even when the trees were subjected to drought, heat stresss, 
and insect infestations. These authors calculated that over a three-year period a water savings of 5.5 ML yr-1 ha-1 
of vertically projected crown area could be achieved by removing in-stream willows. 
There is some concern that an increase in redcedar density and areal coverage may affect local water budgets 
through increased transpiration (Tr) and canopy interception (CI) of precipitation over that of the grassland 
communities that redcedar typically replaces. It is the semi-arid and transitional zones between semi-arid and 
humid regions where impacts of redcedar encroachment are most likely to have a noticeable impact on local and 
regional hydrology (Huxman et al., 2005). Owens, Lyons, and Alejandro (2006) showed Ashe juniper (J. ashei) 
canopies completely captured precipitation amounts < 2.5 mm per storm, while intercepting about 20% of 
precipitation in storm amounts > 70 mm over a 15 hour period. Thurow and Hester (1997) found 27% and 37%, 
on average, of gross precipitation was intercepted by redberry juniper (J. pinchotii) and Ashe juniper, 
respectively. Eddleman (1986) and Larsen (1993) reported up to 74% of precipitation was intercepted by western 
juniper (J. occidentalis) in central Oregon.  
Dugas, Hicks, and Wright (1998) used the Bowen ratio energy balance approach to measure actual 
evapotranspiration (ETa) of Ashe juniper in Texas and found average water use rates of about 1.9 mm d-1 during a 
March through October measurement period. Lane and Barnes (1987) used a water balance approach to estimate 
water use of Utah juniper (J. osteosperma), with and without mixtures of Pinyon pine (Pinus edulis), in Arizona, 
Utah, and New Mexico. The ETa ranged from 414 mm yr-1 (1.13 mm d-1) in Arizona to 121 mm yr-1 (0.33 mm d-1) 
in New Mexico. These researchers also showed ETa for an Arizona site dominated by alligator juniper (J. 
deppeanna) was about 432 mm yr-1 (1.2 mm d-1). Leffler, Ryel, Hipps, Ivans, and Caldwell (2002) measured an 
ETa of 0.85 mm d-1 from March to October in Utah juniper using an Eddy covariance approach in Utah.  
Water use studies on eastern redcedar are few in number (Huddle, Awada, Martin, Zhou, & Pegg, 2011). 
Duesterhaus (2008) measured CI in a dense stand of redcedar of about 45 years in age in the Kansas Flint Hills 
(sub-humid climate) and found it varied from 17 to 77% of total storm precipitation, depending upon storm size 
and intensity. Annual average CI was about 52%. Duesterhaus (2008), using eddy covariance techniques at the 
same site, measured ETa over the course of a year and found rates of about 2.4 mm d-1. Landon, Rus, Dietsch, 
Johnson, and Eggemeyer (2009) used sap flow velocity techniques on a 15.2 cm diameter redcedar located in a 
riparian zone of the Republican River in Nebraska and found redcedar Tr varied from 0.76 to 0.98 mm d-1 over 
the course of a six month study period. Awada et al. (2012) used sap velocity measurements on selected trees 
within an even-aged (about 58 years old) stand of redcedar in the semi-arid Sandhills of Nebraska and reported 
annual average T of about 1.1 mm d-1. 
All of the redcedar studies mentioned above were either conducted on a whole tree-stand basis or individual trees 
within a stand. Moore and Owens (2006) demonstrated that Ashe juniper juveniles released from the effects of 
an adult overstory transpire more water and assimilate more carbon than either Ashe juniper grown in open 
conditions or trees grown in stands. Transpiration and carbon assimilation of open grown Ashe junipers was 
intermediate between that of the released juveniles and adult trees growing in dense stands. Thus, measurement 
of Tr within dense stands of redcedars may not reflect that measured in redcedars growing in open conditions. 
This may be due to differences in microclimates experienced by each tree (e.g., reduction of solar radiation on 
trees within the stand canopy, reduction of wind speed within the stand, higher vapor pressure within dense 
canopies, etc.). Many fields impacted by redcedar encroachment do not currently represent thick stands of trees, 
but have a number of openly growing redcedars of various sizes. Thus, it would be instructive to measure Tr and 
CI of redcedars growing in open environments.  
The objectives of this paper are: 1) to report on long-term measurements of Tr, CI, stem flow (SF), and 
throughfall (TF) for redcedar in central Oklahoma, which is located in a transitional zone between semi-arid and 
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2.2 Canopy Interception 
Canopy interception is calculated as: 

CI =GP – TF – SF.                                     (1) 
Gross precipitation (GP) is the total amount of precipitation that falls within the vertically projected canopy area 
of a given redcedar, and was calculated from precipitation measurements and vertically projected canopy area. 
All units in Equation 1 are in mL. Vertically-projected redcedar canopy area was determined by measuring the 
least and greatest diameters of the drip line and using the mean diameter to calculate the canopy area as a circle 
(Engle and Kulbeth, 1992). The increase in canopy area and its impact on GP computations was accounted for by 
adjusting canopy area on a monthly basis at the rate calculated by linear interpolation using beginning-of-study 
and end-of-study canopy area measurements and time. For each tree in the study, a power function was fit 
through the CI versus precipitation data. The data were linearized and the functions were analyzed for statistical 
differences between slopes and intercepts of the separate functions. 
A tipping bucket rain gauge, located in an open area at each site well away from any obstructions, was used to 
measure 5-minute precipitation, from which GP was calculated. To measure TF, three transects were laid out 
equidistant from each other under each tree. Three 7.6 L plastic buckets (collection area = 405 cm2) were placed 
on each transect and leveled; one near the base of the tree, one just inside the drip line of the tree, and one 
midway between the other two. Total water volume collected from the nine buckets was averaged and multiplied 
by the ratio of throughfall bucket surface area to vertically projected canopy area to estimate total TF. 
Precipitation collected in these containers was measured using a graduated cylinder. Only data collected within 
one to two hours after a precipitation event were used in this study to minimize the impact of evaporation from 
the through fall collectors. Frozen precipitation was not measured in this study. Stem flow was collected by 
placing a collar around the base of the tree just below the branch line and funneling it into a sealed 56.7 L plastic 
drum. The collar was constructed of large diameter, thick-walled garden hose and secured tightly to the tree 
using heavy gauge wire passed through the center of the hose. To prevent leaking around the collar, silicone was 
placed in the valley formed by the trunk of the tree and the hose.  
2.3 Effective Precipitation 
The interaction of redcedar canopies and local precipitation characteristics will vary across precipitation 
gradients and this variation will affect the amount of overall precipitation reaching the soil surface below the 
canopy. We use the functions derived in Section 2.2 and daily precipitation data (1 January 2011 through 30 
June 2012 time period) obtained from meteorological stations (i.e., Mesonets) (McPherson et al., 2007) located 
at three climatically distinct locations in Oklahoma to calculate average (based on the four functions) annual 
percent reductions in precipitation received beneath the redcedar canopies (i.e., “effective precipitation”). These 
locations are Woodward, OK (lat 36o26’01’’N, long 99o23’25”W) in northwest Oklahoma, El Reno (central 
Oklahoma), and Broken Bow (lat 34o01’46”N, long 94o44’21”W) located in southeast Oklahoma (Figure 1). 
Woodward receives about 600 mm of annual precipitation compared to 870 mm and 1400 mm for El Reno and 
Broken Bow, respectively (National Climatic Data Center, 2002).  
2.3 Transpiration 
Sapflux (F) was measured using Dynagauge sap flow sensors (Dynamax, Inc., Houston, TX) that use an energy 
balance approach to estimate transpiration (Sakuratani, 1981; Baker and Van Bavel, 1987; Steinberg, Van Bavel 
& McFarland, 1989). These sensors require no calibration or insertion of a heater or thermocouples into the stem. 
The sapflux sensor consists of a heater strip and thermopiles above and below the heater. A constant current is 
supplied to the sensor and the voltage monitored to precisely ascertain the amount of energy supplied to the 
heater. Temperature differences above and below the heater are used to measure heat conducted in the stem, and 
the amount of heat lost to the ambient conditions (i.e., radial heat flux) is measured by a thermopile placed 
adjacent to the heater (Dynamax, 2005). The F is then calculated from the following: 

                                  F = Qf / (Cp * ΔT),                                      (2) 
where Qf is the amount of power input (J s-1), Cp is the specific heat of water (J g K-1), and ΔT is the temperature 
differential (K) between the upper and lower thermopiles of the sensor. In Equation 2, F is the flux rate of sap in 
grams per second (g s-1). Because sap is ≈ 99% water, F is a reasonable and direct estimate of Tr, especially 
when integrated over daily and longer time periods (Dynamax, 2005). Thus, in this study F = Tr. 
Uneven irradiance of a tree canopy may cause Tr to vary within the canopy (Steinberg, McFarland, 
&Worthington, 1990; Cermak, Jenik, Kucera, & Zidek, 1984). Thus, for the two larger trees used in the 
transpiration study (T1, T2), two limbs on each tree (one on the north/ northeast tree face the other on the south 
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tree face) were identified for installation of sapflux sensors (described below). Limb circumference above and 
below each sensor was measured and for each limb the average cross-sectional area determined. The sensors 
were installed and maintained periodically according to manufacturer instructions. The small redcedars at Site 2 
were fitted with appropriate-sized sap flow sensors at each tree’s base to measure whole tree Tr.  
Bole cross-sectional area and vertically-projected canopy area were determined for all trees used in the 
transpiration study. Bole cross-sectional area was calculated from circumference measurements of the trunk at 30 
cm above the ground for T1 and T2, and at 10 cm above the ground for T3 and T4. The height of measurement 
was selected as the mid-pont distance between the soil surface and the bottommost limb on a given tree. Bole or 
limb cross-sectional areas and thermal conductivity of the wood (k = 0.42 W m-1K-1); Dynamax, 2005) were used 
in the initial calculations of F (Equation 2). During post-processing of the data, the sheath conductance of the 
sensor was adjusted daily as needed using sensor data obtained during zero sap flow conditions (predawn) 
(Dynamax, 2005). Additionally, the stem cross-sectional area was adjusted as needed to account for increased 
girth during the primary growing period. Thirty-minute totals of F (i.e., Tr) were measured. 
For T1, measurements were made from October 2010 through early June of 2012. Measurements on T2 
commenced on November 2010 and ended on August 2011. One of the two sensors on T2 failed in early 2011, 
limiting usable data from this tree. Measurements at Site 2 began in May 2011 and were terminated in early June 
of 2012. Only the data for 2011 and 2012 from T1, T3, and T4 are reported herein. The daily Tr values were 
normalized using tree leaf area (Steinberg et al., 1990) and AGDM to facilitate comparison of Tr between trees 
on both a daily and monthly basis. 
2.4 Leaf Area 
Hicks and Dugas (1998) produced two equations for predicting leaf area of Ashe juniper: one predicting total 
tree leaf area from tree vertically projected canopy area (r2 = 0.97), and one predicting shoot (small branches 
radiating from the basal crown) leaf area from shoot cross-sectional area (r2 = 0.93). Tree canopy areas in their 
study ranged from about 0.87 to 23 m2, and shoot cross-sectional areas ranged from 0.000002 to 0.009 m2. They 
suggested these equations could produce accurate estimates of leaf area for redcedar, but these relationships 
should be validated. Kiniry (1998) developed two equations to predict total tree leaf area of redcedar based on 
tree mass; one equation for trees with above-ground, oven dry biomass (AGDM) between 0.44 and 2.5 kg 
(r2=0.94) and one for trees with AGDM < 400 g (r2 = 0.97). Kiniry (Personal Communication) made 
measurements of bole and canopy diameters on selected redcedars during the original study, but these data were 
not included in the original analysis. We hypothesized that a single equation could be developed from these data 
to predict leaf area of Ashe juniper and redcedar. We compiled the datasets of Hicks and Dugas (1998) and 
Kiniry (Personal communication) and conducted an analysis of variance and t-tests to determine if slopes and 
intercepts were of the two species-specific data sets were statistically different. 
2.5 Canopy Area vs. AGDM 
In an earlier study, Starks, Venuto, Eckroat, and Lucas (2011) showed redcedar canopy area is strongly related to 
its AGDM. A portion of that study was conducted at locations near and at Site 2 of this study, and an analysis of 
that data is reported here. At these locations, four 900 m2 plots (30 m x 30 m) were randomly identified for 
destructive tree harvest. Before trees were harvested, canopy diameters of 142 trees were measured. 
Vertically-projected redcedar canopy area was determined using the same method described above. All trees 
were cut at ground level, numbered, and basal bole diameter and tree height recorded. All trees were weighed on 
a portable platform scale, and a 3 to 5 cm thick cross section of bole was cut from the base of each tree to 
determine moisture content. Representative stems and branches were fed through a shredder, and dried, along 
with the boles, in a forced-air oven at 60oC to a constant mass to determine moisture content. The leaf area and 
AGDM data are used to facilitate comparison of transpiration between the two size classes of redcedars. 
2.6 Scaling Factors 
Scaling factors were developed to estimate whole-tree Tr from the branch level measurements made on T1 and 
T2. The scaling methodologies were: 1) ratios of bole cross-sectional area to limb cross-sectional area, and 2) 
ratios of tree leaf area to limb leaf area. For T1, the two limb ratios for a given scaling methodology were 
averaged. Because of sensor failure on T2, only the north limb data were used to compare scaling factors. The 
scaling factors were calculated for the beginning of each month in 2011 for T1, and for the months 
September-December, 2010 and January-March, 2011 for T2.  
 
 



www.ccsenet.org/enrr Environment and Natural Resources Research Vol. 4, No. 3; 2014 

109 

2.7 Ancillary Data and Measurements 
ETp is a measure of atmospheric demand and is used herein for qualitative comparison with Tr. Daily ETp was 
calculated using the FAO Penman-Monteith equation (Allen, Pereira, Raes, & Smith, 1998), as implemented in 
the reference ET calculator developed by Raes (2009). Required weather data were obtained from the El Reno 
Mesonet station (lat 35°32’54” N, long 98°2’11” W, 419 m above mean sea level) and included maximum, 
minimum, and mean air temperature and relative humidity, average daily dew point temperature, average daily 
wind speed, and total incoming solar radiation. A crop resistance value of 70 s m-1 is used by ET calculator. 
Description of the Mesonet, its instrumentation and data collection and quality assurance measures can be found 
in Brock et al. (1995) and McPherson et al. (2007). 
Redcedar typically encroaches in unmanaged grassland areas in Oklahoma. Therefore, comparison of redcedar Tr 
with ETa of grasslands provides an assessment of potential hydrological impacts of redcedar encroachment of 
grassland areas. ETa measurements were made over native grassland by the U.S. Department of Energy (DoE) 4 
km east of Site 1 using an energy balance Bowen ratio (EBBR) system. Although located some distance from 
Site 1, the EBBR data are reflective of native grass ETa in the area. The “best estimate of EBBR” data was 
obtained from the DoE data archives (http://www.archive.ar.gov/). Measurements began at this site in the 
summer of 1997 and continued through August 2011. Thus, only eight months of ETa were available for 
comparison with large redcedar Tr and only 3 months of data for comparison with the small redcedar Tr. Daily 
totals were calculated from half-hourly data. 
Soil water content also impacts plant transpiration. Hourly volumetric soil moisture (θv) measurements at five 
depths (5, 10, 20, 50, and 100 cm) were made adjacent to the DoE site by the Natural Resources Conservation 
Service (NRCS) from the summer of 1997 to present using hydra probe (Stevens Water Monitoring, Inc., 
Portland, OR) soil moisture sensors. The θv data corresponding to the study period were downloaded from the 
NRCS web site (http://www.wcc.nrcs.usda.gov/scan/Oklahoma/oklahoma.html). Daily averages were computed 
from the hourly data and used to help interpret differences and variations in redcedar Tr. 
3. Results 
3.1 Weather Conditions During the Study 
Annual precipitation in 2011 for Canadian County was about 74% of normal (Figure 2), although during the 
main part of the growing season (April – August) precipitation was only about 57% of normal. Mean daily air 
temperatures were mostly above normal for most of 2011 and well above normal from April through August 
(average of about 112% above normal). Below average precipitation coupled with much above normal air 
temperature created severe drought conditions during much of the year. Greater than normal precipitation during 
November 2011 through March of 2012 briefly interrupted the drought. However, below normal precipitation 
and above normal air temperatures returned in May 2012 and lasted through the remainder of the study period. 
3.2 Leaf Area and AGDM 
The leaf area vs. bole diameter data of Kiniry (n = 22, Personal Communication) and the leaf area vs. shoot 
diameter data of Hicks and Dugas (n = 36; Dugas, Personal Communication) were analyzed for statistical 
similarity of slopes and intercepts. Results from the statistical analysis revealed equal variances in both the 
bole/shoot (P < 0.05) and leaf area (P < 0.05) data and no statistical difference in either slopes or intercepts (P < 
0.05) between the two data sets. Thus, the two data sets were combined and a linear regression of full cylinder 
leaf area on bole (i.e., stem) diameter was performed resulting in the following relationship: 
                                y = (4810.8 * x) – 0.1414                                   (3) 
where x is the bole (shoot) cross-sectional area (m2) and y is the resulting full cylinder leaf area (m2) (r2 = 0.97). 
Because of the statistical similarity of leaf areas vs. stem cross-sectional areas for both Ashe juniper and 
redcedar (small diameter trees), it was assumed the canopy area vs. leaf area relationships of Hicks and Dugas 
(1998) would be adequate to estimate redcedar leaf areas for the trees at both Sites. 
Individual redcedar canopy area, measured by Starks et al. (2011) for 142 redcedars at Site 2, averaged 6.2 m2. 
Tree canopy area was highly correlated with individual tree weight (r = 0.97; P < 0.0001) and, of all parameters 
measured, tree canopy area was the best indirect indicator of individual tree mass. The canopy area (x) vs. 
AGDM (y) of Kiniry (Personal Communication) was combined with these data to provide relationships between 
canopy area and dry weight over a large range of tree sizes. The data were fit with a second-order polynomial 
(Equation 4) and revealed a strong relationship (r2 = 0.98).  
                              y = 0.1437*x2 + 4.0889*x                                     (4) 
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Table 2. Vertically projected canopy area of Eastern redcedar trees used in the precipitation interception study  
Tree ID Date Canopy Area Rate of Increase‡ Rate of Increase† 

  m2 m2 d-1 m2 d-1 
CI 1 1 Oct 2009 11.86

 12 Jul 2012 31.42 0.0193 --
  

CI 2 1 Oct 2009 14.82
 12 Jul 2012 26.92 0.0119 --
  

CI 3 1 Oct 2009 9.3
 25 Oct 2011 13.63 0.0057 --
 8 Nov 2011 18.10 0.0115 0.319 
 12 Jul 2012 24.08 0.0146 0.0242 
  

CI 4 1 Oct 2009 19.76
 25 Nov 2010 24.3 0.0117 --
 12 Jul 2012 33.6 0.0136 0.0149 

‡ Using first date of measurement as base. 
† Using previous year's measurement as base. 
 
Table 3. Selected characteristics of redcedars used in the transpiration study. Trees T3 and T4 were whole-tree 
measurements; thus, north and south limb data are not relevant (NR) 
 Cross-sectional or Surface Area‡

Tree 
ID 

Date Height 
Bole 

South 
Limb 

North 
Limb Canopy

Tree
AGDM† 

Tree Leaf 
Area§ 

South Limb 
Leaf Area¶ 

North Limb
Leaf Area¶ 

  m --------------------- m2 ---------------------- kg ---------------------- m2 ----------------------
T1 27 Aug 

2010 
5.5 0.07 0.0031 0.00206 29.90 250.7 352.3 14.7 12.4

 12 Jul 
2012 

NR 0.11 0.0031 0.0028 43.80 454.8 524.6 17.2 16.7

T2 08 Nov 
2010 

5.5 0.07 0.0033 0.0033 30.42 257.4 358.7 15.7 5.9

 12 Jul 
2012 

NR 0.08 0.0050 0.0033 38.04 363.5 453.2 24.5 5.9

T3 10 May 
2011 

1.55 0.00114 NR NR 0.83 3.5 5.3 NR NR

 04 Oct 
2011 

1.78 -- NR NR 0.92 3.9 -- NR NR

 10 May 
2012 

1.91 -- NR NR 1.34 5.7 -- NR NR

 12 July 
2012 

2.08 0.00185 NR NR 1.89 8.2 8.8 NR NR

T4 10 May 
2011 

0.91 0.00079 NR NR 0.47 2.0 3.7 NR NR

 04 Oct 
2011 

1.17 -- NR NR 0.74 3.1 -- NR NR

 12 Jul 
2012 

1.24 0.00116 NR NR 0.78 3.3 5.4 NR NR

‡Cross-sectional surface area shown for bole and limbs, vertically projected surface area is shown for the 
canopy. 
†Above ground dry mass calculated from Equation (4 ). 
§Estimated from: tree leaf area (m2) = 12.4 * x -18.5 (Hicks and Dugas, 1998), where x = canopy area in m2. 
¶Estimated from Equation (3). 
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3.3 Other Tree Measurements 
Canopy areas at the end of the CI study were two to three times larger than that measured at the beginning of the 
study (Table 2). The rate of increase in canopy area was from 0.01 to 0.02 m2 d-1. More frequent measurements 
of canopy area on tree CI 3 indicated the rate of canopy area increase varied from year to year.  
Despite being of similar size at the start of the study (Table 3), T1 and T2 differed considerably in most aspects 
by the end of the study. T1 showed the largest increase in bole diameter, canopy area, AGDM, and tree level leaf 
area. Canopy area of T1 increased by1.5 times over the study period (0.02 m2d-1) and its AGDM increased 204 
kg (0.3 kg d-1), while T2 increased its canopy area by 1.25 times and it’s AGDM by only 106 kg (0.2 kg d-1). 
Over the course of the study period, T3 increased in height at a rate of about 1.2 mm d-1 and increased its canopy 
area by about 24.7 cm2 d-1 (Table 3). Bole area of this tree increased about 0.6 cm2 d-1, above ground dry mass 
increased from 3.5 to 8.2 kg (0.01 kg d-1), and leaf area increased 82 cm2 d-1 over the study period. T4 height 
increased at a rate of about 0.7 mm d-1, canopy area increased about 7.2 cm2 d-1, AGDM increased from 2.0 to 
3.3 kg ( 0.003 kg d-1), while its leaf area increased from 3.7 to 5.4 m2 (40 cm2 d-1).  
3.3 Canopy Interception 
Evaluation of the tipping bucket rain gage data collected at each site revealed that mean precipitation, per event, 
at Site 1 was higher than at Site 2 (Table 4), but both sites exhibited similar median values. Precipitation was 
more variable at Site 1, and both maximum and minimum precipitation totals were higher. Precipitation events 
tended to last longer than at Site 1, but Site 2 tended to experience more intense precipitation events. 
 
Table 4. Descriptive statistics for total precipitation, storm duration, and storm intensity (= total precipitation / 
storm duration) for rainfall events occurring at each site 

Statistic Total Precipitation Storm Duration Storm Intensity 

 mm Min mm hr-1 
Site 1 (n = 62) 
Mean 15.72 584 4.31 
Median 10.46 355 1.83 
Standard Deviation 17.83 825 6.15 
Maximum 74.20 3705 78.60 
Minimum 0.76 5 0.001 
 
Site 2 (n = 57) 
Mean 12.98 228 97.04 
Median 10.67 85 5.41 
Standard Deviation 10.52 283 269.91 
Maximum 39.37 1345 1446.41 
Minimum 0.25 5 0.21 

 
Canopy interception versus precipitation is shown in Figure 3 for each tree used in this portion of the study. Due 
to either overflow in the stemflow container, overturned throughfall buckets, or a lengthy time period between 
cessation of a given rainfall event and measurement of stemflow and throughfall, some of the rainfall events 
shown in Table 4 could not be used in the calculation of CI. See insets to Figure 3 for n-size used in 
determination of CI. 
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4. Discussion 
The 33% canopy interception value for central Oklahoma redcedars (Table 5, El Reno) determined in this study 
is comparable to that observed by Thurow and Hester (1997) and Owens et al. (2006) for ashe juniper (37 and 
35%, respectively) and the 27% value observed by Thurow and Hester (1997) for redberry juniper. Additionally, 
our estimates of throughfall and stemflow for central Oklahoma redcedars (≈ 50% and 5%, respectively) are 
comparable to that observed by Owens et al. (2006) for ashe juniper (55% and 5%, respectively). Calculation of 
effective precipitation (= measured rainfall – canopy interception) indicates that redcedar canopy interception 
may have more potential impact on runoff, streamflow, and groundwater recharge in the drier portions of the 
state because of the smaller rainfall events which occur there. In a climatological sense, the effective rainfall at 
Woodward, OK reflects precipitation measured over a bare surface 300 km further west, while effective rainfall 
at El Reno reflected bare surface annual rainfall amounts measured 175 km further west. This westward “shift” 
towards drier conditions was only 33 km for Broken Bow, OK. 
Limited resources constrained our measurements of Tr to two trees in two size classes. We acknowledge that the 
limited number of trees reduces the power of statistical inference; however, this deficiency is somewhat offset by 
the length of record of continuous and simultaneous measurements of Tr in the two size classes. 
Redcedars can use considerable amounts of water, depending upon tree size, time of year, and water availability. 
The small redcedars of this study (T3 and T4) used 7 L d-1 during the summer, whereas the large redcedar (T1) 
used 196 L d-1 during this time. When normalized by leaf area, the data presented herein suggests that during the 
drought conditions of this study, that from 5 to 9 L of water were transpired per month per meter square of leaf 
area (average ≈ 7.6 L m-2 month-1). On an above ground dry mass basis the redcedars used from 11 to 15 L kg-1 
month-1 (average ≈ 12.4 L kg-1 month-1). 
Tr rates (mm d-1) of the individual, isolated trees of this study were compared to reported values from dense 
stands of redcedars. Awada et al. (2012) reported whole stand Tr of 413 mm (= 1.1 mm d-1) over their one-year 
study period. The dominant tree class in the stand (average diameter at breast height, DBH, = 0.16m) accounted 
for 77% of the total stand Tr (318 mm or 0.88 mm d-1), whereas the co-dominant class (DBH = 0.12m) and 
suppressed class (DBH = 0.08m) accounted for 16 and 7% (66.2 mm or 0.18 mm d-1; 27.8 mm or 0.08 mm d-1), 
respectively. The largest tree class in their study transpired at a rate 1.7 times less than that observed for the 
smallest tree (T3) of this study. Redcedar Tr rates measured by Landon et al. (2009) are comparable to that of 
Awada et al. (2012), and, likewise, are much smaller than that observed for any redcedar in our study. 
Comparison with the results of Duesterhaus (2008) is less straightforward because those measurements were 
made using and eddy covariance system, which provides evapotranspiration (ETa; soil, plant, free water 
evaporation) rather than Tr. However, assuming that measured ETa = Tr, then Tr of Duesterhaus’ study (2.4 mm 
d-1) is close to that observed for T3 of this study. However, the value observed by Duesterhaus was for an 
even-aged stand of redcedars of about 50 years old (DBH = 0.11 m, average height = 9 m), whereas T3 was a 
much younger and smaller tree. 
Total annual Tr (in mm) was divided by normal annual precipitation (in mm) to compute Tr as a percentage of 
total annual rainfall. Values for redcedars in this study were 155, 84, and 63% for T1, T3, and T4, respectively. 
Values for each size class in the study of Awada et al. (2012) were 77, 16, and 7% for the dominant, 
co-dominant, and suppressed classes, respectively. The redcedar stand measured by Duesterhaus (2008) used 
about 105% of the study site’s normal annual rainfall, and that for the Landon et al. (2009) study was 64%. 
Our observations of Tr in response to change in soil water content and precipitation inputs support the findings of 
Eggemeyer et al. (2009) who tracked changes in redcedar Tr over a one year time period with regard to soil and 
atmospheric variables. These authors found that redcedars of approximately the size of T1 in this study, acquired 
water from soil layers below 90 cm in the winter months, from the 5 – 50 cm depth in the spring and early part of 
the growing season, but that water extraction from the soil profile progressively moved from the 5 – 50 cm layer 
to deeper in the profile as the growing season progressed. When soil water content reached its minimum in 
September, redcedars began to extract water from below 90 cm. These authors also found that the redcedars 
became less responsive to precipitation events as the growing season progressed. 
The relatively shallow-rooted trees at Site 2 (T3, root depth = 0.4 to 0.8 m over the study period; T4, root depth 
= 0.2 to 0.4 m) showed an increase in Tr from May to June 2011 (Figure 7), but decreased from June to July 
followed by a slight increase from July to August. Minimum Tr for all trees occurred in December, 2011. 
Although the water content of the soil profile recharged during the fall and winter months of 2011-2012, Tr 
remained low for T1 (also lower for T3 and T4) due to low atmospheric demand. Both T3 and T4 exhibited 
similar Tr rates from December 2011 to the end of the study in June 2012. Neither of these two trees reached the 
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maximum Tr values measured in the summer of 2011, likely due to the lack of precipitation (i.e., available soil 
water) during the summer of 2012. 
The comparisons above show that Tr is quite variable and is not only affected by macro-environmental variables 
(e.g., rainfall, soil water availability, humidity, etc.) but may also be affected by variations in microclimatic 
conditions (e.g., open grown vs. closed stand) experienced by each redcedar.  
Because redcedar is encroaching into grasslands of the Great Plains, it is instructive to compare redcedar Tr to 
that of grasses. Although only eight months of data were available for comparison in this study, the ETa of the 
native grassland was much lower than Tr of T1 (Figure 7), but similar to that of the two smaller redcedars (T3 
and T4) over the months where comparisons could be made. Fairbourn (1982) showed that Tr for range grasses 
in the High Plains of Wyoming ranged from 53 to 66% (avg. = 59%) as a percentage of ETa. Assuming this 
average applies to Southern Great Plains native grasses, average daily maximum Tr of the native grasses 
measured during our study was about 2.7 mm d-1, or about half the maximum measured for T1 and T3, and about 
87% of the maximum Tr measured for T4. 
5. Conclusions 
Eastern redcedar is among a number of aggressively encroaching plant species (alien or native) world-wide that 
may negatively impact local and regional water resources. Our findings suggest that red cedar canopies can 
intercept ≈ 33% of annual precipitation in central Oklahoma, and as much as ≈ 39% in the western (and drier) 
part of the state. The amount of water transpired by a given redcedar will be a function of tree size, atmospheric 
demand, and available soil water. The large red cedar in our study transpired 331 L d-1 for one day in May 2012, 
but averaged 132 L d-1 over the study period. The smaller red cedars transpired from 0.8 to 2.2 L d-1. The red 
cedars of our study transpired from 5 to 9 L month-1 m-2 of leaf area and from 11 to 15 L kg-1 of above ground 
dry mass. Transpiration of our redcedars, growing in open conditions, was much higher than that observed by 
other researchers conducting their studies in or on dense stands of redcedar. Significant canopy interception of 
precipitation, coupled with year-round transpiration and transpiration rates as large as or larger than native 
grasses suggests that increases in red cedar density and areal coverage could affect local water resources through 
reduced infiltration, reduced runoff to streams, and decreases in ground water recharge rates. The similarity of 
redcedar and ashe juniper in terms of canopy interception, transpiration, and leaf area characteristics suggests 
that these two species may be parameterized similarly in hydrologic models used to investigate the impacts of 
these juniper species on water resources. 
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