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Abstract  

A new bounded well function is suggested for processing well tests data. A solution of the basic partial differential 

equation with physically meaningful initial and boundary conditions is given using its Laplace transform 

simultaneously with the proof of its unicity. A model for distance-dependence of drawdown is suggested. Results 

reveal the link between unsteady and steady state of pumping. Related computational problems are discussed. 

Examples of processing actual data using these results are presented. They illustrate high accuracy of results and 

a considerable increase of information obtainable from a well test.  

Keywords: well tests, continuous model of drawdown, heat equation in cylindrical coordinates, unicity and 

existence of its solution via Laplace transform  

1. Introduction and Theoretical Background  

Pumping tests data are confronted with models of the aquifer to estimate its transmissivity T, storativity σ and 

other its characteristics. Accuracy and reliability of these estimates depend on the extent of agreement between 

models and physical facts. Pumping water from a well at constant rate results in a continuous and bounded decrease 

of the water level. Its adequate model must be a continuous and bounded function of time. It is commonly accepted 

that the motion of water in a homogeneous, isotropic aquifer of infinite extent is described by the heat equation in 

cylindrical coordinate system which reads as follows  

𝜕2ℎ[𝑡,𝑅]

𝜕2𝑅
 +

1

𝑅
 

𝜕ℎ[𝑡,𝑅]

𝜕𝑅
= 

𝜎

𝑇
 

𝜕ℎ[𝑡,𝑅]

𝜕𝑡
, t≥0, R>0                      (1) 

To serve as the model of well test equation (1) must be considered together with such initial and boundary 

conditions which correspond to physical facts and guarantee its unicity among all solutions of the heat equation.  

In what follows an attempt is made to follow these basic physical facts and obtain an adequate continuous and (at 

least piecewise) smooth function of time t ≥ 0, which corresponds to all obtained data of the test (Sec.1.1) and find 

a unique solution of (1). (Sec.1.3). A model of distance-dependence of drawdown is suggested in Sec.1.2. These 

results lead to computational and other practical problems which will be discussed in Sec.2. Here also results of 

processing actual data sets are presented.  

1.1 Time Dependence of Drawdown  

The time-dependent values of drawdown s(t) mirror the actual state of the aquifer outside of the well, in particular 

violation of its homogenity in a close vicinity of the bore. It means that s(t) should be described by different 

continuously connected models in diverse time-spans.  

The initial phases of drawdown were addressed by Gregor and and Pastuszek (2018), here only results are shortly 

ansummarized. The function s(t) is obtained step-by-step as follows:  

The drawdown in the first 1-4 seconds reflects the transient behavior of the pump, recorded data have no relation 

to the aquifer and can be neglected.  

During the next 10 -30 seconds say for t0 < t < t1, there is practically no measurable inflow to the bore. Therefore 

for a constant pumping rate the drawdown grows linearly e.g. as  
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s(t)= a + bt.                                   (2) 

After this “well-bore storage” a transition phase follows, lasting commonly 1-3 minutes, say for t1 <t<t2.  

𝑠(𝑡) = 𝑧 + (𝑎 + 𝑏𝑡1 − 𝑧)𝑒𝑥𝑝 [
2𝑘(𝑡1−𝑡)

𝑟
], where. 𝑧 = 2𝜋𝑟𝑘                 (3) 

Evidently, in (3) there is s(t1) = a + bt1, which guarantees continuity of the drawdown model for all t ∈ [t0, t2], 

while k [m/sec] can be interpreted as hydraulic conductivity, r stands for the radius of the bore. 

For t > t2 the Theis’s solution of (1) called the well function, or its Jacob’s approximate are commonly used. The 

well function is one of an infinite set of solutions for (1). It assumes arbitrary large values for large enough values 

of t and therefore does not correspond to basic facts on drawdown.  

The following model, the alternative well function (awf for short), is proposed  

𝑎𝑤𝑓(𝑡, 𝑅) = 𝜆 −
𝑄

4𝜋𝑇
∫

exp(−𝑥)

𝑥

𝑧2

𝑧1

𝑑𝑥 where 𝑧1 =
𝑅2𝜎

4𝑇(𝑡 + 𝑑)
, 𝑧2 =

𝑅2𝜎

4𝑇𝑡
                       (4) 

Here λ denotes the (positive) difference between the initial and steady-state level of drawdown which is the only 

directly measurable parameter of aquifer. Meaning of the new parameter d will be explained below.  

The function awf has the following properties:  

-awf[t, R] is a solution of equation (1),  

-awf is continuous, non-negative, increasing and bounded for all t ≥ 0 and all R ≥ r, 0< awf(t, R) <λ. 

-asymptotic expansion for t → ∞ of awf[t, r] can be given as follows  

𝑎𝑤𝑓(𝑡, 𝑟) ≍ 𝜆 −
𝑄

4𝜋𝑇
log (1 + 𝑑/𝑡). 

With actual data (e.g. from Example 1) the maximal deviation of this expansion from values of awf(t, r) for t ∈ 

[15, 600] was less than 10−6
 
. Although (5) does not solve the equation it offers a useful tool to esimate values of 

T and d.  

-Laplace transform of this asymptotics can be found as  

𝑆𝑎𝑠[𝑝] =
𝜆

𝑝
−

𝑄

4𝜋𝑇 𝑝
(Q exp[p/d]∫

exp [−𝑥]

𝑥

∞

𝑝/𝑑
 dx)                          (6) 

-at t = 0 the awf is an increasing bounded function of the distance from the well axis with limR→∞ awf[0, R]= 

λ. At R = r it assumes a positive value  

awf(0, r)= λ −
𝑄

4 𝜋𝑇
Γ[

𝑟2𝜎

4𝑑𝑇
] 

-It will be shown that together with (2) and (3) the awf gives a continuous and accurate model of all values 

obtained during a complete well test. Values of awf[t, r] for 0 < t < t2 exceed the recorded drawdown. They 

show a hypothetical drawdown in an aquifer homogeneous for all R> r. 

-an important drawback of awf is to be coped with. Taking awf[t, r] and awf[0, R] as boundary and initial conditions 

respectively, the function awf[t, R] is the unique solution of (1) (see Appendix). However, the initial condition is 

a growing function, which strictly disagrees with reality. It means that for distance-dependence of drawdown 

another unique solution of (1) should be found or another model should be suggested (see below).  

These results are easy to prove. They complete the treatment of data obtained in a pumping test.  

Further information on the aquifer could be obtained analysing solutions of equ. (1). Recalling common treatment 

of PDE, initial and boundary conditions have to be formulated, uniqueness of a corresponding solution must be 

proved and existence of a solution satisfying these conditions has to be confirmed. A possible way to solve these 

problems is the Laplace transform approach which will be summarized below.  

 



enrr.ccsenet.org  Environment and Natural Resources Research  Vol. 12, No. 1; 2022 

 

82 

 

1.2 Distance-dependence of Drawdown  

A suitable model of the distance dependence of drawdown can be suggested along with the Darcy law and steps 

of deriving the model (3). Comparison of the pumping rate with the influx rate to the bore can be generalized to a 

hypothetical cylinder of radius R, with R denoting the distance from the well bore axis. As a result, a formula is 

obtained similar to that used as the approximation of drawdown in the previous paragraph, i.e as  

s[t, R] =
𝑄

2𝑘𝜋𝑅
(1-exp[

2𝑘(𝑡0−𝑡)

𝑅
]).   

Here k[m/sec] can be considered as some average value of hydraulic conductivity of the aquifer. Its value can be 

estimated applying this model with R = r to all data obtained from the well test similarly as in the previous 

paragraph.  

The model allows to visualize a calculated cone of depression even with its changes at various time instants. 

Among others this model enables a good estimate for the radius of depression when it is correctly defined as the 

distance from the well bore axis at which the drawdown assumes, say 98 % of the steady-state. With known 

parameters k, Q this estimate is a simple inequality for R.  

1.3 The Use of Laplace Transform  

Assume the initial condition to be h[0, R]=0 for all R> 0 and the boundary conditions let be a suitable continuous 

and bounded approximation of drawdown for all t ≥ 0. Under such conditions unicity of a solution can be proved 

(see Appendix 1.)  

Existence of the unique solution of (1) can be proved by its construction. It can be obtained using the Laplace 

transform with respect to the variable t (see e.g. Lavrentev (1958), Fodor (1962) )  

Denoting H[p, R]= ℒ h[t, R] where ℒ denotes the Laplace transform equ. (1) is rewritten as follows  

𝑑2𝐻(𝑝,   𝑅]

𝑑2𝑅
 + 

𝑑 𝐻[𝑝,   𝑅]

𝑑 𝑅
 /R-𝑎𝑝𝐻[𝑝, 𝑅] = 0, with 𝑎 =𝜎/𝑇.                           (8) 

It is a non-homogeneous ordinary differential equation of Bessel type with the right-hand part consisting of given 

initial conditions for the function H. It will be discussed below. The solution of its homogeneous part can be 

expressed in terms of modified Bessel functions. Denoting the Laplace transform of the boundary condition as S[p] 

this solution can be adjusted to these conditions.  

Theorem 1 Let S[p] be the Laplace transform of boundary condition h(t, r)= s[t] with s[t] < λ, s’[t] > 0 such that 

S[p] is a meromorphic function with only single poles. Let initial conditions be h[0, R]=0. Then  

𝐻[𝑝, 𝑅] = 
𝐼0[𝑅√𝑝𝜎/𝑇]

𝐼0[𝑟√𝑝𝜎/𝑇]
 S[p]                                  (9) 

is the Laplace transform of the unique solution of equ.(1) satisfying the given initial and boundary conditions.  

Substitution of (9) into equation (8) proves that it is its solution. Put R = r to find that H[p, R] satisfies the boundary 

condition, the inverse Laplace transform below shows fulfilment of initial conditions. Unicity of this solution 

follows from Theorem 3. (see Appendix.)  

As for the boundary condition:  

-equation (1) describes the aquifer as homogeneous, none of its unique solution can copy all results of 

measurements  

-the Laplace transform of the continuous and bounded model of drawdown described above is unacceptable 

for finding the inverse transform of (9)  

In what follows a compromise is suggested for the choice of boundary conditions.  

Recall that the result (3) has been found by comparison of the pumping rate with the influx rate (Gregor and 

Pastuszek, 2018) and it is quite well physically motivated. Therefore its simple modification with a = t0, b = 0 can 

be used for the whole time-span t>t0 yielding an acceptable approximation of drawdown data. The Laplace 

transform of this modification is given as  

𝑆[𝑝] =
𝑄

2𝑘𝜋𝑅
(1/𝑝 −

𝑅 exp [𝑘𝑡0/𝑅]

2𝑘+𝑝 𝑅
), 
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with single poles at 0 and − 2k/r. With this approximation a unique solution can be constructed.  

Application of Theorem 1. with S[p] as above demands to find the inverse transform of (9). It can be found using 

the expansion theorem. The result consists of two parts: one corresponds to the two poles of S[p], while the other 

is an infinite series corresponding to all zeros of I0[r √𝑝𝑎] with a = σ/T.  

Theorem 2 The inverse Laplace transform h of H[p, R] is  

h[t, R]= h1[t, R]+ h2[t, R] with  

ℎ1[𝑡, 𝑅] = 
𝑄

2𝑘𝜋𝑟
(1- 

𝐽0[𝑅 𝑧]

𝐽0[𝑟 𝑧]
 exp[-k (2t-t0)/r]), where z =√2𝑎 𝑘/𝑟  

ℎ2[𝑡, 𝑅] =  ∑
𝑄((exp [

𝑘𝑡0

𝑟
] − 1) 𝐾𝑛

2 + 2𝑎 𝑘 𝑟)

𝑘𝐾𝑛𝜋𝑟(𝐾𝑛
2 − 2𝑎𝑘𝑟)

∞

𝑛=1

 
𝐽0(𝑅𝐾𝑛/𝑟)

𝐽1(𝐾𝑛)
 exp [−

𝐾𝑛𝑡

𝑎𝑟2
] 

Here Kn is the n-th zero of the Bessel function J0, t0 denotes the start of wellbore storage. It can be seen that for R 

= r there is h1[t, r]= s[t] and h2[t, r] ≡ 0, i.e h[t, R] satisfies the given boundary conditions. It is worth mentioning 

that the exponent
𝑘𝑛𝑡

𝑎𝑟2 is > 100 even for n =1 in practical applications for all t > 1. Therefore the few considered 

summands in h2[t, R] become negligible. It should be noted that convergence of the series is rather slow, the results 

with a finite number of summands exhibit rather large oscillations. Although these oscillations tend to zero with t 

→∞ numerical verification of initial conditions seems problematic. A few hints to the derivation of Theorem 2. 

are given in Appendix 2.  

These two theorems expand results given e.g. in Lavrentev and Sabat (1958), Fodor (1962), Cole et. all (2011). 

On the other end they show the limits of application of equation (1) to well tests data processing discussed below.  

2. Computation Issues and Examples  

Let first the time dependence of drawdown be discussed. To find values of parameters Q, k, T, σ, and others in (2), 

(3), (4), (5) means to solve a nonlinear inverse problem for data obtained in a well test. Minimizing the mean 

square error of data versus model proved to be an effective way to avoid subjective errors. The procedure starts 

with delimiting the subsets of data used for each part of the model, i.e. fix the values ti, i =0, 1, 2. The first two 

easily follow from the plot of data (see Fig. 4), while t2 follows similarly from their semi-log or log-log plot of 

data. In dubious cases, the trial-error method leads to acceptable results. A crude estimate of the “new” parameter 

d [sec] (and its physical meaning) can be given as d = t3 − t2, where t3 is the instant when drawdown first reaches 

the level near the steady-state.  

The accuracy and reliability of parameter estimates from well tests data is often discussed and often neglected. 

Graphical comparison of data with their models seems rather insufficient. Numerical experiments show e.g. that 

changes of estimated storativity σ in the interval (0.75 σ, 1.25 σ) yields no observable changes in the plots whereas 

e.g. a 5% change of transmissivity is on a plot easily detected. Numerical differences or relative deviation of 

models compared to data are much more reliable. In the examples below mean values of absolute deviations 

(MVD[m]) and mean values of relative deviations (MRD[%]) or graphs of these deviations will be given. 

Compared to known accuracy of measurements they give a realistic gauge for the reliability of obtained solutions 

of the inverse problems.  

Yet another way can be suggested: Taking for a while the increase of drawdown to be a random variable, the 

complete model of drawdown can be considered as its cumulative distribution function. Hence standard testing of 

hypotheses (e.g. Kolmogorov-Smirnov, Pearson a.o.) can be used and adequately interpreted.  

Numerical treatment of the obtained solution of (1) via Laplace transform is cumbersome even with rather 

advanced software. Moreover, results of computation tend to be acceptable for large values of t which is not the 

most interesting region. Due to its proven unicity it has to be concluded that hope to obtain usefull information on 

situation off the bore using equ.(1) seems to be fading away. To cope with these facts Cesaro summation of the 

series in Theorem 2. or asymptotics of Bessel functions for p →∞, i.e for small values of t, (see Fodor Gy. 1962) 

could perhaps yield acceptable results. Details of these approaches are out of the scope of this paper.  

Taking into account these remarks examples of processing actual data sets can be presented.  
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Figure 1. A Complete Model of Data at B1a with (2), (3), (4) (black), Theis Model for the Last Part of 

data(red)(left) and a Complete Graph of awf (dashed) with Data 

 

 

Figure 2. Comparison of Data B1a(blue), Theis Model (red) and (4) (black)  

2.1 Example  

Data of two phases of a well test were analysed. They were obtained on a complete well bore in confined isotropic 

quaternary aquifer located in a neighborhood of the town Bela Crkva (Serbia). The well, say B1b, was pumped for 

97 seconds, and regenerated. The two data sets, B1b and B1a (a for after) lead to following results:  

B1b: with declared Q =0.014, r =0.149, and t0 =2, t1 = 14 it was obtained for the model (2) a =0.23, b =0.253355, 

which casts some doubts on the declared value of Q. Changing this value to Qs =0.0177 and following the 

request of continuity of the derivative, parameter k of (3) was k =0.001667. With these values deviation of the 

model exhibits MAD =0.051 m, MRD = 0.5691%  

B1a: With declared Q =0.0102, t0 =7, t1 = 18, t2 = 170 and t ≤ 400 the parameter estimates were as follows:  

k =0.001898, λ =7.0573, T =0.001374, σ =0.00682,  

and a calculated Qs =0.01156.  

The calculated MAD and MRD were MAD =0.0104 m MRD =0.3211 %. (see Fig.1.)  

The use of the Theis well function as a model for 170 ≤ t ≤ 400 resulted in TT =0.00284, σT = 1.0510-7 with its 

graph shown in Fig 2.  

The right-hand part of Fig 1. shows how the solution awf[t, R] of equation (1), obtained under the assumption of 

homogenity of the aquifer differs from measured data.  

Data from B1a exhibit an anomaly between 500-th and 650-th seconds perhaps due to a temporary dysfunction of 

the pump. Applying the awf model on the time-span 700-1500 seconds, estimates of T, σ showed no significant 

changes.  

Solution of equ.(1) via Laplace transform is presented in Fig.3. Application of Theorem 2. to data from B1a with 

parameters as above allows to obtain a calculated cone of depression and contour plot. Here the boundary 

conditions were chosen as approximation of the dashed black line in Fig.1. obtained as the awf model for all t> 0. 

Both graphs are in cartesian coordinates, the cone of depression and the contour plot shows the pressure head in 

the cutomary way, tics for axes are in meters at time t = 400 sec.  
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Figure 3. Cone of Depression and Contourplot at B1a  

 

2.2 Example  

Here results of processing data of a well test (on a complete well bore in confined isotropic, sandstone aquifer) 

located near the village Repin in central Bohemia are given. Drawdown of a well named S20 was recorded in 1 

sec intervals for 881 seconds. The (inner) radius of the bore was 0.225 = m, the declared pumping rate Q 

=0.0086m3/sec. Successive applications of models (2), (3, (4), (5) gave values of t0, t1, t2 as 3, 8, 105 sec, 

respectively. Minimization of the mean square error between data and models gave the following values of 

requested parameters:  

a = −0.2032, b =0.1131, k =0.005454, λ =2.3265, T =0.546216, σ =1.8920910
−14

 

In a similar manner parameters of the Theis model have been obtained as TT =0.0071518, σT = 0.00030. Since in 

a plot of data together with graphs of these results the deviations cannot be distinguished, in Fig.4 the numerical 

values of these deviations for two separate time segments are presented. It shows that these deviations are 

significantly less than actual errors of measurements. The complete model with above given values of parameters 

was tested using Kolmogorov-Smirnov’s test with a result “do not reject” at the significance level 0.01.  

2.3 Example  

Data of a well test obtained after regeneration of a bore located in the vicinity of the village Sebuzin in northern 

Bohemia were processed to illustrate the application of the more simple model (5) compared to (4). The results 

are presented in Fig.5. showing their high accuracy. (Parts of the model have different colors.) Obtained values of 

parameters for (2), (3) and (5), with r =0.1625 m were as follows:  

k =0.00046686, T =0.00018, d = 1338. 

The calculated and declared pumping rates were Qv =0.0027, Q =0.00435, respectively. Fig.4 intentionally 

includes parts of graphs that do not belong to the model to show how time instants t0 =3, t1 = 18, t2 = 600 were 

obtained. Note also that (5) yields no information on storativity.  

 

Figure 4. Deviations of Data S20 and Their Complete Model 
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Figure 5. Data for S20 and Their Complete Model  

 

Distance-dependence based on the suggestion in paragraph 1.2. gave for the well S20 results displayed in Fig. 6. 

It shows the estimate of the radius of the cone of depression as about 17 m for the steady-state.  

Numerous other well test data were processed with comparable accuracy results. It has to be admitted that 

application of the mean square method, let alone of Laplace transform, requires rather sophisticated software (here 

Wolfram’s MATHEMATICA package was used). However, in the 21-th century accuracy and reliability becomes 

more important than simplicity, numerical calculations are preferable compared to curve fitting or other graphical 

approaches. Ready-made procedures for minimization in the described approach reduces the computer time for 

parameter estimates to a few of seconds even together with visualisation of results. For these reasons the paper did 

not evades rather complicated mathematics. (Data for included examples can be obtained via e-mail in .xlsx format 

upon request.)  

 

Figure 6. Evolution of Drawdown at Distance R and Contour Plot of Pumping Results 
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Appendix 1.  

Theorem 3 The equation (1) with boundary and initial conditions  

h[t, 0] = φ[t], ∀t> 0                               (10) 

and  

h[0, R]= ψ[R] ∀R> 0,                              (11) 

where φ and ψ are given continuous, smooth, non-negative and bounded functions ≤𝜆 has at most one non-

constant solution.  

Proof: 

Start by assuming that there exist two such solutions of (1), say h1, h2 with h1 ≠ h2. Then h = h1 − h2 solves (1) with 

zero initial and boundary conditions (i.e. with conditions (10), (11), λ replaced by 0 and φ = ψ ≡ 0).  

Noting that h[t, R] is independent of the angle we conclude that the graph of any solution of (1) in cylindrical 

coordinates is the surface of a solid of revolution with the z-coordinate as its axis. Denoting its formatting curve 

by f[R] we may conclude that f = h[., R] is continuous and smooth and with f[r]=0, and limR→∞ f[R]=0. Hence 

this function f has a maximum f[Rmax], which depends on the variable t. Take a fixed value for t, say t0. For the 

maximum of f it must be hr
’[t0, r]=0 and hr’’[t0, r] < 0 and (1) implies that ht’

 

[t0, r] < 0. This means that for t0 − Δt 

with Δt> 0 the maximal value of f will grow. Therefore for a sequence t0 >t1 >t2... with a zero limit the maximal 

values of f for these values of t cannot have a zero limit as requested by the zero initial conditions and consequently, 

f[r] cannot have a positive maximal value, which means that h[t, r] cannot be strictly positive. Similarly, it can be 

concluded, that it cannot be strictly negative, hence it must be identically zero. The two solutions h1, h2 must be 

identical, which proves the theorem.  

 

Appendix 2. 

Since the function (10) is a meromorphic function of p with single poles only, the expansion theorem can be used. 

For the Laplace transform of F [p, R]= G[p]/H[p] it states that f[t, R]=∑ 𝐺∞
𝑛=1 [pn]/H

’’[pn] exp[pn t], where pn are all 

zeros of H[p].  

The zeros of the denominator include values 0, −2k/r, which yield h1[t, R]. Further an infinite set of negative zeros 

of I0 has to be dealt with. For these zeros the consecutive steps are as follows. Since with σ/T = a there is  

I0[r√𝑝𝑛𝑎]= 0 =J0[ir√𝑝𝑛𝑎] 

it is obtained that ir√𝑝𝑛𝑎 = kn, where kn is the n-th zero of J0 for n =1, 2... Therefore  

√𝑝𝑛𝑎=-ikn/r and pn=-
𝑘𝑛

2

𝑟2𝑎
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For the derivative of the denominator in (10) at p = pn it is  

𝑑

𝑑𝑝
I0[r√𝑝𝑎]p=pn=

𝑎 𝑟 𝐼1[𝑟√𝑝𝑛𝑎]

2√𝑝𝑛𝑎
=

𝑎𝑟2𝐽1(𝑘𝑛)

2𝑘𝑛
 

Using I1[iz]= −iJ1[z], i2= −1, equ.(10) can be expanded to find the given result.  
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