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Abstract

This article reports on use of advanced Near-Field—Far-Field software for assessing short- versus long-duration
data obtained minute-by-minute at two distances from a small source of an evaporating solvent located in an
isolated subsurface structure (a type of confined space) accessed through a manhole containing one or two
opening(s). The software uses this data to predict worker exposure to airborne chemical substances. Initial flash-
off of volatile components was readily visible in graphs prepared from some tests and especially so in initial output
from the calibration utility contained in the modelling software. The calibration utility orients the mathematics of
the software to measured data. The calibration utility indicated constant magnitude from longer-duration emissions
consistent with constant composition. Source characterization of emissions from solvents containing multiple
ingredients and constant initial mass deserves careful consideration because initial emissions may not represent
overall behavior. This situation indicates the potential to bias predictions of worker and other types of exposure
utilizing the same mathematics. This is especially the case during source characterization using measurements of
short duration. This study advocates for further investigation to develop guidelines for source characterization
during use of modelling software that minimize the potential for error in exposure assessment.

Keywords: Exposure Prediction Software, Isolated Subsurface Structure, Confined Space, Natural Ventilation,
Initial Flash-Off of Volatile Components, Short- versus Long-Duration Source Characterization, Well-Mixed
Room, Near-Field—Far-Field

1. Introduction
1.1 Obligation of Employers to Assess Exposure to Hazardous Substances in the Workplace

One of the most important obligations imposed by regulators on employers is the requirement to determine
exposure of workers to hazardous substances present or that may arise in the atmosphere of the workplace. OSHA
(US Occupational Safety and Health Administration) requirements in this area provide one such example (OSHA,
2020).

Much has been written about strategies for determining exposure (AIHA, 2015). The physical component of the
process for chemical substances typically requires measurement utilizing a method capable of detecting and
quantifying the amount in a given volume of air (Schlecht & O’Connor, 2003). In the case of worker exposure,
determining the amount typically requires placement of a measurement device in the breathing zone (Lynch, 1994)
and collection of sufficient data for statistical reliability (AIHA, 2015). This aspect of the process is cumbersome
and often involves the commitment of considerable time and resources.

As a result, there is considerable incentive to seek alternate methods for achieving the same endpoint. These
methods can involve examination of existing data as well as experimentation. The foundation underlying alternate
methods is the development and application of mathematical models (AHA, 2009). Modelling is the process of
describing observations to enable prediction of observed events. Mathematical modelling involves application of
techniques to derive equations from numerical data. One application of the process is reconstruction to predict past
exposure. Another application is to predict present and future exposure. Mathematical models therefore provide
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the ability to predict conditions, past, present and future. This capability obviously is very powerful and offers
great benefit to practitioners when used appropriately and with due care and diligence.

1.2 The Well-Mixed Room

The basis of many models in industrial/occupational hygiene is the ‘Well-Mixed Room’ (AIHA, 2009; Burgess et
al., 1989). The Well-Mixed Room is analogous to the well-mixed reactor in chemical engineering (Levenspiel,
1993). Equation 1 shows shows the generalized mathematical model that describes accumulation and dissipation
in a Well-Mixed Room (AIHA, 2009; Burgess et al, 1989). Accretion is the process through which the
concentration of contaminant increases over a period of time and dilution, the process by which the concentration
decreases. Equation 1 contains terms for concentration (C; and C,) at different times (t; and t), rate of generation
(G) in the space during the period of measurement, volumetric flow of dilution air (Q), and volume of the space
(V), all in consistent units. The relative values of G and Q determine the value of C, namely increasing, stable or
decreasing with time.

2

C =é G-[G-0cle ¥V (1)

Where (consistent units)

C, is the concentration at time t,;

C, is the concentration at time t;;

G = generation rate;

Q is the flow rate through the opening;
t; =time 1;

t, = time 2;

V = volume of the space.

Variations of Equation 1 examine conditions in which C; =0 at t; = 0, G = 0, and the equilibrium condition in
which the concentration of contaminant does not change.

While Equation 1 seems straightforward, application in a way that provides meaningful results during workplace
and other types of activity presumes satisfaction of a number of requirements. Understanding these requirements
is essential for application of the equation in exposure situations involving industrial and other environments. The
equation as expressed above offers no insight about limitations and conditions that must be met. Reference sources
that provide this equation do not always provide these limitations or state them in the detail needed for application
in real-world environments.

Requirements most likely to be expressed in reference sources indicate that dilution air at volumetric flow (Q)
entering the space contains negligible contamination and that generation of contaminants in the space (G) occurs
at constant rate. Requirements less likely to be expressed are that air exchange occurs through defined path(s) and
that mixing of the contaminant with air in the space and incoming uncontaminated air at volumetric flow (Q)
occurs completely, thoroughly and rapidly. That is, the concentration of contaminant is uniform throughout the
space at the two times, t; and t,. This means that concentrations, C; and C; are really averages. The quantity Q/V
is the same as air exchanges per unit of time. Hence, this links the intuitive concept to the mathematical one.
Subsequent discussion will reveal additional requirements and limitations. Even with this revelation, there remains
the possibility of further limitations and requirements not yet identified.

1.3 Near-Field—Far-Field Models

Many industrial spaces do not meet the requirements for rapid and thorough mixing because of inadequate
ventilation processes or insufficient supply of air to cause turbulent mixing. In these cases, the concentration of
contaminant decreases with distance from the source rather than being uniform throughout the space as required
for application of the model of the Well-Mixed Room. Application of the model of the Well-Mixed Room would
be inappropriate in these situations.
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Investigators have devised other mathematical models based on controlled experimental situations. One model
that can accommodate data recorded at two distances from a source is the Near-Field—Far-Field Model (AIHA,
2009; ATHA, 2018a; AIHA, 2018b; EASInc., 2020; Hewett & Logan, 2019). The basis of the Near-Field--Far-
Field Model is two imaginary structures, one nested within the other. The Near-Field structure bounded by
imaginary walls contains the source. The Far-Field structure could potentially contain the finite boundaries of the
structure or possibly imaginary boundaries nested within the finite boundaries of the structure. In the latter case,
the remainder of the airspace is situated outside the imaginary boundaries of the Far-Field structure. This could
include exchange of external air with air in the structure and mixing with contaminated air located outside the
boundary of the Far-Field. AIHA (2009) and Hewett and Logan (2019) provide illustrations of these structures.

Influencing points intrinsic with the latter version of the model are the shape and size of the Near-Field and Far-
Field relative to the shape and size of the structure and whether these parameters have importance in application
of the model in real-world situations (AIHA, 2018a; AIHA, 2018b; EASInc., 2020; Hewett & Logan, 2019).
Exchange of clean air with contaminated air in the structure occurs in the outer airspace. The Far-Field exchanges
air with the outer airspace and the Near-Field. The Near-Field in turn exchanges air with the Far-Field and receives
contamination from the source.

Measurement of concentration of contaminant typically occurs at a position on the surface of each of the imaginary
boundaries (AIHA, 2009; ATHA, 2018a; AIHA, 2018b; EASInc., 2020; Hewett & Logan, 2019). Contamination
within the airspace of the structure formed by each set of imaginary boundaries is assumed to be uniform and equal
to that on the surface of the outer boundary at all points on the boundary. Hence, the size and possibly the shape
of the imaginary boundaries of the Near- and Far-Fields can become an important consideration in real-world
situations. The concentration of contaminant is different in the airspace of each region because of distance from
the source and exchange of air between boundaries.

IH Mod (Industrial Hygiene Models) 2.0 published by the American Industrial Hygiene Association incorporates
models based on the Well-Mixed Room: a spill model, constant and decreasing emission models; eddy diffusion
models; two-zone (Near-Field—Far-Field) models; and near- and mid-field plume models (AIHA, 2018a). IH
Mod contains inputs for Near-Field boundaries of different size and shape. The IH Mod 2.0 Support File contains
additional programs for calculating generation rate and parameters used in programs in IH Mod 2.0 (AIHA, 2018b).
This software is freely available and is gaining considerable use through promotion in courses. Use of software to
estimate exposures past, present, and future confers considerable advantage but entails considerable risk when
end-users do not fully understood limitations intrinsic in the mathematics.

Use of mathematical models in real-world issues and applications raises several important questions not the least
of which are limitations beyond those already mentioned. The first question relates to the appropriateness of the
mathematics used in the model. The lack of systematic evaluation of the models in real-world situations is also an
important factor (Arnold et al., 2017a). Arnold et al. (2017b) systematically evaluated the Well-Mixed Room and
Near-Field—Far-Field Model. They conducted this evaluation under highly controlled conditions in an exposure
chamber following ASTM Standard 5157 as a guide for experimental design and the AIHA Exposure Assessment
criteria (AIHA, 2015; ASTM, 2014). Use of the exposure chamber permitted accurate control of all inputs. These
authors collected more than 800 pairs of measurements of conditions in the chamber varied one at a time.

The Well-Mixed Room estimates met the ASTM performance criteria for 88% to 97% of the pairs across the three
chemicals used in the study, and 96% for the AIHA Exposure Assessment criteria (AIHA, 2015; Arnold et al.,
2017b). The Near-Field estimates met modified ASTM criteria for 67% to 84% of the pairs while 69% to 91% of
Far-Field estimates met these criteria. Agreement with AIHA Exposure Assessment criteria occurred for 72% of
the Near-Field pairs and 96% of the Far-Field pairs, respectively.

The authors concluded that performance of the Near-Field— Far-Field model reflected the size of the chamber (2.0
m % 2.8 m x 2.1 m) (Arnold et al., 2017b). An important point not discussed in the article was the role of extreme
turbulence created by fans in the exposure chamber. This level of turbulence was considerably greater than what
is present in the majority of real-world workplaces (Baldwin & Maynard, 1998) and may represent a limitation of
the experimental design in describing and evaluating conditions in them.

Arnold et al. (2017a) also reported on assessment of exposure using measurements and application of the Well-
Mixed Room and Near-Field--Far-Field Models under conditions in real-world workplaces. Evaluation of ten
diverse exposure scenarios involving six different contaminants occurred at five workplaces. Personal time
weighted average (TWA) exposure measurements were obtained on individuals performing tasks with the
substances under study. Where possible, source samples were collected using direct-reading instruments. These
authors reported that in many cases, estimation of input data occurred indirectly because of inaccessibility of
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sources. Monte-Carlo calculations were used to estimate the mean and the 95th percentile exposure from the
distribution of modeled exposures. The mean and 95th percentile of the distribution of the TWA exposure
measurements were used as the decision metric against which modeled exposures were compared.

Results from the different scenarios indicated variable adherence to the expectations intrinsic in the models (Arnold
et al., 2017a) These resulted in under- and over-estimation of exposures. Occurrence of under- or over-exposure
was not predictable a priori. Hence, the inconsistency was neither consistently an overestimation or
underestimation of reality. The Near-Field—Far-Field Model slightly outperformed the Well-Mixed Room model
because of the inclusion of additional information in the input. The authors also explained that models do not
accurately predict or account for short-term peak exposures nor were they designed to do so. Real-world conditions
considerably increased the uncertainty in application of these models. The authors concluded that this uncertainty
occurred because of inability to evaluate emissions from sources, inability to control environmental conditions and
inability to predict and control workplace activity.

Authors Ganser and Hewett (Ganser & Hewett, 2017a; Ganser & Hewett, 2017b; Hewett & Ganser, 2017a; Hewett
& Ganser, 2017b) further exposed the limitations of the mathematics contained in Equation 1 and the limitations
of the software models used by Arnold et al. (2017a) in assessment of real-world workspaces, and demonstrated
the need for further sophistication in existing software models. The articles by these authors proposed additional
equations for considerably increasing the appropriateness and capability of these models in evaluating conditions
in real-world workspaces.

In the first article, Hewett and Ganser (2017a) reported that the standard Well-Mixed Room (‘one-box’) model
involving a constant generation rate (G = constant) is inappropriate for predicting occupational exposures during
use of controls such as local exhaust ventilation and partial air purification and recirculation. Controls are common
in real-world workplaces. These include jets of air produced by dedicated fans, general supply and exhaust systems
and local exhaust systems. These systems also can also recirculate filtered and unfiltered air.

The more advanced models proposed by Hewett and Ganser (2017a) for constant emission contain variations
involving combinations of general ventilation with and without recirculation of filtered air, local exhaust, and local
exhaust with the return of filtered air.

Ganser and Hewett (2017a) extended these considerations two-box (Near-Field—Far-Field) models. These authors
explained that basic-level, two-box models are limited to scenarios where local controls are not used. The more
advanced equations for two-box models presented in this article for constant emission permit real-world
combinations of general ventilation with and without recirculation of filtered air, local exhaust, and local exhaust
with the return of filtered air. The models also can accommodate steady-state and transient operation including
cyclic repetitive and irregular emission. Additional variables introduced with the new models included efficiency
of capture of freshly-generated contaminant and efficiency of filtration for return of filtered exhaust to the
workspace. The new models also provide a structured procedure for calibrating the mathematics for the actual
situation using measured data. The calibration procedure generates estimates for generation rate and the effective
near-field flowrate.

Hewett and Ganser (2017b) also introduced advanced one-box models for decreasing emissions (G decreasing
with time). These models also accommodate combinations of general ventilation with and without recirculation of
filtered air, local exhaust, and local exhaust with the return of filtered air. The models also can accommodate
steady-state and transient operation including cyclic repetitive and irregular emission. These models also provide
a structured procedure for calibration to an actual situation using measured data. Ganser and Hewett (2017b)
proposed advanced equations for two-box, well-mixed room, decreasing emission models. These models also
accommodate combinations of real-world situations mentioned above.

The preceding review highlights the importance of mathematical models for estimating exposures and the
enormous potential for software that can harness the power of the mathematics. At the same time, discussion about
limitations of these models needed to foster discussion and consideration about suitability for use in a particular
situation is slowly emerging although not stated fully in one place. This information is critically important to end-
users so as to enable the best possible implementation in assessment of real-world exposures. The preceding review
indicated a number of influences on the mathematics used to describe the atmosphere in the space:

* mixing characteristics (poorly mixed, rapidly mixed, thoroughly mixed)

* profile of generation (zero, constant or decreasing emission, steady-state, transient, cyclic, repetitive)

» profile of air entering the space (uncontaminated, contaminated, filtered)

» profile of flow in the space (once-through, recirculation with or without filtration)
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» input data consistent with the time-frame of the predictions (the extrapolation question)
» use or absence of local controls to remove contamination

To this point, discussion has focused on investigations involving limited numbers of measurements. Arnold et al.
(2017a) expressed caution about use of limited data or data obtained by calculation to predict the magnitude of
emission sources for input into exposure assessment models. This article reports on investigation of the concern
expressed by Arnold et al. using long-duration data from two fixed points measured minute-by-minute as inputs
into software based on the advanced exposure assessment models mentioned above to identify further limitations
and caveats. The chamber described by McManus (2016) and McManus and Haddad (2019a) to study a series of
conditions related to ventilation of an isolated subsurface structure was used in this investigation.

Previous work performed by investigators at the Bureau of Mines (Jones et al., 1936) and McManus (2016) and
McManus and Haddad (2019a) had shown that such structures ventilate through the opening(s) in the manhole
cover by mechanisms induced by natural forces. McManus (2016) and McManus and Haddad (2019a)
considerably extended the knowledge of the ventilation process and showed through instrumental measurements
that air motion in the interior airspace satisfied the requirements of the Well-Mixed Room. Video obtained by
McManus (2016) and McManus and Haddad (2019b) showed that air inside the structure rotated around a
horizontal axis. The video complimented results obtained by instrumental measurement (McManus, 2016;
McManus & Haddad, 2019a). The interaction between the external atmosphere and the atmosphere confined in
the airspace produced the reduction in the concentration of contaminant measured by the instruments through the
rapid, thorough mixing in the airspace characteristic of the Well-Mixed Room.

2. Method

This work occurred in a suburb of Vancouver, Canada in the yard of a construction contractor using the chamber
discussed in previous studies (McManus, 2016; McManus & Hewett, 2019a). Two commercially available 4-gas
testing instruments (GfG 460, GfG Instrumentation, Ann Arbor, MI, USA) containing PID (Photoionization
Device) sensors were positioned on a stand (Figure 1) 114 ¢cm (45 in) and 38 cm (15 in) above the bottom of the
chamber, 92 cm (36 in) and 16 cm (6 in) from the surface of an evaporating liquid respectively. Hence, the
instruments were about 76 cm apart from each other in the vertical direction.

Figure 1.
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Figure 1. Equipment used to measure evaporation of solvent. Equipment included two instruments containing PID
sensors and two instruments for measuring temperature and humidity (not visible). The upper instrument defined
the boundary of the Far-Field. The lower instrument defined the boundary of the Near-Field. Note that the
geometric shape and size of the boundary surfaces are not intuitive and that the software offers several choices.
The structure into which the instrument stand was inserted has a square cross-section and vertical orientation. The
aluminum pie plate containing the paper towel onto which is poured the lacquer thinner is also visible.

The evaporating surface (a paper towel) positioned near the base of the structure contained 10 mL of well-aged
lacquer thinner. The Material Safety Data Sheet indicated that the product contained 60% to 80% toluene, 10% to
20% MethylEthyl Ketone (MEK), 5% to 10% methanol and 1% to 9% acetone (Recochem, 2011). Acetone,
methanol, and methanol are considerably more volatile than toluene based on Vapor Pressure (NIOSH, 2010).
These components evaporate preferentially from the solution compared to the toluene.

The PID sensors in the instruments respond to toluene, MEK, and acetone (GfG, 2009). The sensors were
calibrated using isobutylene according to instructions of the manufacturer and reported concentration in
‘isobutylene units’. The dataloggers recorded measurements once per minute. The instruments operated until
exhaustion of the batteries (at least 800 min).

Curve-fitting to establish the mathematical relationship between the points occurred using Microsoft Excel
(Microsoft Corporation, Redmond, WA).

The Calibration utility in the Student version of TEAS (Task Exposure Assessment Simulator) published by
Exposure Assessment Solutions Inc., Morgantown, WV was used to investigate integration of numerical data
obtained minute-by-minute over long periods with mathematical models involving Near-Field—Far-Field
scenarios.

IH Mod (Industrial Hygiene Models) 2.0 and the IH Mod 2.0 Support File containing additional programs for
calculating generation rate and parameters used in programs in IH Mod 2.0 both published by the American
Industrial Hygiene Association, Falls Church, VA were also used in this investigation.

Statistical analysis occurred using IHSTAT (Industrial Hygiene Statistics), an application for Microsoft Excel
(Microsoft Corporation, Redmond, WA) developed and published by the American Industrial Hygiene Association,
Falls Church, VA (AIHA, 2018). IHSTAT determines whether samples are normally or log-normally distributed
through goodness of fit tests for determining compliance with regulatory standards and guidance values. (AIHA
recommends use of the lognormal distribution for data that appear to be lognormally distributed and for data that
are better represented statistically as lognormally distributed or represented by both the normal and lognormal
distributions. Data presentation in this document reflected this recommendation.)

3. Results

This investigation examined three conditions involving the manhole cover: single center opening (n = 10) and two
openings, center + circumference (n = 6) and 2x circumferential openings (n = 6), respectively. This study occurred
from June 10 to August 12. Weather conditions including temperature were similar during this period in the
location of the study. These included sun, rain, very low level of wind, and daytime atmospheric temperatures in
the high teens to low 20s C.

An initial small peak occurred almost immediately at the start of the process prior to the rise to a peak during some
of the treatments (McManus & Haddad, 2019c¢). These initial peaks have important significance in the overall
interpretation of the data reported here. Table 1 provides summary data for the arithmetic mean of data points for
the various treatments.

Microsoft Excel provided the best fit of the data points as a 6th order polynomial. The y-term is the arithmetic
mean concentration expressed in isobutylene units and the x-term (expressed as t) is the time that has elapsed since
the start of measurement. The mathematics forced an intercept of zero (t° = 0) in all cases.

Integration of the polynomial and calculation over the range from 0 to a chosen time produce an estimation of
mass consumed. The polynomial function in Table 1 of the general form At®+ Bt® + Ct* + Dt* + Et?> + Ft' + Gt°
integrates to At’/7+ Bt%/6 + Ct3/5 + Dt*/4 + Et3/3 + Ft?/2 + Gt'/1 + H (AIHA, 2009). A through H are constant
numerical values. The value of Gt in the polynomial equations was zero. Hence, in the integrated form, the value
of Gt!/1 is also zero. The terms At’/7 and Bt%/6 make a negligible contribution for t = 800 min for A having a value
of (ax 1073 x [800 x 107]) or (a x 10" x [800 x 107]) and for B having a value of (b x 10-1° x [800 x 10°]) or (b x
10" x [800 x 10°]). The constants a and b are the numerical components of A and B, respectively.



enrr.ccsenet.org Environment and Natural Resources Research Vol. 10, No. 2; 2020

Table 1. Summary of Data from Composite Fitted Curves

Characteristic Arithmetic Mean of Data Points Integrated Equations
Upper Position Lower Position Upper Position Lower Position

Single opening, center

Time of peak 273 min 381 min

Peak height 467 1280

Peak height ratio 2.74

Composite equation, n =9 -4E-14t° -2E-13t° (-4E-14t"/7 (-2E-13t")/7
1E-10t° SE-10° (1E-10t%)/6 (5E-10t°)/6
-2E-07t* -5E-07t (-2E-07t9)/5 (-5E-07t%)/5
0.0001¢ 0.0002¢ 0.0001t%)/4 (0.0002t%/4
-0.0359¢? -0.0654¢> -0.0359¢%)/3 (-0.0654t%)/3
6.4911¢! 12.285t! 6.49112)/2 (12.285%)/2
=0 =0 xX=0 =0

R? value 0.98 0.9965

Two openings, center + circumference

Time of peak (min) 445 379

Peak height 454 1402

Peak height ratio 3.09

Composite equation, n = 6 -2E-14£ -2E-13£ (-2E-146"/7 (-2E-134)/7
6E-11£ SE-10£° (6E-11£9/6 (5E-10£%/6
6E-08¢* -4E-07¢ (6E-08£)/5 (-4E-07£)/5
3E-057° 0.00017 (3E-05¢)/4 (0.0001£%)/4
-0.00917 -0.017 (-0.0091£)/3 (-0.014)/3
246157 3.86471 (2.4615)/2 (3.86472/2
=0 =0 =0 =0

R? value 0.9969 0.9926

Two circumferential openings opposite each other

Time of peak (min) 498 365

Peak height 310 980

Peak height ratio 3.16

Composite equation, n = 6 -2E-14t -7E-14¢° (-2E-14t")/7 (-7E-14t")/7
8E-11¢° 1E-10° (8E-11t9)/6 (1E-10t°)/6
-9E-08t* -1E-07t* (-9E-08t)/5 (-1E-07t%)/5
5E-05¢° 2E-05¢° (S5E-05t%)/4 (2E-05t%)/4
-0.0173¢? -0.007t (-0.0173t%/3 (-0.007¢%)/3
3.0792t! 4.6545t¢' (3.0792t%)/2 (4.6545t9)/2
=0 =0 =0 =0

R? value 0.9702 0.9943

Beyond establishing the mathematical profile of concentration of vapor at two points in the airspace during
evaporation and eventual exhaustion of the liquid, dispersion of vapor in the airspace, and exchange of
contaminated air with uncontaminated air in the atmosphere, this approach has limited value. Of interest here is
the rate of exhaustion of the liquid through evaporation. What is needed is a means of linking the data provided
by the equations summarized in Table 1 with concentrations in the airspace measured at the two points.
Substitution of values for time in the equations provides the basis for predicting concentration at the upper and
lower positions.

Calibrate, one of the utilities in TEAS (Task Exposure Assessment Simulator), enables calibration of the
mathematics in the model using observed data (elapsed time, concentration in the Far-Field, concentration in the
Near-Field and mass of the substance available to evaporate, in this case 8000 mg (10 mL x 0.8 g/mL x 1000 mg/g)
for decreasing emission.

Isobutylene units (ppm of C4Hg) are directly translatable into concentration of toluene assuming that the signal is
attributable only to toluene as might occur during a real-world investigation to determine exposure during
evaporation of solvent. The very early peak that appeared in some tests (mentioned in previous discussion) is
consistent with evaporation of the more volatile components (MEK, acetone and methanol) in the mixture and
those detectable by the PID sensor (toluene, MEK and acetone) (GfG, 2009; McManus & Haddad, 2019c¢).

Conversion of the level of the signal in isobutylene units (ppm) to toluene (ppm) requires multiplication by 0.53,
the ratio of the concentration of isobutylene to the same concentration of toluene measured under the same
conditions (GfG, 2009). Conversion of ppm levels to mg/m?3 levels is required for further use of the mathematics
in the models. Conversion of ppm to mg/m? is given by (mg/m®) = (ppm)(MW)/24.45 where MW is the molecular
weight (NIOSH, 2010). The value of 24.45 L is the molar volume of a perfect gas at 25° C (298° K). The molar
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volume at 13° C, the temperature of the airspace in the bottom of the chamber at which much of this work occurred
was 23.47 L. The latter value was used in calculations.

Calibrate, a utility in TEAS, provides an estimate of Q (exchange rate in the structure), B (ventilation rate of the
near field at the distance of measurement from the evaporating surface and the Mass of substance that evaporated
and Generation rate (Table 2). Adjusting the estimated mass provided by the mathematics to as close as possible
to the known mass of 8000 mg forced modification of the other calculated values.

Table 2. Output from the Calibrate Function of TEAS, Near-Field-Far-Field (Model 200DE)

Time Crar field Crear field Qudjusted Badjusted Magjusted Gopredicted
min Ppm ppm m*/min m*/min mg mg/min
Single opening, center

0 0 0 0

50 250 488 0.64 0.6723 8000 627
100 402 823 0.2 0.191 8040 315
150 430 956 0.124 0.1014 7998 209
200 448 1079 0.089 0.063 7974 156
250 462 1175 0.069 0.0447 7970 125
300 414 1243 0.058 0.034 8039 110
350 415 1279 0.055 0.0264 7989 89.4
400 426 1261 0.047 0.024 8009 78.6
450 414 1208 0.043 0.0224 8011 69.7
500 403 1101 0.040 0.0232 8080 63.5
550 401 1005 0.036 0.0239 7940 56.6
600 379 928 0.035 0.0242 7938 52.1
650 351 859 0.035 0.0242 7985 48.2
700 320 801 0.036 0.024 8064 423
750 294 751 0.036 0.0232 7938 41.6
800 277 640 0.036 0.0275 7904 39.1
Two openings, center + circumference

0 0 0 0

50 104 215 1.54 1.443 8008 628
100 176 378 0.45 0.3921 7920 310
150 247 539 0.215 0.1819 7966 208
200 303 780 0.132 0.0838 7999 157
250 347 1022 0.092 0.0473 7981 125
300 389 1242 0.069 0.0315 8052 105
350 430 1322 0.053 0.0255 7977 89.2
400 444 1327 0.045 0.0226 7992 78.2
450 441 1294 0.040 0.0207 7938 69.2
500 456 1165 0.035 0.0225 7980 62.5
550 439 995 0.033 0.0261 7968 58.9
600 408 904 0.033 0.0272 8078 52.9
650 368 728 0.0335 0.0342 8013 483
700 333 630 0.034 0.0381 7925 44.4
750 289 570 0.037 0.0381 8020 42.0
800 261 513 0.038 0.0384 7904 37.9
Two openings, 2x circumference

0 0 0 0

50 108 226 1.48 1.3550 7992 627
100 180 382 0.44 0.3921 7920 310
150 219 595 0.244 0.1421 8015 209
200 241 744 0.166 0.0795 8001 157
250 253 800 0.126 0.0583 7970 125
300 268 903 0.1 0.0422 8040 105
350 266 963 0.086 0.0328 8007 89.6
400 264 963 0.076 0.0287 8026 78.6
450 270 909 0.066 0.0279 8019 69.9
500 310 840 0.0516 0.0302 7998 62.7
550 285 771 0.051 0.0299 7994 57.0
600 265 671 0.05 0.0326 7950 51.9
650 240 574 0.051 0.0366 7956 479
700 220 508 0.052 0.0397 8008 448
750 194 426 0.055 0.0460 8003 41.8
800 190 400 0.0526 0.0476 7995 39.2
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Final adjusted values of M, the mass of liquid applied to the paper towel were very close to the starting value of
8000 mg. The amount of adjustment between the initial calculated value and the final adjusted value sometimes
was considerable, an indication that the expectation of the underlying mathematics differed considerably from the
reality of the measured values.

Values of Q, the volumetric exchange rate of the airspace represented by the Far Field and B, the volumetric
exchange rate of the Near Field rose rapidly from zero and decreased rapidly from initial values to final almost
constant values at 400 min and 300 min, respectively (Figure 2 and Figure 3). Greatest initial variation in Q and 8
occurred when two openings were present in the manhole cover. There was little if any difference in the behavior
for the different geometries of the two openings (center + circumference versus 2 x circumferential openings).

Hewett and Logan (2009) indicated that the concentrations in the Near-Field and Far-Field are related to the
Generation Rate (G) and the ventilation rate of the Near Field, B, by G =B (Cxr — Crr). As in the situation involving
data in Table 1, conversion from ppm levels to mg/m?® levels by multiplication (92/23.47) is required for further
use of the mathematics in the models. G in Table 2 pertains to rate of evaporation of liquid.
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Figure 4 shows the composite calculated behavior of Generation rate at the evaporating surface for the groups
tabulated in Table 2. The graphs overlap completely. This overlap occurred despite differences in measured
concentration of vapor reported in Table 2, treatment of the manhole cover (single opening, two openings [center
+ circumference, 2x circumference]), and weather conditions.
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Figure 4. Calculated Generation (Evaporation) rate

IHMod 2.0 and the IH Mod 2.0 Support File contain additional programs for calculating Generation rate and
parameters (AIHA, 2018a; AIHA, 2018b). IH Mod has capability for Monte Carlo (probability-based) calculations.
Inputs include Q, the ventilation rate for the space; My, the initial mass of the evaporating liquid; a, the rate of
evaporation of the liquid; and S, the random air velocity. While IH Mod 2.0 offers models for Near-Field—Far-
Field relationships, the mathematics cannot accommodate to the complexities of real-world environments as
discussed previously. As a result, IH Mod 2.0 was not considered further.

4. Discussion

This study provides insight into use of data generated minute-by-minute over a long duration at two fixed points
having a Near-Field—Far-Field relationship to a non-replenishing, evaporating source of lacquer thinner (a
product containing toluene, MEK, methanol and acetone) in a structure known to satisfy the requirements of a
Well-Mixed Room (McManus, 2016; McManus & Haddad, 2019a). This configuration provided a rare opportunity
to study the behavior of the evaporation process over the period of 800 min and three separate ventilating
conditions (single opening in the center of the manhole cover and two openings, center + circumference and
circumferential only).

This study occurred during a period of relatively repeatable conditions (June 10 to August 12). Controllable factors
of potential importance in this part of the discussion were the actions taken in the procedure. These were repeated
without change during every test. The number of opening(s) in the manhole cover and their geometric relationship
were the only controllable variables. External temperature and air motion along the ground and temperatures at
different levels inside the structure were not controllable. Temperature near the bottom of the chamber varied little
during the period of measurement (McManus, 2016).

An initial small peak occurred almost immediately at the start of the process prior to the rise to the main peak
during some of the treatments (McManus & Haddad, 2019c). Similarly, the ratios of the lower level values to the
upper level values for the arithmetic mean composite curves decreased rapidly from initial values around 3.5 to
around 2.2. Initial decrease from a high level to a minimum over the period of 25 min occurred in each of the
experimental treatments. Afterward the ratios increased gradually to broad peaks with height ratios of 2.74 for the
single opening in the center of the manhole cover, 3.09 for two openings, center + circumference, and 3.16 for two
circumferential openings, respectively. The height ratios then decreased gradually to a value around 2.0. The fact
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that the height ratio behaved in a certain way does not insinuate that the values from which the ratio was calculated
necessarily remained constant.

Availability of the large collection of data points obtained in a fixed geometry over long periods provided the
opportunity to investigate the influence of evaporation (source characterization) on pairs of measurements (Near-
Field and Far-Field) using the Calibrate utility in the TEAS software. The Calibrate utility forced the mathematical
models incorporated into TEAS to accommodate to the measured data.

Results tabulated in Table 2 and shown in Figure 2 and Figure 3 showed development of an initial peak of activity
in parallel with that observed by the other means described previously. The peaks in Figure 2 and Figure 3
decreased rapidly to almost constant level. Full stabilization required up to 300 minutes and persisted for the
remainder of the period of observation.

Figure 4 shows graphs showing Generation rate calculated by the TEAS software from the composite groups for
all tests. Perfect overlap occurred in all cases. The equation in TEAS for decreasing emission presumes that mass
of the evaporating liquid decreases exponentially (EASInc. 2020) and that similar conditions were present during
all of the tests. Air movement in the base of the chamber reflected in the orderly decrease in concentration of CO
(McManus, 2016; McManus & Haddad, 2019a) and predictions of TEAS software shown in Table 2 and Figure 4
suggest that ventilation occurred in an orderly manner.

MEK, methanol and acetone are considerably more volatile than toluene (NIOSH, 2010) and are likely to evaporate
preferentially based solely on vapor pressure. This study as well as evidence provided graphically of evaporation
of the solvent (McManus & Haddad, 2019c) support the contention that preferential evaporation is occurring and
is readily detectable during source characterization of long duration. In a real-world application of software for
predicting workplace exposure, this observation poses the question about the time in the sequence of the
measurements at which the data reflect the reality of the situation? How could the user of the software know about
this a priori without detailed time-based measurement of the type demonstrated here? Is a brief assessment of
measured quantities acceptable for use in a model having influence in potentially major decisions?

Industrial solvents such as lacquer thinner typically are mixtures. Industrial chemical products often contain small
quantities of impurities. Impurities such as benzene in an industrial chemical product or solvent for example have
considerably complicated assessment of exposure to many petroleum products using conventional methods of
measurement (Schlecht & O’Connor, 2003). Preferential evaporation combined with very brief characterization
of evaporating sources considerably complicates assessment of exposure to mixtures of ingredients. The variation
in evaporation observed at the beginning of these tests and expressed in several ways in a system believed at a first
level of approximation to behave in a constant manner illustrates the need for care and diligence in source
characterization as an input into the mathematical models used for prediction of exposure to airborne hazardous
substances.

5. Conclusions

Data from a real-world, solvent system captured minute-by-minute over a long period of time showed the
importance of full characterization prior to use in software models used for making predictions of phenomena
occurring over the same duration. Further investigation is necessary in order to elucidate guidelines for establishing
the means to determine limits of acceptance of data obtained through measurements of short duration for use in
making meaningful predictions over considerably longer duration. This investigation further highlighted the need
to identity limitations and assumptions intrinsic in software models but undisclosed, undiscussed or unexplained
in documentation. Continued investigation to identify factors influencing outcomes suggested by software models
is essential to optimize the credibility and hence utility of these tools.
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