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Abstract 
Decaying leaves provide a major carbon source for mosquito larvae and leaf litter of different plant species vary 
in their ability to support mosquito growth, survival, and development. Thus analyzing the effects of leaf species 
treatment on development time of Aedes albopictus has the potential to discover a plant-based strategy for 
mosquito control. Here, we employ a statistical model named copula that provides a convenient methodology for 
modeling multivariate dependence to determine the association between leaf litter identify and mosquito 
performance. A copula that best fits the association of leaf litters on mosquito performance is selected, and 
statistical tests are performed to check the adequacy of the copula chosen. By computer-based Monte Carlo 
methods, a large number of simulated development times are generated under the copula chosen. From the 
simulated development times, we calculate the percentiles to determine expected development time of female 
Aedes albopictus under the five different leaf species treatments, and compared the results to those when all the 
effects of leaf infusion are combined.  
Keywords: Aedes albopictus, Copula, Detritus, Larval development, Tail dependence. 
1. Introduction 
Aedes albopictus is one of the most effective disease vectors of dengue, chikungunya and Zika viruses, which 
used to be concerns of the Old World, but now the public health issues of the New World (Lounibos, 2002, 
Juliano & Lounibos, 2005, Mlakar et al., 2016). Aedes albopictus was first introduced to the U.S. in early 1980s 
via used tire trade from Asia and commercial import of ‘lucky bamboo’ from China. Within a decade, Ae. 
albopictus had colonized most of southern states of U.S. and today, it occurs in at least 26 states and continues to 
expand northward and westward (O'Meara et al., 1995; Moore & Mitchell, 1997; Moore, 1999; Yee, 2016). 
While the role of most environmental factors on the spread of Ae. albopictus remain elusive, studies have shown 
that several factors such as food availability, temperature, intra- and inter-specific competition, desiccation and 
predation during aquatic larval stage may affect the characteristics of resulting adult mosquitoes suggesting their 
pivotal roles on the spread of Ae. albopictus (Alto & Juliano, 2001, Alto et al., 2005, Muturi et al., 2010, Muturi 
& Alto, 2011, Muturi et al., 2011a). However, the effects of xenobiotics from natural sources including 
arborescent leaf detritus on mosquito development have received little attention despite several studies that have 
shown that leaf litter identity may influence mosquito performance and community structure (David et al., 2000, 
Murrell & Juliano, 2008, Pavela, 2008). 
Small sample size and consequent overgeneralization of the experimental findings to explain the phenomena 
occurring in nature are some of the limitations associated with experimental studies to investigate the influence 
of leaf litter on mosquito performance. In addition, the effects of various leaf litter on mosquito are often 
complex and their interpretation is quite difficult in case multiple leaf species are involved. To tackle these 
problems, we utilize a statistical model that controls multiple leaf species concurrently. The statistical model 
serves as a major tool for drawing inferences about mosquitoes behavior under the effects of various leaf detritus. 
Due to ecological and medical importance, we exploit Ae. albopictus and its development time under various 
leaf litter treatments as a representative of the procedures. Mosquito development time is one of the important 
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elements that affect mosquito ecology (Muturi et al., 2011b). Shorter development time for a mosquito species is 
usually advantageous as it increases the probability of completing full development processes under limited 
resources in a habitat. Even in the event of toxic chemical contamination, shorter development time may reduce 
the duration of exposure, which would consequently increase survivorship. Conversely, longer development time 
may be beneficial to surviving mosquito under limited food sources as mortality of less tolerant individuals may 
release them from competition (Barrera, 1996). Also, having long development time may increase a chance of 
getting accidental addition of food sources such as falling leaves and dead insects (Barrera, 1996). Less 
commonly, in the event of having chemical contaminants of which toxicity diminishes over time, mosquito 
species with longer development time is advantageous over others, too. 
In the analysis of multivariate data, a commonly used measure of dependence structure is the linear correlation. 
However the linear correlation cannot capture a non-linear dependence relationship that may exist in the tail 
regions of the joint distribution (Embrechts et al., 2002). For our data where changes in the tail behavior are 
important, we use an alternative statistical model named copula (Sklar, 1959) which has much recent attention in 
the context of modeling multivariate data. A copula provides a convenient way to express multivariate 
distributions of two or more variables by linking a multivariate distribution and its one-dimensional (univariate) 
marginal distributions on which the notion of copula is based. In contrast with the linear correlation, a copula 
captures a wide range of dependence structures that include non-linear association between variables, accounting 
for how the marginal distributions of data relate to each other. We use copula models to delineate interactions 
among the development times under several different types of leaf species treatment and to analyze their 
behaviors during their development. 
The most commonly used copulas are elliptical copulas. Elliptical copulas are simply the copulas of elliptical 
distributions such as Gaussian and Student’s t-distributions (Embrecht et al., 2003; Demnarta & McNeil, 2005). 
The key advantages of elliptical copulas are that they are suitable in modeling symmetric tail dependence 
structures with multi-dimensions and specify different levels of correlations between the marginal distribution 
functions. 
 

 
Figure 1. Contour plots of Gaussian and Student’s t-copulas, 0.8ρ =  

 
Variation that may lead to a misguided interpretation of data occurs when we use a small sample instead of the 
entire population. The goals of this paper are to create a multivariate distribution for the development time using 
an elliptical copula, to generate a large number of realizations from the distribution using Monte Carlo 
simulation, and finally, to better understand the effect of the leaf litter treatments on the development time by 
looking at the large simulated data points instead of small observations that may cause a variation in results. 
Incidentally, we discuss how to select an appropriate copula for our data. As a tool in multivariate modeling, a 
copula has been successfully applied in many areas including survival analysis (Zheng & Klein, 1995), risk 
management and financial applications (Breymann et al., 2003; Embrechts et al., 1999, 2003), all of which 
heavily focus on the extreme value analysis. In this paper, we demonstrate the benefit of using a copula to study 
Ae. albopictus development time under various leaf litter treatments, where extreme values of interest could 
occur in the tails of the distribution. For comparison, we also include the case when all the effects of leaf 
infusion are combined. 
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This work is organized as follows. Copula and its dependence structure are discussed in Section 2. In Section 3, 
we describe data, choose a copula that well-explains data association in the tails of the joint distribution, and 
check the adequacy of the copula chosen. Section 4 presents analysis and interpretation of the development times 
obtained from the chosen copula. Section 5 concludes this paper. 
2. Methodology: Copula 
2.1 Copulas 
A random variable associates a numerical value with each outcome of an experiment, determined from some 
characteristic pertaining to the outcome. Throughout the paper it is assumed that random variables and its 
possible values (realizations) are denoted by the capital and lower-case letters, respectively.  If 1,..., nX X are 
random variables, the multivariate distribution function is 

1 1 1( ,..., ) ( ,...., )n n nF x x P X x X x= ≤ ≤ , 

where ( )P A is the probability of A . This multivariate distribution completely describes the dependence 
between the random variables.  
A copula is a function that combines univariate marginal distributions to construct a multivariate distribution 
with a specific dependence structure (Sklar, 1959). So, it provides a convenient way to construct the multivariate 
distribution functions of two or more random variables. The foundation of the use of a copula is based on Sklar’s 
theorem (Sklar, 1959; Scheweizer & Sklar, 1983). Sklar’s theorem essentially states that if F  is a multivariate 
distribution function with marginal distribution functions 1,..., nF F , then there is a copula C  such that 
 1 1 1( ,..., ) ( ( ),..., ( ))n n nF x x C F x F x= ,  (1) 
Where ( )i iF x , 1,..., ,i n= are uniformly distributed on [0,1]. We can also rewrite (1) for iu , 1,..., ,i n= to be 
uniformly distributed on [0,1], as 

 1 1
1 1 1( ,..., ) ( ( ),..., ( ))n n nC u u F F u F u− −= ,   (2) 

where 1 1
1 ,..., nF F− −  denote the quantile functions of the marginal distributions 1,..., nF F . The expressions (1) 

and (2) indicate that any choice of marginal distributions can be used in copula modeling, which is an important 
feature of a copula. It is also worth noting that the dependence structure depends on the type of copula and not 
on the choice of marginal distribution. This is most easily understood in terms of the probability density function. 
Letting f be the density function of a multivariate distribution F and c the density function of a copula C , 
Sklar’s theorem postulates  

1 1( ,..., ) ( ,..., ) ( )n n i i
i

f x x c u u f x= ×∏ ,

 

where if , 1,..., ,i n= are marginal density functions of iX , 1,...,i n= . This expression indicates that a 
multivariate probability density function 1( ,...., )nf x x  can be split into the univariate marginal probability 
density functions ( )i if x ’s and the copula density function 1( ,..., )nc u u that determines a dependence structure. 
Hence, it is possible to separately specify standalone distribution functions and the dependence structure 
determined by the copula, which is the key advantage of using a copula. We demonstrate several different 
copulas that lead to different dependence structures once the marginal distributions are determined, but the 
resulting multivariate distributions have the same marginal distributions. Some examples of copulas considered 
in this work are presented in Section 2.2.  
2.2 Elliptical Copulas 
Elliptical copulas are simply the copulas of elliptical distributions such as Gaussian and Student’s t-distributions, 
so it is useful when we look at the symmetry of data (Embrecht et al., 2003; Demnarta and McNeil, 2005; Nelson, 
2006). Elliptical copulas are flexible in the sense that they account for co-movement of the random variables in 
the tails when modeling multi-dimensional dependence structures. This implies that the elliptical copulas capture 
differences in pairwise dependence structures. Gaussian copula and Student’s t-copula are the most commonly 
used elliptical copulas for analysis of the tail dependence of data. Student’s t-copula takes into account joint 
extreme events in both tails. Unlike Student’s t-copula, a Gaussian copula does not allow for extreme events to 
be dependent, and thus underestimates the possible effects of extreme events in the tails. 
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Gaussian copula 
Gaussian copula is the copula of multivariate normal distribution. For 1,..., nX X , from (2)  it is given by 

1 1
1 1( ,..., ) ( ( ),..., ( ))G n nC u u u uρ

− −= Φ Φ Φ , 

where ρΦ denotes the standard multivariate normal distribution function with correlation coefficient matrix ρ
and 1−Φ  the inverse of the standard univariate normal distribution function.  In the case of imperfect linear 
dependence, 1 1ρ− < < .  As the correlation (dependence) parameter approaches -1 and 1, Gaussian copula 
captures stronger positive and negative linear relationship, respectively, between random variables. The 
multivariate normal distribution has thin tailed margins, so Gaussian copula is useful when the correlated data 
rarely appear in the tail regions of the joint distribution. In the presence of extreme values that lead to a 
heavy-tailed distribution, we need to consider a copula that captures dependence between variables in the tails of 
the distribution. It is Student’s t-copula. 

Student’s t- copula 
Student’s t-copula is based on the multivariate Student’s t-distribution. For 1,..., nX X , from (2)  it is given by 

1 1
1 , 1( ,..., ) ( ( ),..., ( ))t n nC u u t t u t uρ ν ν ν

− −= , 

where ,tρ ν denotes the multivariate Student’s t distribution function with correlation coefficient matrix ρ and 
the degrees of freedom ν , and 1tν

− is the inverse of the standard univariate Student’s t distribution function. 
Compared with Gaussian copula, Student’s t-copula includes an additional parameter, namely 
degrees-of-freedom. This is used to model the tendency for extreme events, located in the tails of the distribution, 
to jointly occur. The degrees of freedom parameter controls the heaviness of the tails of the distribution. For 
example, increasing value of the degrees of freedom decreases the tendency to exhibit co-movements of 
variables in the tails of the distribution. This implies its ability to incorporate tail dependence of variables.  
3. Data and Modeling 
3.1 Data 

Leaf-Infusion Water 
The leaf species used were black alder (Alnus glutinusa), black walnut (Juglans nigra), common bald cypress 
(Taxodium distichum), eastern white pine (Pinus strobes) and sugar maple (Acer saccharum). The leaf species 
were chosen because they have a widespread distributed in North America and thus most likely to affect aquatic 
mosquito habitats in nature. The effect of leaf species on larval mosquito development was investigated using 
leaf-infused water. Defoliated leaves were collected from parks in Champaign County, IL and transported to 
laboratory for sorting and identification. The leaf identification was carried out according to leaf morphological 
keys (Tekiela 2006). Bald cypress leaves were a gift from Dr. Barry Alto and were collected and transported 
from Florida. The leaves were sorted and ground into fine powder in order to synchronize the rate of leaf 
decomposition. The infusion was prepared by mixing 10 L deionized water and 20 g leaf powder in an 18.9 L 
plastic container with a lid and fermenting at room temperature for 8 days. The infusion water was filtered using 
cheese cloth to remove large leaf debris prior to adding mosquito larvae. 

Mosquito development 
The experiments were conducted using F8 generation of Ae. albopictus originally from Florida. Microcosms 
consisted of 360 ml of leaf infusion in 400 ml tri-pour beakers and 40 first instar larvae (∼12h old) were added to 
each microcosm. No additional food was provided. The microcosms were maintained at 25°C, 14:10 h light-dark 
cycle and 70% relative humidity. Every 10 days, the tri-pour beakers were supplemented with 0.25 g of leaf 
powder until all larvae in the container had either pupated or died. The microcosms were monitored for pupation 
every 24 hours. Pupae were collected and placed individually in a cotton sealed vial containing distilled water 
until eclosion. The species, sex and date of adult emergence was recorded for each individual mosquito. The 
experiments were replicated 3 times. 
Mosquito development time is defined as the length of time in days from egg hatching to adult emergence. 
Designating the date for egg hatching as day 0, the development time was calculated by subtracting the date of 
egg hatching from the date of adult emergence. Only individual female Ae. albopictus which successfully 
emerged into live adults were included in the data while individuals which died at pupal stage or during eclosion 
were excluded. 
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Because different leaf litter showed different level of inhibition on mosquito larval development, the number of 
emerged adult mosquitoes varied depending on the type of leaf detritus infusion. Among 5 different leaf species 
tested in the study, sugar maple infusion produced 28 female Ae. albopictus from triplicate experiment runs. In 
order to obtain the same sample size across the different leaf species, the data points collected from 3 replicates 
within a leaf litter treatment were combined and then 28 data points were randomly selected using computer 
generated random integer that was pre-assigned for each data point. 
We paid special interest in both upper (longer development time) and lower (shorter development time) tails of 
distribution of Ae. albopictus development time under various leaf litter treatments. Shorter development time 
for a mosquito species under xenobiotic chemical contaminants with inhibitory effects is usually beneficial to 
surviving mosquitoes as it may reduce the duration of larval exposure to toxic chemicals and the risk of 
desiccation (Muturi et al. 2011b). Conversely, longer development time under xenobiotic inhibitory chemicals 
may increase the chances of survival because mortality of individuals that are not tolerant to the chemical 
contaminants may release tolerant individuals from competition on shared resources (Muturi et al. 2011b). Also, 
mosquito larvae that are tolerant to chemical contaminants may persist long enough until the effect of chemicals 
diminishes by time. 
3.2 Marginal Distribution 
For development time data described in Sections 3.1, appropriate marginal distributions that are plugged in the 
copula function can be found via graphical and numerical methods. Let iX  1,...,i n= , be a random sample of 
size n  and ix , 1,...,i n= , be the realizations of iX ’s that have the distribution function ( )F x . This ( )F x  is 
a theoretical quantity which is estimated by the empirical distribution function, defined as  

 
1

1( ) ( )
n

i
i

F x I x x
n

∧

=

= ≤ ,  (3) 

where ( )iI x x≤  is the indicator function which is defined to be 1 when ix x≤  holds, and equals 0 otherwise. 
The (theoretical) distribution function gives the probability that a random variable is less than a given value. The 
empirical distribution function is quite similar, the difference being that the empirical distribution is computed 
by data, not the theoretical distribution function that describes the parent distribution. So, it is expected that the 
empirical distribution function resembles the distribution function that fits data. Consequently, if the theoretical 
distribution function, F , appropriately describes data, the plot of F

∧
 versus F  will be close to each other. For 

example, Figure 2 (left) shows that the empirical distribution for the development time of female Ae. albopictus 
emerged from black alder infusion treatment is fairly close to the logistic distribution. Another graphical method 
is called the Probability-Probability (P-P) plot which will be approximately linear if the assumed model is 
correct. Figure 2 (right) displays that there appears to be no significant linear departure of the graph points from 
the straight line that is the reference diagonal line. From both graphical methods, it seems reasonable that the 
logistic distribution fits the data well. 
There are numerical model checking methods that lead to more objective ways to examine if the distribution 
function chosen is an appropriate distributional model for data. We utilize the Kolmogorov-Smirnov and 
Anderson-Darling tests. Both are tests based on the empirical distribution function. Specifically, the 
Kolmogorov-Smirnov test uses maximum difference between the empirical distribution and the theoretical 
distribution. The Anderson-Darling test is more sensitive in the tails of the distribution, using the average 
weighted squared distance between the empirical distribution and the theoretical distribution. An optimal 
marginal distribution is one that minimizes these distance functions. 
 

 
Figure 2. Empirical distribution (left) and P-P plot (right), Black Alder 
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Judging from the two criteria above, along with the graphical methods, we arrive at the distributions summarized 
in Table 1 that may best fit the data. Each distribution has the numerical descriptive measures called parameters 
that completely describe location and shape of a parent distribution. Table 1 also shows estimates of the 
distribution parameters obtained by the maximum likelihood method. 
 
Table 1. Distribution and descriptive statistics for the development time of Ae. albopictus under various leaf 
infusion treatments 

Leaf Species Distribution Parameter Estimation Mean Std. Deviation 
Black Alder Logistic σ=3.8241,  μ=30.5 30.5 6.9362 
Black Walnut Normal σ=6.3482,  μ=31.679 31.679 6.3482 
Common Bald Cypress Gumbel (Min) σ=4.304,  μ=27.27 24.786 5.52 
Eastern White Pine Gumbel (Min) σ=10.489,  μ=52.733 46.679 13.452 
Sugar Maple Gamma α=42.283,  β=1.1327 47.893 1.3919 

 
3.3 Modeling 
We use copula-based multivariate models to analyze development time of Ae. albopictus under 5 different leaf 
species treatments. Because inadequate models result in underestimating or overestimating the true development 
significantly, it is important to choose an appropriate copula model that will lead to reliable multivariate 
outcomes. This section searches a copula that may best fit the data and tests the null hypothesis that the copula 
chosen is statistically significant. The procedures are based on the empirical copula introduced by Deheuvels 
(1978). 
The empirical distribution computed by data estimates the unknown parent distribution of the data points in the 
sample. Similar to the empirical distribution that approximates an unknown parent distribution, the empirical 
copula, denoted by C

∧
, of the sample estimates the theoretical (or equivalently, parametric) copula. It is in fact a 

transformation of the empirical distribution, defined as, for a pair of data ( ,x y ), 

 ( , ) ( ( ), ( )),C x y H F x G y
∧ ∧ ∧ ∧

=   (4) 

where H
∧

, F
∧

 and G
∧

 are defined in the same manner as (3). The best copula is chosen in such a way that the 
distance of the empirical copula C

∧
 and the theoretical copula C  is minimized. Since some values of the 

distance are positive and some negative, in practice, the squared distance of them is considered, as will be seen 
in (5). From the procedures, Student’s copula with 10 degrees of freedom was chosen as the one that best fits the 
association of the development time of Ae. albopictus under various leaf species treatments considered. 
Although Student’s t-copula with ν =10 fits best among others, there is no guarantee that it actually fits the data 
in an absolute sense. We need to check whether the copula represents the true dependence structure. To this end, 
it is essential to test the null hypothesis that the copula chosen is statistically appropriate versus the alternative 
hypothesis that the copula does not actually fit data. The procedures are based on a statistic calculated from a 
sample. Its value is used to decide whether or not the null hypothesis is rejected in the hypothesis testing. Similar 
to Genest and Rémillard (2008) and Genest et al. (2009) that use the distance of the copula and its estimated 
version called the empirical copula, consider the Cramér-von Mises type statistic defined as 

   { }2
1

0
T n C C d C

∧ ∧
= − ,  (5) 

where C
∧

 is the empirical copula defined in (4) and C  is the assumed theoretical copula. If the copula C  
appropriately describes data, the behaviors of C

∧
obtained from a sample and C specified theoretically will be 

close to each other. Therefore, the statistic T can be used to assess the adequacy of the assumed copula. A small 
value of T indicates that the assumed copula is adequate for a given data set. On the other hand a large value of 
T shows that the specified copula is not appropriate for the data. 
The statistic is converted to a probability called a p − value that measures the strength of evidence in support of 
the null hypothesis. Let t  be a value as a result of T  in (5). Then, the p − value is the conditional probability 
of observing a statistic as extreme as t , the observation of T , assuming that the null hypothesis is true. A small 
p − value provides evidence that the null hypothesis is rejected because the probability in terms of p − value 

says the observed data are unlikely when the null hypothesis is true. A large p − value provides evidence that 
the null hypothesis is retained. We use this p − value as a numerical measure of how well Student’s t-copula 
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with 10 degrees of freedom fits data. For the comparative study in the assessment, we also include Gaussian 
copula that does not have tail dependence and Student’s t-copula with 20 degrees of freedom. The use of a 
Gaussian copula will observe the consequence of ignoring extreme events. Student’s t-copula with 20 degrees of 
freedom have relatively small amount of the association in the tails of the distribution, when compared to 
Student’s t-copula with 10 degrees of freedom. 
As with Lee and Yang (2007), the p − values, defined as ( )P T t≥ , are approximated through Monte Carlo 
method such as the Bootstrap (Efron and Tibshirani, 1993). Again, note that lower the p − value, the less likely 
the goodness of fit is. Based on the re-sampling procedures, the estimated p − values for Student’s copulas with 
10 and 20 degrees of freedom are 0.6350 and 0.3255, respectively. Gaussian copula yields the p − value of 
0.1742. The results indicate that the three copulas considered are appropriate models for the data, and the 
outcomes based on the copulas are reliable. Especially, Student’s t-copula with 10 degrees of freedom has the 
largest p − value, among others. That is, Gaussian copula and Student’s t-copula with 20 degrees of freedom are 
less correctly specified, so its performance is inferior to Student’s copula with 10 degrees of freedom. The p −
values also imply that actual extreme events in the data could happen more often than forecasted by Gaussian 
copula. 
4. Results 
4.1 Dependence Structure 
We first present how data are simulated by re-sampling according to copula. From a large number of simulated 
data points, inferences and analysis on the development time of Ae. albopictus can become more systematic, 
reliable and accurate. The following algorithm outlines the Monte Carlo simulation scheme that generates 
random variables, whose multivariate distributions are Gaussian and Student’s t-copulas: Set 1( )i i ix F u−= , 

1,...,i n= , and generate a random sample following Student’s t  and Gaussian copulas. At the last stage, repeat 
the Monte Carlo simulation steps m times to generate m pairs of 1( ,..., )nx x . 

 
Figure 3. Scatter plot of the development times of Ae. Albopictus 

 
Figure 4. Student’s t-copula with 10ν = , 500 simulated realizations 

 
As demonstrated in Figure 1 in Section 2, the behavior in the tails of the distribution depends solely on the type 
of copula and not on the choice of marginal distribution. Therefore, for copula-based Monte Carlo simulation, 
care must be taken to select an appropriate copula model. Poorly chosen copula may lead to some undesirable 
results due to a failure to correctly identify dependence structure in the sample. In Section 3, we have chosen 
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Student’s t-copula with 10 degrees of freedom as the best copula for our data among others. Figure 3 shows the 
scatter plots of data, and Figure 4 displays the scatter plots of 500 simulated realizations from the Student’s 
t-copula in association with the marginal distributions listed in Table 1. Figure 4 clearly demonstrates that there 
are strong positive effects between the leaf species. Unlike the usual linear correlation coefficient, Student’s 
t-copula captures non-linear trends as well as linear trends. For example, linear relationship on mosquito 
development time was found from treatments of black alder vs. black walnut, black alder vs. sugar maple, black 
walnut vs. sugar maple, and bald cypress vs. eastern white pine. On the other hand, non-linear relationship was 
observed from black alder vs. bald cypress, black alder vs. eastern white pine, black walnut vs. bald cypress, 
black walnut vs. eastern white pine, bald cypress vs. sugar maple and eastern white pine vs. sugar maple. In the 
linear relationship, it can be interpreted that the effect of the two different leaf litter treatments on the 
development time of Ae. albopictus would be constant from early to late development time. In case the 
relationship is non-linear, the effect of two different leaf species treatment on the development time of Ae. 
albopictus would vary depending on part of development time. For example, the development time of Ae. 
albopictus under the black alder and eastern white pine treatment would be affected more by black alder than by 
eastern white pine at late development time. In another example, the treatments of bald cypress vs. sugar maple 
indicates that the development time of Ae. albopictus would be more affected by sugar maple than by bald 
cypress at late development time and the effect would be reversed at early development time. 
4.2 Development Time Expectancy 
We identify and measure the anticipated development time through simulated development times. To this end, 
based on Student’s t-copula with 10ν = , we generate a large number of realizations for five random variables 
that represent the five leaf species. Specifically, letting 1X , 2X , 3X , 4X  and 5X  be random variables that 
represent Black Alder, Black Walnut, Common Bald Cypress, Eastern White Pine and Sugar Maple leaf infusion 
treatments, respectively, we generate 20,0000 realizations of the random variables. That is, 20,0000 ix ’s 
( 1,...,5i = ) are simulated from 28 original data points using Student’s t-copula with 10ν = . Based on the 
simulated realizations, the averages for 1x , 2x , 3x , 4x  and 5x  are 30.5418, 31.7152, 24.8212, 46.7644 and 
47.9355, respectively. 
 
Table 2. Development time estimates (in days), Student’s t-copula with ν =10 

Per (%) 0.1 0.5 1 5 10 30 50 70 90 95 99 99.5 99.9 
Black Alder 

SP* 3.82 9.94 12.72 19.14 22.04 27.23 30.47 33.73 38.91 41.81 48.28 51.03 57.78 
CA** 0.20 6.18 8.83 15.16 17.96 - - - 43.00 45.81 52.26 55.06 61.54 

Black Walnut 
SP 11.92 15.17 16.81 21.17 23.50 28.33 31.66 34.99 39.80 42.14 46.56 48.21 51.66 
CA 10.21 13.17 14.61 18.48 20.46 - - - 42.86 44.85 48.79 50.28 53.39 

Common Bald Cypress 
SP -2.81 4.10 7.31 14.35 17.53 22.81 25.67 28.06 30.86 32.01 33.88 34.51 35.71 
CA -6.98 -0.17 2.88 9.96 13.05 - - - 32.27 33.15 34.69 35.23 36.26 

Eastern White Pine 
SP -20.6 -3.62 3.87 21.31 28.98 41.86 48.85 54.66 61.48 64.27 68.87 70.37 73.30 
CA -30.6 -14.1 -6.74 10.53 18.05 - - - 64.92 67.06 70.83 72.11 74.61 

Sugar Maple 
SP 28.24 30.89 32.34 36.39 38.67 43.74 47.49 51.45 57.54 60.67 66.81 69.19 74.50 
CA 26.87 29.24 30.46 33.91 35.77 - - - 61.70 64.45 70.12 72.37 77.23 

Aggregate 
SP 4.27 11.33 14.65 22.48 26.15 32.80 36.82 40.57 45.71 48.17 52.87 54.64 58.55 
CA -0.03 6.90 10.04 17.63 21.07 - - - 48.94 51.05 55.32 56.99 60.59 

*SP = sample percentile, **CA = conditional average. 
 
For a sample of m observations, when the observations are ordered from small to large, the resulting ordered 
data are called the order statistics of the sample. The p th percentile is the value of the order statistics of m
observations that exceeds p % of the observations and is less than the remaining (100 p− )%. For example, the 
60th percentile means that 60% of all the observations are less than it and 40% are greater. The 50th percentile is 
called the median. To estimate the maximum feasible development time for Ae. albopictus that interacts with 
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different leaf species, we use the 95th, 99th, 99.5th and 99.9th percentiles of a simulated sample of size 200,000. 
These imply estimated values at risk at 95, 99, 99.5 and 99.9 percent confidence levels, i.e., 95%, 99%, 99.5% 
and 99.9% longest development times, respectively. To measure the minimum feasible time in the lower tail, we 
use the 0.1th, 0.5th, 1th and 5th percentiles. For comparison, we also calculate other sample percentiles such as 
the 10th, 30th and 50th percentiles. This measurement technique is similar to the notion of Value at Risk often 
used in the area of financial risk management (Jorion, 2007) to hedge risks. Based on 200,000 simulated 
realizations, Table 2 reports various the percentiles of the mosquito development times under the five different 
leaf species treatments. For example, at the level of 95 % confidence, female Ae. albopictus emerged from 
eastern white pine infusion would have the longest development time of 64.27 days, while female mosquitoes 
from bald cypress infusion would have the shortest development time of 32.01 days. Some negative values are 
located in the lower tails in bald cypress and eastern white pine treatment groups. Development time cannot be a 
negative value. They just fall into negative territory due to a basic distributional property applied, and so have no 
practical meaning. Conditional average is also used to investigate the anticipated development time. This 
averages data over all levels greater (lower) than or equal to a specific percentile in the upper (lower) tail of the 
distribution for each sample, telling us the averaged size of the development time that excesses the percentile. 
For example, Sugar Maple that has a 95th percentile of 60.67 has 64.45 as the conditional average at 95% 
confidence level. 
In study of development time under several leaf species, it is worth using an aggregate distribution of the five 
different leaf species used. Consider a linear combination of 1 5,...,X X  ,  

1 1 2 2 3 3 4 4 5 5G w X w X w X w X w X= + + + + , 
where 1 5,...,w w are the weights corresponding to each iX  taken on the real number such that 

5

1
1i

i
w

=

= . In this 
work, we assume that it is equally likely to avoid a possible bias that may cause erroneous percentiles when no 
information about the weight is available. That is, the weight used for each variable is 0.2. Let g be a realization 
of G . Then, we have 200,000 g ’s by generating 200,000 ix ’s. Based on the distribution of G  with 200,000 g ’s, 
Table 2 also shows the percentiles of the aggregate distribution for which the average is 36.36. The results 
indicate that the expected development time for a female Ae. albopictus would be 48.17 days at the level of 95 % 
confidence when the effects of all leaf litter treatments are combined, which would be longer than the time for a 
mosquito emerging from bald cypress infusion and shorter than the time for a mosquito emerging from eastern 
white pine.  

 
Table 3. Development time estimates (in days), Gaussian copula 

Per (%) 0.1 0.5 1 5 10 30 50 70 90 95 99 99.5 99.9 
Black Alder 

SP* 3.71 10.28 12.98 19.27 22.14 27.14 30.50 33.76 38.92 41.74 47.92 50.67 57.00 
CA** 0.31 6.34 9.06 15.31 18.08 - - - 42.91 45.64 51.84 54.55 60.67 

Black Walnut 
SP 11.92 15.32 16.92 21.24 23.55 28.34 31.68 35.03 39.81 42.10 46.36 47.97 51.27 
CA 10.35 13.31 14.76 18.58 20.54 - - - 42.80 44.74 48.56 50.03 53.00 

Common Bald Cypress 
SP -2.67 4.51 7.54 14.49 17.59 22.82 25.69 28.08 30.86 31.99 33.81 34.43 35.59 
CA -6.66 0.08 3.13 10.11 13.17 - - - 32.25 33.11 34.61 35.14 36.12 

Eastern White Pine 
SP -20.2 -2.80 4.55 21.61 29.20 41.89 48.87 54.72 61.48 64.23 68.68 70.16 73.00 
CA -30.0 -13.4 -6.10 10.93 18.37 - - - 64.86 66.97 70.63 71.92 74.32 

Sugar Maple 
SP 28.12 31.04 32.45 36.46 38.75 43.76 47.51 51.49 57.55 60.61 66.58 68.93 73.91 
CA 26.96 29.34 30.59 33.99 35.85 - - - 61.62 64.31 69.81 72.02 76.59 

Aggregate 
SP 4.18 11.70 14.92 22.62 26.26 32.82 36.85 40.61 45.71 48.13 52.64 54.41 58.14 
CA 0.25 7.16 10.32 17.82 21.22 - - - 48.88 50.94 55.07 56.71 60.11 

*SP = sample percentile, **CA = conditional average 
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We include the results from Gaussian copula which underestimates the effects of extreme events. The use of 
Gaussian copula will observe the consequence of ignoring heavy tails. The observed discrepancy of development 
time between the two copulas would demonstrate the importance of choosing appropriate dependence structure. 
Using Gaussian copula, Table 3 presents various the percentiles of the mosquito development times under the 
five different leaf species treatments from 200,000 simulated realizations. As expected, Gaussian copula 
generates lower development time at all percentile levels when compared to Student’s t-copula. The same 
phenomena are observed for the conditional average case. These outcomes are reasonable due to the fact that 
Gaussian copula does not allow for extreme events to be dependent, while Student’s t-copula has both lower and 
upper tail dependence and captures dependence between extreme events. From Table 3, the development time 
estimates with the assumption of Gaussian copula are likely to be underestimated. However, it appears that the 
difference between the two copulas is not significant.  So, although there is a different impact of choice of 
copula, the impact of the extreme events on the development time seem to be modest. 
5. Concluding Remarks 
Analyzing relationships between development time of Ae. albopictus and the effects of different types of leaf 
species treatment help us in developing mosquito control strategy such as determining a critical time and priority 
to treat mosquito habitats based on the information regarding surrounding vegetations. We used copula, as a 
major vehicle of drawing inferences about the development time, which fully captures the association structure 
of leaf litters on mosquito performance. An appropriately chosen copula model can delineate the effects of 
different leaf species treatments on development time of Ae. albopictus, and so help predict expected 
development time for the pest. For our data, Student’s t-copula with 10 degrees of freedom was chosen as the 
best copula within the class of elliptical copulas. We also carried out some goodness-of-fit tests for the copula 
model. By performing Monte Carlo simulation, a large number of simulated development times are generated. 
From the simulated development time, we calculated the percentiles to determine expected development time of 
female Ae. albopictus under the five individual leaf species treatments, as well as the combination of them. We 
found that among different leaf species treatments, eastern white pine treatment would produce Ae. albopictus 
with the longest expected development time and bald cypress infusion would produce Ae. albopictus with the 
shortest development time at a given confidence level. Also, when all the effects of leaf infusion was combined, 
the expected development time would be longer than the time of mosquito under bald cypress treatment and 
shorter that the time of mosquito under eastern white pine treatment at a given confidence level. Our study also 
suggests some future research topics such as the use of other copulas. For example, Archimedean copulas 
address asymmetries, and the grouped t copula allows heterogeneity of data. The use of these copulas could be 
useful when a lack of fit in elliptical copulas is detected. 
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