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Abstract

Conceptual cost estimates are often made at the beginning of the project when project scope is not yet well
defined. Hence, predicting the conceptual costs on time, with high accuracy, presents a considerable challenge.
One potential solution is to more effectively utilize historical data via integration with predictive analytical
models. In this project, a decision support system was developed which predicts conceptual costs of construction
projects and supports decision-making for long-term capital planning in public universities. The prototype
system was developed based on historical data for roofing projects at the University of Alabama. We collected
this historical data via a web-based data entry form subsystem. The developed system uses ridge regression
models to train historical data. This system has a user-friendly interface and supports what-if analysis, allowing
the user to see multiple scenarios of the estimation. The system also encompasses capabilities to forecast the
effects of inflation on multi-year projects. Subsequent validation has demonstrated improvement in the resulting
accuracy of the conceptual estimates.

Keywords: construction project, cost estimating, decision support systems, university
1. Introduction

Cost estimation is needed to support the decisions regarding funding, developing budget requests and evaluating
resource requirements (GAO, 2009). Construction cost estimates are typically classified by their functions. As
suggested by Hendrickson and Au (2008), as well as Schmid (2012), a typical project often encompasses three
major estimation types: design estimates, bid estimates and control estimates. The design estimate is typically
initiated by the owner and developed by designers. It is used in the scope definition, selection of design
alternatives, and to keep the owners informed of forecast costs (Peurifoy & Oberlender, 2014). There are three
sub-phases under the design estimate, including the order-of-magnitude estimate, conceptual estimate and
detailed estimate (Hendrickson & Au, 2008). Once alternatives are approved, contractors conduct the bid
estimate based on the subcontractor quotations, quantity takeoffs, and contractors’ experience. A bid estimate is
submitted to the owner, either for competitive bidding or negotiation, and consists of direct construction costs
including field supervision, plus a markup to cover general overhead and profits. After selecting the successful
contractor, the bid becomes the contractor’s budget and the baseline for managing their resources through the
control phase.

To initiate a project, public organizations generally conduct an owner’s study including a technical feasibility
study and an economic feasibility study of the proposed construction project (Peurifoy & Oberlender, 2014). A
conceptual cost estimation (CCE) is a part of this economic feasibility study. It is used to forecast the
approximate costs to evaluate the economic feasibility of proceeding with the project. CCE, also referred to as
“predesign cost estimates”, “preliminary cost estimating” or “early cost estimating”, are approximate estimates
early in the project. Since CCE is generally prepared from the project scope, when there is little or no design yet
completed, the accuracy will inevitably be lower than later detailed estimates. Some quantifiable definitions have
been discussed in recent papers. For example, Asmar, Hanna and Whitehead (2011) identified CCE as an
estimate prepared at 30% of the completed design. Rast and Peterson (1999) suggested the accuracy at CCE
level should be around +30% to -15%. AACE International (2016) suggested that CCE is conducted at about 1%

to 15% of project definition, with typical variations from -15% to -30% with low accuracy, and from +20% to
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+50% with high accuracy.

CCE, however, is essential for the owner to decide whether to proceed with the project. Underestimation at this
phase will result in overoptimistic projects being approved. On the other hand, overestimation will push the
stakeholders to reject the project at the inception. Andersen, Samset and Welde (2008) indicate the roots of
underestimation including underestimating risk, overestimating opportunities, inadequate estimation methods
and skills, reliance on weak information, and strategic/deliberate scope creep and division of projects. This
underestimation can lead to decreasing quality and cancellation of projects (Peurifoy & Oberlender, 2014). Thus,
improving the accuracy of CCE is highly essential to the ultimate success of any project.

1.1 University Construction Environment

A report on construction spending by the United State Census Bureau (2016) indicates that public educational
construction accounted for more than 70 billion dollars in April 2016, which encompasses 24.1% of the total
public construction value. Another report indicates that university construction totaled more than $11.6 billion in
2014 (Abramson, 2015). University construction has many unique aspects compared to other construction
applications. Public postsecondary construction has been decentralized since 1995 when most state’s universities
and colleges have administrated their own construction program with the administration provided by individual
boards of trustees (BOT). Campus projects are funded from a variety of state and non-state sources, which
dictate certain project aspects. Generally, all of the construction projects in a university need to conform to a
predetermined campus master plan. Such campus master plans are based on assumptions about basic campus
characteristics drawn from projections of a broader academic plan (Curuthers & Lazell, 1999). They outline
building design and location, campus traffic patterns, utilities need and needed land improvements or
acquisitions.

Further, the life of buildings on campus may span hundreds of years and require high maintenance and
renovations throughout their lifecycle (Duke, 2013). In many cases, new construction is required to blend with
older historic structures. Universities, especially in urban settings, are under pressure to find space for growing
programs and changing university needs. Sometimes, this search leads off campus to historic structures,
warehouses, and other buildings with a different original use than what is needed (BOM, 1991). Finally, a report
by the Office of Program Policy Analysis and Government Accountability (2006) indicates that educational
facilities are costlier to build than many other types of construction. The reasons regard the type of facilities built,
higher land costs, and the stricter building code, regulations, and standards that educational facilities must meet.

1.2 Requirements From the University of Alabama Construction Administration

The University of Alabama Construction Administration department (UACA) is a function under the Financial
Affairs division of the University of Alabama. UACA provides management and support for construction
projects on campus. UACA is responsible for implementation of the capital improvement projects and works
closely with other departments in reviewing the project requirements based on needs and functions. When
necessary, staff retains design professionals for the preparation of drawings and specifications based on the scope
of work to be executed. One of the most critical missions of UACA is estimating and controlling construction
costs. These often account for an extensive portion of the University’s budget. To accomplish that mission, they
focus on planning and strategizing the long-term budget and mitigating the inflation risk. For that reason, UACA
requires a robust estimation process to provide accurate cost information for making choices among alternatives
promptly.

In the university environment, CCE is required by the Board of Trustees (BOT). This CCE is the foundation for
establishing project scope, detailed planning, and bidding of campus construction. In late 2016, UACA decided
to support a research project focused on developing a cost estimating DSS prototype utilizing big data analytics
to support decision-making.

2. Literature Review

The construction industry roughly categorizes conceptual cost estimation methods into five generations. Raftery
(1987) suggests three of these generations. The first generation which began in the late 1950's, and continued up
to the late 1960's, used the square foot prices method. The second generation was developed during the middle of
the 1970's, and was characterized by intensive use of regression analysis making use of increasing availability of
fast computing facilities at lower prices. The third-generation appeared to have begun in the early 1980s. This
generation was characterized by probabilistic estimates based on Monte Carlo techniques, as well as artificial
intelligence and knowledge-based computer systems. Shin (2015) suggests that the fourth generation is an
advanced area of the third generation, which focuses on machine learning techniques such as neural networks
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and case-based reasoning. Finally, Shin (2015) also postulated that the booting approach, developed by Freund
and Schapire (1997), will be the next generation of conceptual cost estimation.

Using data from advanced search facilities in Scopus (2017), the three most common predictive analytical
models related to CCE in the construction industry are case-based reasoning (CBR), neural networks (NN), and
regression analysis (RA). Among these three models, regression is frequently cited as the most applicable
(Kutner, Nachtman & Neter, 2008).

2.1 Application of Decision Support Systems

The conceptual estimation process at the University of Alabama is a time-consuming one involving manually
analyzing data without a robust platform. This causes difficulties in collaborating among the analyst, estimator,
and managers. Numerous changes in project scope, time and schedule are often involved to meet the project
owner’s requirements. The conceptual cost estimation process comprises numerous iterations, where the
estimators must determine the effects of various scope revisions. In this case, what-if analysis can be used to
explore significant changes in parameters. This what-if analysis capability is critical to supporting management,
as it struggles to determine the most effective solution matching the owner’s needs (such as Moynihan, Saxeena,
& Fonseca, 2006).

A major concern of this strategy is balancing the adequate provision for project funding with the anticipated
needs. The availability of large quantities of historical data can provide estimators with a better chance to
improve accuracy and enable enhanced decision-making. Estimators also have to deal with a large amount of
noisy and biased data. Poor analysis can provide imprecise and irrelevant information to managers, leading to
confusion. Graham (2009) discussed how incomplete historical data can cause inefficiencies in the estimating
process.

These difficulties infer a need for a decision support system to be developed for conceptual cost estimation. The
components of a DSS can generally be classified into the following distinct parts: (1) the data management
system; (2) the model management system; (3) the user interface; and (4) the user(s) (Moynihan et al., 2006).
The model management system is particularly important for the success of a decision making system. The model
is mathematical in nature, usually consisting of a management science/operations research (MS/OR) algorithm.
These algorithms may also be referred to as predictive analytics. Larose and Larose (2015) define predictive
analytics as “the process of extracting information from large data sets in order to make predictions and
estimates about future outcomes.” They conclude that predictive analytical applications have considerable
benefits to a construction project. There are a number of predictive analytical approaches that have been applied
to CCE. According to the literature review, most previous research addressed either predicting costs or predicting
the accuracy of costs (i.e. quality assessment) in the conceptual phase. Predicting cost seems to be the preferred
topic, with a large number of studies conducted (such as Kim, An, & Kang, 2004). Regression was the earliest
predictive analytic applied, with examples dating to the 1970s. It is considered to be a well-defined mathematical
approach with its rapidity of execution (Kim et al., 2004).

This DSS is especially valuable in the early phases of a project, when more than one alternative is evaluated. A
DSS provides an automated platform with fast computation, which can reduce the time spent on estimation and
integrating changes (Turban, Aronson, Liang, & Sharda, 2006). With the availability of predictive analytics
models, the DSS is capable of dealing with a large volume of historical data to improve the accuracy, and to
control noisy and biased data (Sauter, 2010).

2.2 Decision Support System Use in Conceptual Cost Estimation

It appears that most of the previous research in CCE focuses on developing analytical models for CCE while
ignoring the actual DSS design. Hegazy and Ayed (1998), as well as Cheng,Tsai and Hsieh (2009), are among
the few studies which partially discuss the design of a DSS for CCE. Hegazy and Ayed (1998) developed a
decision support system for the conceptual cost estimation of highway projects. The system was built using an
MS Excel spreadsheet, which allows simple data management functions. The system uses GeneHunter, which is
an add-in for MS Excel to build a NN model. The user interface is built through an MS Excel Macro. The
database component in MS Excel was used to store data and allow users to conduct simple data manipulations,
such as view, add, and delete data records. The model management subsystem can optimize the NN model, and
estimate the costs of new projects based on historical data (Hegazy & Ayed, 1998). The user interface provides
visual screens and buttons allowing users to conduct what-if analysis.

Cheng et al. (2009) built a decision support system which estimates project cost using fuzzy logic and neural
network models. The system is suggested to be web-based and communicates with the user via the internet. The
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system is built in a Windows environment. The database subsystem includes historical data, estimating results,
model parameters, net price value, and users’ input (Cheng et al., 2009). The model management subsystem
supports the project management process, transfer projects, calculates price index and estimates project costs.
The model can communicate directly to users for each function of the model via internet servers.

3. Objective, Scope and Methodology

The objective of this research is to develop a prototype decision support system which estimates costs and
performs what if-analysis among alternatives at the conceptual phase of university construction projects. The
requirements of the Construction Administration Department of the University of Alabama provide a framework
for this research. The research developed a cost model which takes into consideration the effects of attendant
variables regarding historical data of construction projects on campus. This model helps predict construction
costs of the University in long-term capital planning, such as preparing the Annual Consolidated Capital Plan
Report and Campus Master Plan.

3.1 Initial Investigation

This project was started in August 2016, with the original plan to build a series of modules to support conceptual
cost estimation. Meetings with the executive manager of UACA were held to identify project requirements. Data
investigation was conducted on the Estus system (Division of Financial Affairs, 2009), Alabama Building
Commission (2016) website, and Alabama Commission on Higher Education (2018) database to access potential
available data for the DSS. After conducting data feasibility study, four project types were selected for building
system modules including roofing, lighting, plumbing and electrical projects. A web-based data entry form was
created. On September 1, 2017, the project team was redirected to focus on only roofing projects as the basis for
our database and subsequent DSS.

Data from Estus was determined to be the primary source for this analysis. Due to the large volume and high
variety of data on Estus, further clarification was needed. It was decided to use Qualtrics software to build a
web-based data entry form. Qualtrics is a web-based platform, which provides a convenient way to create an
online research survey and report results (Qualtrics, 2018). It allows us to send the entry form via email or share
the form link to the participants. The original plan was to contact architects and contractors who worked on UA
projects and have them complete the form. However, UACA found difficulties in contacting these past architects
and general contractors. Therefore, data was collected from the Estus system with clarification from UACA
project managers via Qualtrics.

3.2 Methodology for Developing the DSS

As suggested by Turban et al. (2006), the framework used to develop this system has four main phases: (1)
planning, (2) analysis, (3) design, and (4) implementation. Planning maps out the project’s overall structure.
Analysis determines and understands details of what the system must do to address the problem or needs. The
design phase focuses on configuring and structuring the new components. Implementation includes
programming, testing and putting the system into operation.

A hybrid method of system development methodology was used, which combines the system development
lifecycle (SDLC) approach (Satzinger, Jackson & Burd, 2015) and prototyping approach (Turban et al., 2006).
As explained by Satzinger et al. (2015), the system development life cycle is a structured framework that
identifies all of the activities required to research, build, deploy, and often maintain an information system. The
SDLC approach requires that most of the tasks in one phase are completed before the work proceeds to the next
phase. Due to difficulties in identifying and analyzing the problem at the beginning of the project, the SDLC
approach was applied during the planning and analysis phases to establish the solid foundation for later phases —
design and implementation. Project scope and schedule were verified with UACA management at the end of the
analysis, before starting the design phase, to avoid scope creep.

Turban et al. (2006) note that the prototyping approach involves performing the analysis, design and
implementation phases concurrently and repeatedly. In this project, prototyping is applied during the design and
implementation phases of the project life cycle. This approach builds system in a series of short steps with
immediate feedback from users to ensure that the development is proceeding correctly (Turban et al., 2006). An
advantage of the prototyping approach in this project is to ensure the satisfaction of the managers (users) with
the system interface and system functions. This feedback helped us understand the manager’s requirements and
reduce the developing time by focusing on important needs.

3.3 Selection of the Predictive Analytical Model

Kutner et al. (2008) discuss regression analysis as a common methodology utilizing the relation between two or
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multiple quantitative variables to predict the response variables. Regression discovers which predictors are
important, estimates the impact of changing a predictor on the value of response and estimates the future value of
response (Weisberg, 2005). Regression analysis using ordinary least squares (OLS) is among the simplest and
most widely used methods in prediction (such as Welc & Esquerdo, 2018). Weisberg (2005) postulates that most
other modern regression methods are elaborations and modifications of the OLS regression.

To apply OLS, predictor variables are required to be linearly independent (Kutner et al., 2008). When the
predictors are correlated among themselves, this phenomenon is referred to as intercorrelation or
multicollinearity (Kutner et al., 2008). During the investigation of this research, it was observed that data of
predictor variables are potentially correlated by its nature. For example, the data regarding the thickness of roof
material covering appeared correlated with the thickness of the insulation layer. Subsequent analysis confirmed
this hypothesis. Multicollinearity among variables can impact the result of the prediction when using traditional
OLS regression because the method typically has low bias but large prediction variance (Friendly, 2013).

Ridge regression was originally developed by Hoerl (1962), as one of several methods that have been introduced
to remedy multicollinearity problems by modifying the method of least squares, allowing biased estimators of
the regression coefficients (Kutner et al., 2008). By allowing a small bias, the estimator can improve the
precision and probability of being close to the true parameter . The bias error is taken as the difference between
the expected prediction of our model and the correct value which we are trying to predict. Variance error is taken
as the variability of a model prediction for a given data point x,. Irreducible error comes from noise in data set
and cannot fundamentally be reduced as a generalization error. Hastie, Tibshirani and Friedman (2009) discussed
the more complex the model f(x), the lower the bias will be; however, coefficient estimates will suffer from high
variance as more terms are included in the model. Theoretically, if the true model is known and there is infinite
data to fit it, both bias and variance can be reduced to 0. With an imperfect model and finite data in the real
world, two ideas must be balanced: minimizing the bias (overfitting) and minimizing the variance (underfitting).
Thus, at the cost of bias, ridge regression will reduce the variance and the MSE.

4. DSS Functionality, Design and Use

As depicted in Figure 1, the Conceptual Cost Estimation Decision Support System (CCE-DSS) has two primary
components: (1) the Data Collection Component and (2) the Data Analysis Component. The Data Analysis
Component is comprised of three subsystems: (1) the Access Control Subsystem, (2) the Historical Data
Subsystem, and (3) the Estimation subsystem. The Historical Data Subsystem helps control and manage the
system database. Users can add, delete, and modify system records on the database. The Control subsystem is
responsible for providing different security levels for project participants (i.e. administrators, project managers,
architects, contractors). Further, it helps users update subordinate system libraries (i.e. the categorical library and
inflation cost index library). It also provides a summary dashboard with buttons to redirect the user to the other
screens. The Estimation subsystem is the main part of the decision support system and is responsible for
processing estimation calculations. The Estimation subsystem builds fitted models via ridge regression analysis.
Users input specific data into the Estimation subsystem. This input data is incorporated into the fitted models to
calculate the results and display to users to review.

o Data Collection _ Data Entry Form

CCE-DSS ~| Component (Qualtrics) - Subsystem (1)
Data Analysis _ Historical Data
Component (Excels) o Subsystem (2)

. Estimation
Subsystem (3)

. Control

Subsystem (4)

Figure 1. System architecture
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4.1 Software and Hardware Considerations

UACA utilizes a series of networked MS-Windows based personal computers. Consistent with the available
client resources, the recommended specifications for using CCE-DSS include:

- Operating system: Window 10

- Processor: Dual-core x 86 CPU running at 2 GHz.
- RAM:4 GB.

- MS Excel 2017

4.2 Input Specifications

This system uses input from two main sources: (1) historical data, and (2) scoring data. In this project, scoring
data refers to new data which is applied to the fitted model and generates a fitted value output (SAS Institute,
2014). Figure 2 presents the Control subsystem main dashboard. As shown in the figure, all functional buttons
are located on the right side of the dashboard. Users can open the “Settings” dashboard to designate default
settings (such as change dashboard size to full screen). Users can save what they have done in the system and
close it by clicking on the “Save” and “Close” buttons, respectively. When the system users (such as project
participants) opens the decision support system file, the Control subsystem main dashboard is displayed. The
associated user ID and password ares provided by system administrator. On the Control dashboard, users can
also select the system “Help” tab and “About” tab. The “Help” tab provides some quick references which guide
users how to utilize the system. It also contains a link to an online user manual which allows the user to view the
full system references on a web browser. The “About” tab provides users with some basic information about the
system (such as system version, system owner). Only the administrator can open the “Library” tab which allows
the administrator to update the categorical library.

CONCEPTUAL COST ESTIMATION DECISION SUPPORT SYSTEM FOR UNIVERSITY CONSTRUCTION PROJECTS
| @ Settings
9) Help
Role in project I j E% About
UserID { ég
Password I e
(X[
E] Sign in
X
1]
Iil Save

(!) Close

Figure 2. Control system main dashboard

Figure 3 presents inputs to the Architect tab of the Historical Data subsystem. This tab permits entry and editing
regarding data on the general design of the building. The tabs for Contractor and Project Manager data have
analogous configurations. Data from the Project Management tab, Architect tab, and Contractor tab are referred
to as “General” data in this project. Specific roof data may be entered and managed via the Roof tab as depicted
in Figure 4.

Users open the Historical Data subsystem from the “Historical Data” button on the Control dashboard (Figure 2).
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The system retrieves data from the main system database and displays them in the dashboard. To edit the
database, users must change from the view mode to edit mode. The view mode is set as the default, which
prevents inadvertent changes by the users.

The system creates temporary data from the main system database. Categorical variables are coded as dummy
variables with binary values (0 and 1). Roof data are determined to have some interactions, so interaction values
are calculated. Subsequently, roof data are concatenated by roof area. Inflation cost index data is used to build a
fitted model by OLS regression. This fitted model is used to adjust prepared data value with inflation
consideration to the current time when users run the system. All data are saved in another worksheet in MS Excel
and are updated regularly each time users call the “Update” function

PM Axrchitect I Contractor I Roof I

Setting
Architect Information
Architect company I il
Architect ject budget ($ Desi tart /dd/ "
chitect project budget ($) esign start (mm/dd/yy) Edit Mode

D

Archiect fee ($) Design end (mm/dd/yy)

Building Basic Design Information
Building type I

Total building area (sf)

Frame | Exterior wall |

o’ [« |0 B} ) | © |

=l

li
li

E

ﬁ Ground floor (sf) li

=] =l

Basement I LI Number of stories li
r r

Floor-to-floor height (ft) Floor-to-ceil height (ft)

.

L]
I

«( Back ‘ Next )} ‘

Q Dashboard |

Figure 3. Architect tab of the historical data subsystem

Historical Data X
PM I Architect | Contractor Roof I @ Setting |
ot (AT
Roof Area 1 - Dimentions Q Search |
Roof shape < Roof slope ratio Q .
&  EditMode |
Roof ridge height (ft) Roof eave height (ft)
—_
Arealins.f Cost of the roof area ($) uu |
Roof Area 1 - Layers (o 3
-/
Roof covering I j
Thickness (mil) I Cost per unit ($/unit) L ‘ ] E |
Radiant barrier I j Cap sheet I j D
Adhesive I j Fire barrier | j ©
Insulation types | L] '5<‘7l
Insulation thickness (mil) Thermal resistant
Underlayment | j Thickness (mil)
Deck type I j Deck thickness (inches)
Fastener type I j Spacing (inches)
Back | Next
Gutter type I j Drip edge | L] Q( )}> |
Q Dashboard l

Figure 4. Area sub-tab within the roof tab of the historical data subsystem
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Similar to the Historical Data subsystem, users open the Estimation subsystem via the “Estimation” button on the
Control dashboard (Figure 2). Users input scoring data and execute estimations based on the values selected. The
“Re-Estimation” function then allows users to modify the scoring values and redo the estimation until they are
satisfied. Based on the variable selections on the “Setting” dashboard of the Historical Data subsystem, the
Estimation subsystem will enable users to input scoring data in specific fields on the dashboard.

4.3 Processing Specifications

After the historical data are well prepared (such as converting categorical variables, or calculating inflation), the
system is ready to conduct ridge regression. Scoring data, input via the Estimation subsystem, are stored
temporarily. This may cause difficulties in reading the data; however, it helps MS Excel save memory during the
calculation. Scoring data are used to build the scoring matrices for each roof area and one matrix for general data.
When the “Estimation” button is selected, the VBA sub “GeneralResponse” and VBA sub “RoofResponse” are
called to calculate the responses.

The sub “RoofResponse” uses historical data to create a predictor matrix for each roof area based on the scoring
data that users select for the roof. One response matrix (containing data of roof area cost ($) input) is used for the
entire roof area. “RoofResponse” also calculates the coefficient for each roof datum Matrices are standardized
via the VBA function “MatrixStandardize”. Since VBA does not have matrix functions such as adding or
subtracting matrices, some additional matrix functions are built to support calculations. The sub “RoofResponse”
iterates through each roof area and creates ridge regression models for these areas. These coefficients are
multiplied with scoring matrices of each roof area to obtain the predicted values. Predicted values are displayed
to the “Result” tab of the Estimation subsystem dashboard. Similarly, VBA sub “GeneralResponse” is used to
calculate the response values for general data.

Roof areas may use different models depending on the quantity of predictors that users have provided in these
areas. For ridge regression, the system standardizes all X and Y matrices, and fits them with ridge regression
models to get standardized coefficients. Default lambdas are first used in this fitting process. These coefficients
are then unstandardized and formulized default fitted models are used for each roof area. Data are partitioned to
conduct cross-validation. This cross-validation uses default fitted models to calculate overall errors. An optimal
lambda value is obtained by using the automatic trial and error (Goal Seek in MS Excel) to find the minimum
value of the overall cross-validation error. This lambda is used to recalculate the final fitted models. Roof scoring
data are plugged into the final fitted model to obtain the material costs (response Ys) of each roof area. These
material costs are added up to the total material cost and merged with general scoring data that users input. This
merged data becomes the new general scoring data. The system redoes the process, similar to what it has done
with the roof data, to obtain final fitted models for the general data.

To evaluate the result of the estimation, mean absolute percentage of errors of regression are calculated, as
suggested by Myttenaerea, Goldena, Grandb and Rossic (2017). The VBA function “MeanAbsPercentError” is
used in sub “GeneralResponse” and sub “RoofResponse” to calculate the percentage mean of error. In the event
that there is a 0 value in the response (such as demolition days, the quantity of subcontractors, and the quantity
of change orders), the denominator in Equation 5 would be 0 which would cause VBA function errors. Therefore,
another equation is used to calculate the percentage of error for these cases. The symmetric mean absolute
percentage error provided is used, as suggested by Kim and Kim (2006).

4.4 Output Specifications

The Cost Results tab (see Figure 5) displays the results of the estimation regarding material costs, construction
cost, and total cost. Percentage of error values of the regression analysis are calculated based on comparing the
fitted values and actual values of the response. These guide the users to accept or reject this analysis. The cost
result is used to plot summary charts which are displayed to the users. If users reject the results, they can click on
the “Re-Estimation” button, return to the scoring tabs, change scoring inputs, and then conduct another
estimation. Users can redo this process until they are satisfied with the result. This what-if analysis is intended to
provide users with different scenarios of the estimation. By reviewing multiple scenarios, users compare cost
values to select the project alternative to proceed with.

Once users accept the estimation result, they can subsequently open the Inflation dashboards to adjust the result
with consideration of inflation. Users can select several future points via the Time combo box, then select the
“Advance” button to view the prediction chart, change the sources of inflation cost index, and display the new
results.

37



emr.ccsenet.org Engineering Management Research Vol. 8 No. 2;2019

5. Verification and Validation

Verification ensures that the product is built correctly and meets the designed specifications (Bourque & Fairly,
2014). As suggested by the International Software Testing Qualifications Board (2018), the developed system
was verified via three testing methods: component testing, integration testing and system testing. Component
testing is often called unit testing which tests individual hardware or software components (ISTQB, 2018).
Bourque and Fairley (2014) discuss that component testing verifies the individual testable system functions
which are often done by system programmers. To improve the quality of the system, component testing was
performed during the system programming phase. Testing of each VBA function and VBA form component
(such as buttons, text boxes, combo boxes) was executed immediately after each of them were created. Any
discovered error was completely resolved before proceeding to the next components.

Estimation %
Result | @ Setting
Cost ‘ Schedue | Other | Stafisics
Area2 Area3 I g

Material Cost of Each Roof Area i
8 _’\ Re-Estimate
Estimated results Error % v

$25,524 14.1 % P
Roof area 1 o |’|\sﬁ Inflation
]

Estimated Budget
Estimated results Error %
: Material cost | $116950 [ 14.0%

Equipment
: Labor 5

e 812 e Labor cost | stz [89%
0% 2% 4% 0% 0% 100% Equpmentcost | $127300 [ 121%
Construction cost $355,351 l11.7°/.

Archiect cost $78,730 l 12%

aaaaaa

323222 { 52%

‘ (@]
8
{ -
8
15 -
IR
2
¢

0% 20% 20% &% % 100%  pM cost

o<7l Clear Form

Q Dashboard

Total cost [ 5457303 [ 108%

Figure 6. Cost result tab of the estimation subsystem

Integration testing was used to verify complex VBA subs and groups of VBA subs. The integration testing
combines individual units and inspects the interactions between integrated components (ISTQB, 2018). A VBA
sub performs actions rather than returns a final value. The results of the integration testing of the VBA form
components (such as buttons, textboxes, and combo boxes). These components are integrated with multiple VBA
subs and related to various VBA forms. Each VBA sub is tested by three processes: (1) visually inspecting the
results on the MS Excel spreadsheet, (2) debugging each line of code and comparing local values with manual
calculations, and (3) inspecting data on the temporary MS Excel spreadsheet.

System testing evaluates the behavior of the entire system with regards to non-functional system requirements
such as security, speed, and reliability (Bourque & Fairley, 2014). Development of the system focused on
improving the speed of processing. As discussed previously, the “Update” button was created to help improve
the system speed via creating temporary data. This is one of the important improvements that was suggested
during the initial system validation with UACA. The speed of the developed system was tested on the standard
computer hardware configuration identified previously. The focus was on testing system functions which often
take considerable time to execute such as opening the system file, updating historical data, and estimation. The
reliability was tested by executing the MS Excel system file on three different MS Windows-based computers
since the MS Windows operating system is being used at UACA. The overall result indicates that the system can
run correctly on various MS Windows computer configurations.

Validation ensures that the developed system fulfills its intended purpose (Bourque & Fairley, 2014). The
prototype system was validated via usability tests (Rubin, Chisnell & Spool, 2008) and test cases ((Chen, Qin,
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Koo & Mishra, 2013). The usability testing evaluates the degree of effectiveness, efficiency, and satisfaction
when the client uses the developed system in their specified business activities (ISTQB, 2018). Two usability
tests were conducted on Apr 25, 2018, and Sep 6, 2018, with our client. The first test focused on improving the
system functionality to better match the client’s requirements. The second test focused on finalizing the system
and developing a transition plan for the UACA to apply this system. The client accepted the developed system
with some minor suggestions.

ISTQB (2018) defines a test case as a set of preconditions, inputs, actions expected results and postconditions,
developed based on test conditions. The prediction accuracy of the system was tested with actual project values.
A new construction project, the Kappa Kappa Gamma Chapter House, was used as the first case. A renovation
project, for the Hardaway Hall roof replacement, was used as the second test case. The DSS reduced the
prediction errors of the total project cost from 40.5% to 16.4% in these test cases. This is 24.1% average
improvement on the accuracy of estimation. This system can also provide UACA detailed construction
component costs such as labor, material, equipment costs. This indicates that the system can help improve the
current conceptual cost estimation process at UACA.

6. Conclusions and Further Research

Using historical data to make actionable decisions has become an accepted approach across multiple industry
sectors. Recently, the development of data storage technology has allowed construction organizations and
contractor firms to collect more historical data than ever. When data are stored in a single system, such as MS
SharePoint, it enables the system’s user to extract and analyze for essential information. Accurate information,
such as future project costs, can significantly assist managers in important decisions such as long-term capital
planning.

This research provides the Construction Administration department, of the University of Alabama, with an
advanced decision support system to improve accuracy in conceptual cost estimation. With the help of project
managers at UACA, historical data was collected for on-campus roofing projects. The resulting prototype system
was programmed in MS Excel and Visual Basic Application. The system architecture encompasses three
subsystems: (1) the Historical Data subsystem, (2) the Estimation subsystem, and (3) the Control subsystem. In
this research, the ridge regression technique was used. It allows analysis of multiple regression data that suffer
from multicollinearity. The Engineering News-Record (2018) index values were utilized to adjust the output of
the system to future cost values. The system was validated with two test cases. The test results demonstrate
improved accuracy for conceptual cost estimating. This will help the University improve the decision-making
process in long-term capital planning.

Future research directions envisioned for the prototype system include migrating the system to other universities
that want to improve their conceptual cost estimation and long-term capital planning. This will also help the
system acquire more historical data, and thus the predictive accuracy. Modification of the security levels would
allow multiple universities to use and share the system. Second, the scope of this research can be expanded to
other building components, such as lighting. Third, deployment of this MS Excel system into a web application
would enable the users to access the system from multiple locations, further supporting the multi-university
initiative. Finally, application of the system beyond the university environment, to the broader construction
industry, should be investigated.
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