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Abstract 
Conceptual cost estimates are often made at the beginning of the project when project scope is not yet well 
defined. Hence, predicting the conceptual costs on time, with high accuracy, presents a considerable challenge. 
One potential solution is to more effectively utilize historical data via integration with predictive analytical 
models. In this project, a decision support system was developed which predicts conceptual costs of construction 
projects and supports decision-making for long-term capital planning in public universities. The prototype 
system was developed based on historical data for roofing projects at the University of Alabama. We collected 
this historical data via a web-based data entry form subsystem. The developed system uses ridge regression 
models to train historical data. This system has a user-friendly interface and supports what-if analysis, allowing 
the user to see multiple scenarios of the estimation. The system also encompasses capabilities to forecast the 
effects of inflation on multi-year projects. Subsequent validation has demonstrated improvement in the resulting 
accuracy of the conceptual estimates. 
Keywords: construction project, cost estimating, decision support systems, university 
1. Introduction 
Cost estimation is needed to support the decisions regarding funding, developing budget requests and evaluating 
resource requirements (GAO, 2009). Construction cost estimates are typically classified by their functions. As 
suggested by Hendrickson and Au (2008), as well as Schmid (2012), a typical project often encompasses three 
major estimation types: design estimates, bid estimates and control estimates. The design estimate is typically 
initiated by the owner and developed by designers. It is used in the scope definition, selection of design 
alternatives, and to keep the owners informed of forecast costs (Peurifoy & Oberlender, 2014). There are three 
sub-phases under the design estimate, including the order-of-magnitude estimate, conceptual estimate and 
detailed estimate (Hendrickson & Au, 2008). Once alternatives are approved, contractors conduct the bid 
estimate based on the subcontractor quotations, quantity takeoffs, and contractors’ experience. A bid estimate is 
submitted to the owner, either for competitive bidding or negotiation, and consists of direct construction costs 
including field supervision, plus a markup to cover general overhead and profits. After selecting the successful 
contractor, the bid becomes the contractor’s budget and the baseline for managing their resources through the 
control phase. 
To initiate a project, public organizations generally conduct an owner’s study including a technical feasibility 
study and an economic feasibility study of the proposed construction project (Peurifoy & Oberlender, 2014). A 
conceptual cost estimation (CCE) is a part of this economic feasibility study. It is used to forecast the 
approximate costs to evaluate the economic feasibility of proceeding with the project. CCE, also referred to as 
“predesign cost estimates”, “preliminary cost estimating” or “early cost estimating”, are approximate estimates 
early in the project. Since CCE is generally prepared from the project scope, when there is little or no design yet 
completed, the accuracy will inevitably be lower than later detailed estimates. Some quantifiable definitions have 
been discussed in recent papers. For example, Asmar, Hanna and Whitehead (2011) identified CCE as an 
estimate prepared at 30% of the completed design. Rast and Peterson (1999) suggested the accuracy at CCE 
level should be around +30% to -15%. AACE International (2016) suggested that CCE is conducted at about 1% 
to 15% of project definition, with typical variations from -15% to -30% with low accuracy, and from +20% to 
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+50% with high accuracy.  
CCE, however, is essential for the owner to decide whether to proceed with the project. Underestimation at this 
phase will result in overoptimistic projects being approved. On the other hand, overestimation will push the 
stakeholders to reject the project at the inception. Andersen, Samset and Welde (2008) indicate the roots of 
underestimation including underestimating risk, overestimating opportunities, inadequate estimation methods 
and skills, reliance on weak information, and strategic/deliberate scope creep and division of projects. This 
underestimation can lead to decreasing quality and cancellation of projects (Peurifoy & Oberlender, 2014). Thus, 
improving the accuracy of CCE is highly essential to the ultimate success of any project. 
1.1 University Construction Environment 
A report on construction spending by the United State Census Bureau (2016) indicates that public educational 
construction accounted for more than 70 billion dollars in April 2016, which encompasses 24.1% of the total 
public construction value. Another report indicates that university construction totaled more than $11.6 billion in 
2014 (Abramson, 2015). University construction has many unique aspects compared to other construction 
applications. Public postsecondary construction has been decentralized since 1995 when most state’s universities 
and colleges have administrated their own construction program with the administration provided by individual 
boards of trustees (BOT). Campus projects are funded from a variety of state and non-state sources, which 
dictate certain project aspects. Generally, all of the construction projects in a university need to conform to a 
predetermined campus master plan. Such campus master plans are based on assumptions about basic campus 
characteristics drawn from projections of a broader academic plan (Curuthers & Lazell, 1999). They outline 
building design and location, campus traffic patterns, utilities need and needed land improvements or 
acquisitions. 
Further, the life of buildings on campus may span hundreds of years and require high maintenance and 
renovations throughout their lifecycle (Duke, 2013). In many cases, new construction is required to blend with 
older historic structures. Universities, especially in urban settings, are under pressure to find space for growing 
programs and changing university needs. Sometimes, this search leads off campus to historic structures, 
warehouses, and other buildings with a different original use than what is needed (BOM, 1991). Finally, a report 
by the Office of Program Policy Analysis and Government Accountability (2006) indicates that educational 
facilities are costlier to build than many other types of construction. The reasons regard the type of facilities built, 
higher land costs, and the stricter building code, regulations, and standards that educational facilities must meet. 
1.2 Requirements From the University of Alabama Construction Administration 
The University of Alabama Construction Administration department (UACA) is a function under the Financial 
Affairs division of the University of Alabama. UACA provides management and support for construction 
projects on campus. UACA is responsible for implementation of the capital improvement projects and works 
closely with other departments in reviewing the project requirements based on needs and functions. When 
necessary, staff retains design professionals for the preparation of drawings and specifications based on the scope 
of work to be executed. One of the most critical missions of UACA is estimating and controlling construction 
costs. These often account for an extensive portion of the University’s budget. To accomplish that mission, they 
focus on planning and strategizing the long-term budget and mitigating the inflation risk. For that reason, UACA 
requires a robust estimation process to provide accurate cost information for making choices among alternatives 
promptly. 
In the university environment, CCE is required by the Board of Trustees (BOT). This CCE is the foundation for 
establishing project scope, detailed planning, and bidding of campus construction. In late 2016, UACA decided 
to support a research project focused on developing a cost estimating DSS prototype utilizing big data analytics 
to support decision-making.  
2. Literature Review 
The construction industry roughly categorizes conceptual cost estimation methods into five generations. Raftery 
(1987) suggests three of these generations. The first generation which began in the late 1950's, and continued up 
to the late 1960's, used the square foot prices method. The second generation was developed during the middle of 
the 1970's, and was characterized by intensive use of regression analysis making use of increasing availability of 
fast computing facilities at lower prices. The third-generation appeared to have begun in the early 1980s. This 
generation was characterized by probabilistic estimates based on Monte Carlo techniques, as well as artificial 
intelligence and knowledge-based computer systems. Shin (2015) suggests that the fourth generation is an 
advanced area of the third generation, which focuses on machine learning techniques such as neural networks 
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and case-based reasoning. Finally, Shin (2015) also postulated that the booting approach, developed by Freund 
and Schapire (1997), will be the next generation of conceptual cost estimation. 
Using data from advanced search facilities in Scopus (2017), the three most common predictive analytical 
models related to CCE in the construction industry are case-based reasoning (CBR), neural networks (NN), and 
regression analysis (RA). Among these three models, regression is frequently cited as the most applicable 
(Kutner, Nachtman & Neter, 2008). 
2.1 Application of Decision Support Systems 
The conceptual estimation process at the University of Alabama is a time-consuming one involving manually 
analyzing data without a robust platform. This causes difficulties in collaborating among the analyst, estimator, 
and managers. Numerous changes in project scope, time and schedule are often involved to meet the project 
owner’s requirements. The conceptual cost estimation process comprises numerous iterations, where the 
estimators must determine the effects of various scope revisions. In this case, what-if analysis can be used to 
explore significant changes in parameters. This what-if analysis capability is critical to supporting management, 
as it struggles to determine the most effective solution matching the owner’s needs (such as Moynihan, Saxeena, 
& Fonseca, 2006). 
A major concern of this strategy is balancing the adequate provision for project funding with the anticipated 
needs. The availability of large quantities of historical data can provide estimators with a better chance to 
improve accuracy and enable enhanced decision-making. Estimators also have to deal with a large amount of 
noisy and biased data. Poor analysis can provide imprecise and irrelevant information to managers, leading to 
confusion. Graham (2009) discussed how incomplete historical data can cause inefficiencies in the estimating 
process. 
These difficulties infer a need for a decision support system to be developed for conceptual cost estimation. The 
components of a DSS can generally be classified into the following distinct parts: (1) the data management 
system; (2) the model management system; (3) the user interface; and (4) the user(s) (Moynihan et al., 2006). 
The model management system is particularly important for the success of a decision making system. The model 
is mathematical in nature, usually consisting of a management science/operations research (MS/OR) algorithm. 
These algorithms may also be referred to as predictive analytics. Larose and Larose (2015) define predictive 
analytics as “the process of extracting information from large data sets in order to make predictions and 
estimates about future outcomes.” They conclude that predictive analytical applications have considerable 
benefits to a construction project. There are a number of predictive analytical approaches that have been applied 
to CCE. According to the literature review, most previous research addressed either predicting costs or predicting 
the accuracy of costs (i.e. quality assessment) in the conceptual phase. Predicting cost seems to be the preferred 
topic, with a large number of studies conducted (such as Kim, An, & Kang, 2004). Regression was the earliest 
predictive analytic applied, with examples dating to the 1970s. It is considered to be a well-defined mathematical 
approach with its rapidity of execution (Kim et al., 2004).  
This DSS is especially valuable in the early phases of a project, when more than one alternative is evaluated. A 
DSS provides an automated platform with fast computation, which can reduce the time spent on estimation and 
integrating changes (Turban, Aronson, Liang, & Sharda, 2006). With the availability of predictive analytics 
models, the DSS is capable of dealing with a large volume of historical data to improve the accuracy, and to 
control noisy and biased data (Sauter, 2010).  
2.2 Decision Support System Use in Conceptual Cost Estimation 
It appears that most of the previous research in CCE focuses on developing analytical models for CCE while 
ignoring the actual DSS design. Hegazy and Ayed (1998), as well as Cheng,Tsai and Hsieh (2009), are among 
the few studies which partially discuss the design of a DSS for CCE. Hegazy and Ayed (1998) developed a 
decision support system for the conceptual cost estimation of highway projects. The system was built using an 
MS Excel spreadsheet, which allows simple data management functions. The system uses GeneHunter, which is 
an add-in for MS Excel to build a NN model. The user interface is built through an MS Excel Macro. The 
database component in MS Excel was used to store data and allow users to conduct simple data manipulations, 
such as view, add, and delete data records. The model management subsystem can optimize the NN model, and 
estimate the costs of new projects based on historical data (Hegazy & Ayed, 1998). The user interface provides 
visual screens and buttons allowing users to conduct what-if analysis. 
Cheng et al. (2009) built a decision support system which estimates project cost using fuzzy logic and neural 
network models. The system is suggested to be web-based and communicates with the user via the internet. The 
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system is built in a Windows environment. The database subsystem includes historical data, estimating results, 
model parameters, net price value, and users’ input (Cheng et al., 2009). The model management subsystem 
supports the project management process, transfer projects, calculates price index and estimates project costs. 
The model can communicate directly to users for each function of the model via internet servers. 
3. Objective, Scope and Methodology 
The objective of this research is to develop a prototype decision support system which estimates costs and 
performs what if-analysis among alternatives at the conceptual phase of university construction projects. The 
requirements of the Construction Administration Department of the University of Alabama provide a framework 
for this research. The research developed a cost model which takes into consideration the effects of attendant 
variables regarding historical data of construction projects on campus. This model helps predict construction 
costs of the University in long-term capital planning, such as preparing the Annual Consolidated Capital Plan 
Report and Campus Master Plan. 
3.1 Initial Investigation 
This project was started in August 2016, with the original plan to build a series of modules to support conceptual 
cost estimation. Meetings with the executive manager of UACA were held to identify project requirements. Data 
investigation was conducted on the Estus system (Division of Financial Affairs, 2009), Alabama Building 
Commission (2016) website, and Alabama Commission on Higher Education (2018) database to access potential 
available data for the DSS. After conducting data feasibility study, four project types were selected for building 
system modules including roofing, lighting, plumbing and electrical projects. A web-based data entry form was 
created. On September 1, 2017, the project team was redirected to focus on only roofing projects as the basis for 
our database and subsequent DSS.  
Data from Estus was determined to be the primary source for this analysis. Due to the large volume and high 
variety of data on Estus, further clarification was needed. It was decided to use Qualtrics software to build a 
web-based data entry form. Qualtrics is a web-based platform, which provides a convenient way to create an 
online research survey and report results (Qualtrics, 2018). It allows us to send the entry form via email or share 
the form link to the participants. The original plan was to contact architects and contractors who worked on UA 
projects and have them complete the form. However, UACA found difficulties in contacting these past architects 
and general contractors. Therefore, data was collected from the Estus system with clarification from UACA 
project managers via Qualtrics. 
3.2 Methodology for Developing the DSS 
As suggested by Turban et al. (2006), the framework used to develop this system has four main phases: (1) 
planning, (2) analysis, (3) design, and (4) implementation. Planning maps out the project’s overall structure. 
Analysis determines and understands details of what the system must do to address the problem or needs. The 
design phase focuses on configuring and structuring the new components. Implementation includes 
programming, testing and putting the system into operation. 
A hybrid method of system development methodology was used, which combines the system development 
lifecycle (SDLC) approach (Satzinger, Jackson & Burd, 2015) and prototyping approach (Turban et al., 2006). 
As explained by Satzinger et al. (2015), the system development life cycle is a structured framework that 
identifies all of the activities required to research, build, deploy, and often maintain an information system. The 
SDLC approach requires that most of the tasks in one phase are completed before the work proceeds to the next 
phase. Due to difficulties in identifying and analyzing the problem at the beginning of the project, the SDLC 
approach was applied during the planning and analysis phases to establish the solid foundation for later phases – 
design and implementation. Project scope and schedule were verified with UACA management at the end of the 
analysis, before starting the design phase, to avoid scope creep.  
Turban et al. (2006) note that the prototyping approach involves performing the analysis, design and 
implementation phases concurrently and repeatedly. In this project, prototyping is applied during the design and 
implementation phases of the project life cycle. This approach builds system in a series of short steps with 
immediate feedback from users to ensure that the development is proceeding correctly (Turban et al., 2006). An 
advantage of the prototyping approach in this project is to ensure the satisfaction of the managers (users) with 
the system interface and system functions. This feedback helped us understand the manager’s requirements and 
reduce the developing time by focusing on important needs. 
3.3 Selection of the Predictive Analytical Model 
Kutner et al. (2008) discuss regression analysis as a common methodology utilizing the relation between two or 
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Similar to the Historical Data subsystem, users open the Estimation subsystem via the “Estimation” button on the 
Control dashboard (Figure 2). Users input scoring data and execute estimations based on the values selected. The 
“Re-Estimation” function then allows users to modify the scoring values and redo the estimation until they are 
satisfied. Based on the variable selections on the “Setting” dashboard of the Historical Data subsystem, the 
Estimation subsystem will enable users to input scoring data in specific fields on the dashboard. 
4.3 Processing Specifications 
After the historical data are well prepared (such as converting categorical variables, or calculating inflation), the 
system is ready to conduct ridge regression. Scoring data, input via the Estimation subsystem, are stored 
temporarily. This may cause difficulties in reading the data; however, it helps MS Excel save memory during the 
calculation. Scoring data are used to build the scoring matrices for each roof area and one matrix for general data. 
When the “Estimation” button is selected, the VBA sub “GeneralResponse” and VBA sub “RoofResponse” are 
called to calculate the responses. 
The sub “RoofResponse” uses historical data to create a predictor matrix for each roof area based on the scoring 
data that users select for the roof. One response matrix (containing data of roof area cost ($) input) is used for the 
entire roof area. “RoofResponse” also calculates the coefficient for each roof datum Matrices are standardized 
via the VBA function “MatrixStandardize”. Since VBA does not have matrix functions such as adding or 
subtracting matrices, some additional matrix functions are built to support calculations. The sub “RoofResponse” 
iterates through each roof area and creates ridge regression models for these areas. These coefficients are 
multiplied with scoring matrices of each roof area to obtain the predicted values. Predicted values are displayed 
to the “Result” tab of the Estimation subsystem dashboard. Similarly, VBA sub “GeneralResponse” is used to 
calculate the response values for general data. 
Roof areas may use different models depending on the quantity of predictors that users have provided in these 
areas. For ridge regression, the system standardizes all X and Y matrices, and fits them with ridge regression 
models to get standardized coefficients. Default lambdas are first used in this fitting process. These coefficients 
are then unstandardized and formulized default fitted models are used for each roof area. Data are partitioned to 
conduct cross-validation. This cross-validation uses default fitted models to calculate overall errors. An optimal 
lambda value is obtained by using the automatic trial and error (Goal Seek in MS Excel) to find the minimum 
value of the overall cross-validation error. This lambda is used to recalculate the final fitted models. Roof scoring 
data are plugged into the final fitted model to obtain the material costs (response Ys) of each roof area. These 
material costs are added up to the total material cost and merged with general scoring data that users input. This 
merged data becomes the new general scoring data. The system redoes the process, similar to what it has done 
with the roof data, to obtain final fitted models for the general data.  
To evaluate the result of the estimation, mean absolute percentage of errors of regression are calculated, as 
suggested by Myttenaerea, Goldena, Grandb and Rossic (2017). The VBA function “MeanAbsPercentError” is 
used in sub “GeneralResponse” and sub “RoofResponse” to calculate the percentage mean of error. In the event 
that there is a 0 value in the response (such as demolition days, the quantity of subcontractors, and the quantity 
of change orders), the denominator in Equation 5 would be 0 which would cause VBA function errors. Therefore, 
another equation is used to calculate the percentage of error for these cases. The symmetric mean absolute 
percentage error provided is used, as suggested by Kim and Kim (2006).  
4.4 Output Specifications 
The Cost Results tab (see Figure 5) displays the results of the estimation regarding material costs, construction 
cost, and total cost. Percentage of error values of the regression analysis are calculated based on comparing the 
fitted values and actual values of the response. These guide the users to accept or reject this analysis. The cost 
result is used to plot summary charts which are displayed to the users. If users reject the results, they can click on 
the “Re-Estimation” button, return to the scoring tabs, change scoring inputs, and then conduct another 
estimation. Users can redo this process until they are satisfied with the result. This what-if analysis is intended to 
provide users with different scenarios of the estimation. By reviewing multiple scenarios, users compare cost 
values to select the project alternative to proceed with. 
Once users accept the estimation result, they can subsequently open the Inflation dashboards to adjust the result 
with consideration of inflation. Users can select several future points via the Time combo box, then select the 
“Advance” button to view the prediction chart, change the sources of inflation cost index, and display the new 
results.  
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Koo & Mishra, 2013). The usability testing evaluates the degree of effectiveness, efficiency, and satisfaction 
when the client uses the developed system in their specified business activities (ISTQB, 2018). Two usability 
tests were conducted on Apr 25, 2018, and Sep 6, 2018, with our client. The first test focused on improving the 
system functionality to better match the client’s requirements. The second test focused on finalizing the system 
and developing a transition plan for the UACA to apply this system. The client accepted the developed system 
with some minor suggestions.  
ISTQB (2018) defines a test case as a set of preconditions, inputs, actions expected results and postconditions, 
developed based on test conditions. The prediction accuracy of the system was tested with actual project values. 
A new construction project, the Kappa Kappa Gamma Chapter House, was used as the first case. A renovation 
project, for the Hardaway Hall roof replacement, was used as the second test case. The DSS reduced the 
prediction errors of the total project cost from 40.5% to 16.4% in these test cases. This is 24.1% average 
improvement on the accuracy of estimation. This system can also provide UACA detailed construction 
component costs such as labor, material, equipment costs. This indicates that the system can help improve the 
current conceptual cost estimation process at UACA.  
6. Conclusions and Further Research 
Using historical data to make actionable decisions has become an accepted approach across multiple industry 
sectors. Recently, the development of data storage technology has allowed construction organizations and 
contractor firms to collect more historical data than ever. When data are stored in a single system, such as MS 
SharePoint, it enables the system’s user to extract and analyze for essential information. Accurate information, 
such as future project costs, can significantly assist managers in important decisions such as long-term capital 
planning.  
This research provides the Construction Administration department, of the University of Alabama, with an 
advanced decision support system to improve accuracy in conceptual cost estimation. With the help of project 
managers at UACA, historical data was collected for on-campus roofing projects. The resulting prototype system 
was programmed in MS Excel and Visual Basic Application. The system architecture encompasses three 
subsystems: (1) the Historical Data subsystem, (2) the Estimation subsystem, and (3) the Control subsystem. In 
this research, the ridge regression technique was used. It allows analysis of multiple regression data that suffer 
from multicollinearity.  The Engineering News-Record (2018) index values were utilized to adjust the output of 
the system to future cost values. The system was validated with two test cases. The test results demonstrate 
improved accuracy for conceptual cost estimating. This will help the University improve the decision-making 
process in long-term capital planning. 
Future research directions envisioned for the prototype system include migrating the system to other universities 
that want to improve their conceptual cost estimation and long-term capital planning. This will also help the 
system acquire more historical data, and thus the predictive accuracy. Modification of the security levels would 
allow multiple universities to use and share the system. Second, the scope of this research can be expanded to 
other building components, such as lighting. Third, deployment of this MS Excel system into a web application 
would enable the users to access the system from multiple locations, further supporting the multi-university 
initiative. Finally, application of the system beyond the university environment, to the broader construction 
industry, should be investigated. 
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