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Abstract 
Using a 30year (1976-2005) daily high-resolution reanalysis wind field dataset assimilated from several 
meteorological data sources, the wind speed and power characteristics of the South China Sea (SCS) were 
investigated using the Weibull shape and scale parameters. The region in general showed good wind 
characteristics. This is shown by high annual mean wind speed and power density values which are 5.93 m/s and 
273.84 W/m2 respectively.  The calculated annual mean wind power resource attributes the region to a relatively 
high potential site for large- scale grid connected wind turbine applications. The wind power ranged between 
96.27 W/m2 in May and 527.03 W/m2 in December. Furthermore, spatio-temporal variations showed that strong 
trends in wind power exist in Luzon strait in the northern SCS and Xisha, Zhongsha, Luzon, Liyue bank in the 
central SCS which are evaluated as high wind potential regions and may be rated as locations excellent for 
installation of large wind turbines for electrical energy generation. Non-significant and negative trends dominate 
the southern SCS and may therefore, be suitable for small wind applications. The wind power density exhibited a 
significant increasing trend of 1.4 W/m2 yr-1 in the SCS as a whole throughout the study period. The trend is 
strongest (2.8 W/m2 yr-1) in winter. 
Keywords: potentials, region, trend, variation, weibull, wind power 
1. Introduction 
Energy is a key factor of life sustainability on earth in terms of human and economic development. The problems 
of poor energy distribution, adverse environmental effects of the several ways of energy production and 
declining fossil-fuel supplies are fast making life unbearable for people. With a rapid growing worldwide 
population, there is a large increase in the energy demand and there is the dire need for some new formulations 
to exploit renewable energy sources to generate power and electricity which the present and future generation 
will stand to benefit from. The wind resource is relevant in executing a wind energy project and an in-depth 
knowledge of the wind climate of a locality is a key requirement in the estimation of the performance of wind 
energy project. Among the sources of resource energy, the wind energy was the most rapid growing energy 
technology in terms of percentage of yearly growth of installed capacity per technology source (Lund ,2007), 
(Ackermann & Söder, 2002), (Akdag & Güler, 2010),  (Lund & Mathiesen, 2009). 
With relatively little research and development expenditure, (Harborne & Hendry, 2009) found that wind has 
advanced more quickly to commercialization than other technologies such as solar power, fuel cells and wave 
power. 
Talking about wind availability assessment, Nigeria was observed to be a poor/moderate wind regime with wind 
speeds within the range of 2.12 to 4.13 m/s in the southern part of Nigeria, except the coastal regions/offshore 
and the northern part where wind speeds were seen to range between 4.0 and 8.60 m/s  (Adaramola et al., 
2014). 
Encouragements have been shown for power applications regarding several researches carried out on wind speed 
assessment from many regions in the world. Recently, (Islam et al., 2011) carried out a research on the wind 
power characteristics and potentials for power generation at two locations in Malaysia with wind data observed 
at 10m hub height at the respective sites; they concluded that maximum monthly wind speeds of 4.8 and 4.3 m/s, 
and power density of 67.4 and 50.8 W/m2 were found at Kudat and Labuan respectively. A similar study was also 
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carried out by (Mohammadi & Mostafaeipour, 2013)  in assessing the possibility of wind energy for power 
application at a particular location in Kurdistan provinces on hourly, daily, monthly, seasonal and annual basis by 
using Weibull distribution function. The outcome of the study showed that the site is marginally suitable for 
wind power application. 
Offshore wind energy is the energy generated by wind turbine set up in the sea. This area can be several tens of 
kilometres off the shoreline depending on the sea depth. Setting turbines in the sea has a tremendous advantage 
of better wind resources over that of land-based sites. Offshore turbines, therefore, achieve significantly more 
full-load hours. Offshore wind farms can be sited near large coastal demand centers, often avoiding long 
transmission lines to get power to demand, as can be the case for land-based renewable power installations – this 
makes offshore especially attractive for countries with coastal demand areas and land-based resources located far 
inland, such as the US, many European countries and China. In an attempt to satisfy environmental stakeholders, 
offshore wind farms generally face less public opposition and to date, less competition for space compared with 
developments on land. With this, projects can be large, with 1 GW power plants which is likely to be achievable 
in future. 
Vast off shore deployment began at a very slow rate, particularly in Europe. As at the end of 2012, 5.4 GW had 
been installed (up from 1.5 GW in 2008) mainly in Denmark (1 GW) and the United Kingdom (3 GW) , with big 
offshore wind power plants installed in China, the Netherlands, Belgium, Germany and Sweden. More offshore 
turbines operate in Norway, Japan, Portugal and Korea, while new projects are planned in France and the United 
States. Forty six (46) GW of offshore projects are registered in the United Kingdom and about 10 GW have been 
progressing to consenting, construction or operation. 
The wind energy, as it provides clean energy and a minimal-cost of energy sources, gives the best option of 
electricity generation of all renewable and non-renewable energy resources. 
Wind energy generation in the SCS relies solely on suitable regions in the Sea for wind energy utilization, which 
varies with location and topography. Before a wind farm can be built, a thorough assessment of the wind energy 
potential in the SCS must be conducted. This can then be followed with detailed assessment in promising 
locations (Xydis et al., 2009). At present, there is very limited research on the assessment of wind energy 
potentiality in the SCS. Using a 30 year, reanalysis wind fields from various wind observations that were 
assimilated and provided every 6hour, this study therefore, aims at adopting the methodologies for wind energy 
assessment over land locations in previous studies to the Sea using the SCS as a case study. The spatial variations 
in wind power density which describes the choice of profitable region for harnessing wind energy together with 
the spatial trends in wind power, highlighting locations of strong trends in the SCS will be investigated and stand 
as an improvement on previous works. The temporal trends in wind power will also be analysed. 
The paper is organized as follows. Section 2 provides information on the wind field data and a thorough 
validation of assimilated wind speed with wind speed obtained from altimeter using some statistical tests with 
their results.  
Section 3 presents the methodologies used in the wind energy assessment and detailed discussion on results 
obtained. Finally, conclusions of this study are given in section 4. 
2. Data Sets and Methodology 
2.1 Wind Field Data 
The simulation assimilated reanalysis wind fields from several wind observations were provided by South China 
Sea Institute of Oceanology, Chinese Academy of Sciences. The wind fields provided a 6hour time series of 
wind speed over a box extending from 30N to 230N and 1050E to 1210E which contains main part of SCS and 
surrounding waters and cover the period from 1976 to 2005.Wind fields were interpolated on a regular 0.250grid.  
With the use of the national centers for environmental prediction (NCEP) reanalysis data as the background wind 
field, sea surface wind field reanalysis used Grapes three-dimensional variation assimilation and weather 
research and forecasting (WRF) numerical model to simulate other meteorological data sourced from observed 
data, historical weather charts, NASA QuickSCAT data (0.25° resolution) and synoptic maps.  
2.2 Satellite Data and Verification of Wind Field Assimilation 
Usually, in-situ wind data are mainly collected from voluntary ships and wave buoys. However, in SCS, sparse 
voluntary ship data and no wave buoy data are available. This makes the remote sensing (use of satellite data) be 
an important source for the wind speed data in the SCS.  
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Topex/Poseidon passed over the SCS. 
The accuracy of the wind field assimilation was evaluated through a conventional statistical analysis that consists 
on calculating the following: 

                            (1) 

                                     (2) 

                                 (3) 

Where, xi represents the observed data, yi represents the assimilated data, x and y are mean values of observed 
and assimilated data, N is the total number of observations.  
The correlation coefficient (cc) between the assimilated and observed wind speed data is 0.932, the bias error is 
0.045 m/s and a RMSE of 0.21 m/s. 
In general, the assimilation results are consistent with the observations, which indicate that in general, wind field 
assimilation can reproduce the wind speed data in the SCS. 
3. Analysis Methods 
3.1 Computation of Wind Energy 
For quite a long time, statistical models like Rayleigh, Weibull, log-normal and normal have been employed in 
wind data analysis (Fyrippis et al., 2010; Chang, 2011; Morgan et al., 2011; Keyhani et al., 2010; Lun & Lam, 
2000) but the two-parameter Weibull probability distribution function had a world wide acceptability for wind 
data assessment because it has a good match with experimental data among the statistical models (Ohunakin et 
al., 2011). It is an overall gamma function that calculates the wind power density and describes the wind speed 
frequency distribution (Gokcek et al., 2007). This study therefore adopts the two-parameter weibull distribution 
function to compute the wind power density. 
The Weibull probability density function is expressed as (Gokcek et al., 2007): 

                                       (4) 

The corresponding cumulative density function is expressed as (Gokcek et al., 2007): 

                                          (5) 

Where k and c are the shape and scale parameters respectively, while v is the wind speed. k is a  dimensionless 
parameter which represents the variation of average wind speed in a given sample and c (m/s)  is a variable 
which indicates the wind potential at a location and can be computed using approaches like standard deviation 
method (Justus et al., 1978), power density method (Akdag & Dinler, 2009), maximum likelihood method 
(Stevens & Smulders ,1979) and the graphical method (Rinne, 2010) etc. The stability of the wind speed is a 
function of ‘k’ the higher the value of ‘k’, the more stable the wind speed is. The larger the value of ‘c’ the more 
spread of wind power (Khan et al., 2015). This study therefore adopts the standard deviation method (Justus et 
al., 1978), (Saleh et al., 2012) in equations (6) and (7).  

                                          (6) 

for 1 ≤ k ≤ 10 

                                         (7) 

v and σ are respectively the average wind speed in (m/s) and the standard deviation showing the extent of 
deviation of the wind speed. Γ(x) is the gamma function which is expressed as: 

                                    (8) 
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The wind power density is expressed as (Sathyajith, 2006): 

                              (9) 

Where Pd is the wind power density in W/m2 and ρ is the air density assumed to be 1.225 kg/m3. 
The coefficient of variation (cov) which is the variability of wind speed, is the ratio between mean standard 
deviation to mean wind speed. The coefficient of variation (cov) is defined in percentage and can be expressed as 
(Ahmed, 2012): 

                              (10) 

In this study, wind speed data for the years 1976–2005 have been statistically analyzed. The monthly and 
seasonal variations of the Weibull parameters, wind power density, mean wind speed, standard deviation and cov 
are obtained. Furthermore, the spatial distribution of wind power density and its trends are analyzed. 

 
Figure 3. Percentage frequency distribution of wind speed in the SCS 

 
3.2 Result and Discussion 
3.2.1 Monthly Wind Pattern 
 
Table 1. Monthly and annual mean wind speed parameters 

Month k c (m/s) WPD (W/m2) u (m/s) σ cov (%) 
Jan 3.7 8.65 435.72 7.81 2.58 33.66 
Feb 3.19 7.64 320.24 6.85 2.66 39.04 
Mar 2.72 6.49 213.16 5.79 2.56 44.65 
Apr 2.51 5.09 110.6 4.53 2.12 47.26 
May 2.26 4.67 96.278 4.15 2.2 53.22 
Jun 2.27 5.74 187.31 5.12 2.76 54.06 
Jul 2.24 6.12 233.12 5.47 3.03 55.24 
Aug 2.49 6.54 270.22 5.86 3.08 53.27 
Sep 2.05 5.58 198.88 4.99 2.96 58.79 
Oct 2.28 6.23 284.19 5.55 2.99 55.22 
Nov 2.91 7.76 409.36 6.95 2.85 43.65 
Dec 3.62 8.98 527.04 8.12 2.78 35.73 
Annual 2.69 6.62 273.84 5.93 2.71 47.82 

Note. k=Weibull shape parameter; c=Weibull scale parameter; WPD=Wind power density; u=10m wind speed; 
σ= Standard deviation; cov= coefficient of variation. 
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Figure 4. Monthly variation of 10m wind speed in the SCS 

 
The percentage frequency distribution of wind speed in the SCS is illustrated in figure 3. The wind speed within 
the range of 4-8m/s has the highest frequency of 43.06%. The other wind speeds categories of 0-4m/s and 
8-12m/s respectively have frequencies that differ by 13.2% while the wind speed in the range of 12-16m/s has a 
low frequency of 4.35%. 
The monthly mean values of the Weibull parameters, wind power density, wind speed, standard deviation and 
coefficient of variation are listed in table 1. Figure.4 illustrates overall mean wind speed variations during 
different months in the SCS. The monthly mean wind speed varies between 4.15 m/s in May and 8.12 m/s in 
December. The monthly variations of the Weibull parameters are as shown in figure 5. 

 
Figure 5. Monthly variation of the Weibull parameters in the SCS 

 
The shape parameter ‘k’varies between 2.05 in September and 3.7 in January which implies the wind speed data 
is most stable in January and least stable in September. Therefore, January is more suitable for the production of 
uninterrupted and stable wind power. The scale parameter ‘c’ranges between 4.66 m/s in May and 8.98 m/s in 
December.  
The minimum and maximum values of cov are between 33.66% in January and 58.78% in September. The 
highest value in September showed that the variation of wind speed is very high in September. The maximum 
and minimum values of standard deviation are equal to 3.07 and 2.11 obtained respectively in August and April.  
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Figure 6. Monthly variation of wind power in the SCS 

 
Table 2. Wind power classification: Elliot and Schwartz (1993) 

Power Class Power density (P (W/m2)) at 10m
1 0 < P ≤ 100 
2 100 < P ≤ 150 
3 150 < P ≤ 200 
4 200 < P ≤ 250 
5 250 < P ≤ 300 
6 300 < P ≤ 400 
7 400 < P ≤ 1000 

 
Figure 6 displays the monthly variations of the wind power density in the SCS. Wind power density lies between 
96.27 W/m2 in May and 527.03 W/m2 in December. The annual mean wind speed and wind power density stand 
at 5.93 m/s and 273.84 W/m2 . For the wind power classification proposed by Elliot and Schwartz (1993) of 
Pacific Northwest Laboratory as shown in table 2, the annual mean power density for SCS falls into class 5 
which means the classification places SCS as having relatively high potential for large-scale wind power 
applications. 
3.2.2 Seasonal Wind Pattern 
The months in each season in China can be classified as follows (1) Winter: December through February (2) 
Spring: March through May (3) Summer: June through August and (4) Autumn: September through November. 
The seasonal average values of wind speed are shown in figure 7. 

 
Figure 7. Seasonal variation of 10m wind speed in the SCS 
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Table 3. Seasonal mean wind speed parameters 
Season k c (m/s) WPD (W/m2) u (m/s) σ cov (%) 
Winter 3.13  8.5 430.56 7.62 2.77 37.02 
Spring 2.23 5.44 138.43 4.83 2.42 50.6 
Summer 2.1 6.16 226.05 5.49 2.99 54.63 
Autumn 2.04 6.57 294.55 5.83 3.13 54.04 

 
Figure. 7 shows that the maximum value (7.62 m/s) occurred in winter and the minimum value (4.83 m/s) 
occurred in spring. Table 3 shows the seasonal averages of wind speed, standard deviation, cov, wind power 
density and Weibull parameters. From the table, the maximum and minimum values of the standard deviation 
occurred in autumn (3.12) and spring (2.42). The largest cov happened in summer (54.63%) and the smallest in 
winter (37.01%). The shape factor (k) ranged between 2.03 in autumn and 3.13 in winter. The scale factor (c) 
ranged between 5.43 m/s in spring and 8.5 m/s in winter. 
 

 
Figure 8. Seasonal variation of wind power in the SCS 

 

 
Figure 9. (Monthly/annual) ratio of mean wind power and mean wind speed in the SCS 
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Table 4 further presents a 5year trends in wind power density for the whole year and seasons. The corresponding 
graphical plots are as shown in figure 14. Within the study period, the trend in wind power is strongest (6.87 
W/m2yr-1) between years 1996 and 2000 while decreasing trends of -3.117 W/m2yr-1, -0.7314 W/m2yr-1 and -3.49 
W/m2yr-1 are noticed between years 1976-1980, 1984-1988 and 1988-1992 respectively.  
The strongest trend of 26.3 W/m2yr-1 occurred between years 1992-1996 in winter. Negative trends of -6.37 
W/m2yr-1, -13.38 W/m2yr-1 and -5.42 W/m2yr-1 occurred between years 1980-1984, 1988-1992 and 2000-2005 
respectively. 
During spring, the strongest trend of 12.27 W/m2yr-1 is noticed between 1992 and 1996. Decreasing trends of 
-8.29 W/m2yr-1, -8.48 W/m2yr-1, -15.1 W/m2yr-1 and -9.1 W/m2yr-1 occurred between years 1976-1980, 
1980-1984, 1988-1992 and 1996-2000. 
In summer, the trend of 22.35 W/m2yr-1 is strongest between years 1988-1992. Negative trends of -27.86 
W/m2yr-1, -11.97 W/m2yr-1 and -5.92 W/m2yr-1 are noticed between years 1984-1988, 1992-1996 and 2000-2005 
respectively. 
Lastly in autumn, the highest trend of 32.96 W/m2yr-1 occurred between years 1980-1984. Decreasing trends of 
-7.37 W/m2yr-1, -5.06 W/m2yr-1 and -15.19 W/m2yr-1 occurred in years 1976-1980, 1988-1992 and 1992-1996 
respectively.  
4. Conclusion 
Over a 30year period (1976-2005), this study used a 6hourly, daily high-resolution reanalysis wind field dataset 
derived from some meteorological data sources to assess the spatio-temporal variation of the wind power 
potential using Weibull shape and scale parameters over the SCS. The major findings in the work are as follows: 
(1) The region in general showed good wind characteristics. This is shown by high monthly and annual mean 

wind speed and power density values for the period of study 
(2) The calculated annual mean wind power resource (273.84 W/m2) attributes the region to a relatively high 

potential site for large- scale grid connected wind turbine applications 
(3) The maximum wind speed of 8.12 m/s occurred in December and a minimum of 4.15 m/s occurred in May. 

The wind power ranged between 96.27 W/m2 in May and 527.03 W/m2 in December. The wind has the 
highest variation (58.78%) in September and the lowest (33.65%) in January 

(4) The maximum wind speed of 7.62 m/s occurred in winter and the minimum of 4.83 m/s occurred in spring. 
The wind power ranged between 138.43 W/m2 in spring and 430.55 W/m2 in winter. The wind has the 
highest variation (54.63%) in summer and the lowest (37.01%) in winter 

(5) The wind power is stronger in the central and northern SCS than in the southern SCS. Strongest wind 
power density exist around Luzon strait and its adjacent waters and may be rated as locations excellent for 
installation of large wind turbines for electrical energy generation 

(6) Increasing positive trends in wind power density distribute in the Luzon strait and adjacent waters through 
Luzon to Liyue bank. Non-significant and negative trends dominate the southern SCS 

(7) The wind power density exhibited a significant increasing trend of 1.4 W/m2 yr-1 in the SCS as a whole 
throughout the study period. The trend is strongest (2.8 W/m2 yr-1) in winter and weakest (-0.62 W/m2 yr-1) 
in autumn. 
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