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Abstract 

In many sciences, it is standard laboratory practice to use a statistical design of experiment and a regression 
model to study the influence of multiple parameters under a wide range of conditions. The current study aims at 
investigating the reliability of regression models by examining recently published models. Of particular interest 
are the assumptions that are not robust to violation such as the reliability of measurements, constant variation of 
residuals, and sample size. To test regression models simulation is used to model potential measurement error 
and the importance of sample sizes on parameter estimation. The randomly perturbed designs are then used 
together with associated mathematical models obtained from the original designs to simulate experiments and 
obtain new regression models. A comparison of the original model to the new model, and various statistical tests 
are performed to determine how accurate the original parameters have been predicted when exposed to simulated 
measurement error. 
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1. Introduction 

Scientists perform experiments in virtually all areas of study, often to determine a relationship between 
numerous input factors and either one or multiple output factors. The area known as the Design of Experiments 
(DOE) is concerned with planning and conducting of experiments, as well as analyzing the resulting data so that 
valid and objective conclusions are obtained (Montgomery, 2009). Factorial experiments are often used as an 
experimental strategy in which inputs are varied together. These experiments are an important class of 
experiments because they may be used to accomplish a variety of different goals, such as perform factor 
screening, or to determine optimum factor levels. In this study we focus on experiments in environmental 
sciences, where factorial experiments are primarily used to study the influence of multiple parameters (physical, 
chemical or biological.) Upon performing experiments dictated by a factorial design, a multiple regression model 
is created to make predictions and inferences. This is a widely used method, in fact more than 4,000 hits were 
obtained with the keywords "multiple regression analysis" in the Science Citation Index just within the areas of 
Environmental Sciences.   

Typically, when evaluating a regression model one uses the coefficient of determination (R2) to confirm the 
goodness of fit of the model to that of experimental data. Coefficients of each variable and its associated p value 
are also used to help assess the influence of the variable on the process under study. But R2 values can be made 
artificially large by including an excessive number of terms, and p-values only indicate if a term is statistically 
significant and do not assess the accuracy of parameter estimation. Statisticians have studied the reliability of 
regression models and have identified a “reliability matrix” (Gleser, 1992) to help assess the model. It is widely 
known that measurement errors influence regression models (Pagano & Anoke, 2013). However, a reliability 
matrix is rarely used in an environmental science study.  

For a multiple regression model to be reliable, a necessary condition is that it does not violate the regression 
model assumptions (Kahane, 2008). However, a literature search reveals that in environmental sciences, multiple 
regression models are often not tested for their robustness to regression assumptions prior to interpretation and 
drawing conclusions. Two of the key model assumptions that are made are: 

1. The independent and dependent variables do not contain measurement errors.  
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2. Residuals of the model are independent over time, normally distributed, have mean zero, and exhibit 
constant variation. 

To further exacerbate the problem, scientists have known for a long time that when carrying out experimental 
studies two types of errors are introduced during input and output analysis: precision errors and accuracy errors 
(Taylor, 1982). Precision errors are related to the random errors associated with an experiment (e.g. measurement 
error), whereas accuracy errors are related to the systematic differences observed between laboratories (e.g. 
different calibration of the instruments). A regression model developed based on experimental data should also 
be robust to these experimental errors. Compounded with a limited data set available due to practical 
considerations, a regression model developed could provide a false sense of parameter efficiency and output 
predictability.   

The current study is aimed at developing a method to evaluate the reliability of regression models when the input 
and output parameters are subjected to small random perturbations created using simulation.  It is our 
assumption that the coefficients of the variables and their p values should not significantly change in reliable 
models, even when the variables are subjected to simulated random perturbations. Also addressed is how residual 
analysis of the models can help to evaluate the reliability of the model prediction.   

2. Methodology   

Twenty studies within the field of environmental sciences were selected to determine if the published models 
were robust enough to withstand simulated random perturbations of the input and output values uniformly 
distributed between ±5%. The studies examined along with errors measures (as described in this section later) 
are given in Table 1. The different types of experimental designs considered are: full factorial, fractional factorial, 
mixture design, Box-Behnken and central composite. The perturbations are used to assess how sensitive the 
model is to small changes in the input and output data. The changes could be a result of measurement error or 
possibly due to other types of process variation. To introduce a random perturbation of some value between ±5%, 
every coordinate of the design points and the output values as well, are multiplied by a simulated random 
number between 0.95 and 1.05. Table 2a provides an example of design points used in a 23 full factorial design 
that have been modified by multiplying by a simulated random number between 0.95 and 1.05 to obtain the 
design matrix given in Table 2b. 

 

Table 1. The list of 20 studies examined along with error measures of the regression models published  

Reference  Type MAPE APE90 
(Bhunia & Ghangrekar, 2007) Full Factorial 11% 24%
(Prasad & Srivasta, 2009) Full Factorial 54% 125%
(Lima, et. Al., 2007) Full Factorial 5% 9%
Saadat & Karimi-Jashni, 2010) Full Factorial 135% 444%
(Srinivasan & Viraraghavan, 2010) Fractional Factorial 18% 39%
(Mobilia, Scipioni, Veglio & Sciano, 2010) Fractional Factorial 27% 67%
(Dobrev, Pishtiyski, Stanchev & Mircheva, 2007) Fractional Factorial 5% 9%
(Chen, Lin, Jones, Fu & Zhan, 2009) Fractional Factorial 37% 109%
(Rispoli, et. al, 2010) Mixture Design 3% 6%
(Abdullah & Chin, 2010) Mixture Design 3% 6%
(Chen, Huang, Hsiao & Tsai, 2010) Mixture Design 7% 14%
(Santafe-Moros, et. Al., 2005) Mixture Design 38% 113%
(Gurkok, Cekmecelioglu & Ogel, 2011) Box-Behnken 5% 8%
(Anunziata & Cussa, 2008) Box-Behnken 674% 1679%
(Baskan & Pala, 2010) Box-Behnken 33% 53%
(Dopar, Kusic & Koprivanac, 2011) Box-Behnken 7% 19%
(Djoudi, Aissani-Benissad & Bourouina-Bacha, 2007) Central Composite 21% 42%
(Landaburu-Aguirre, Pongracz, Peramaki & Keiski,2010) Central Composite 57% 151%
(Mohajeri, Aziz, Isa & Zahed, 2010) Central Composite 10% 17%
(Imandi, Bandaru, Somalanka, Bandaru & Garapati, 2008) Central Composite 14% 27%
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Table 2. (a) Full factorial 23 experimental design.  (b) The factorial design with 5% random perturbations 

x1   x2   x3          x1          x2       x3 

+1 +1 −1   +1.04 +1.04 −1.02 

−1 −1 +1   −1.03 −0.99 +1.00 

−1 +1 +1   −1.01 +1.00 +0.99 

+1 +1 +1   +1.00 +1.03 +1.05 

+1 −1 +1   +0.98 −0.97 +0.96 

+1 −1 −1   +1.03 −0.96 −0.97 

−1 −1 −1   −0.97 −1.02 −1.03 

−1 +1 −1   −0.96 +1.05 −1.04 

(a)       (b) 
 
Let X denote the entire set of original experimental design points stored as a matrix, and let Y denote the vector 
of experimental outputs. To introduce a random perturbation of some value between ±5%, every coordinate of 
the design points in X, and the output values as well, are multiplied by a simulated random number uniformly 
distributed between 0.95 and 1.05. This procedure yields the modified design matrix denoted by . Once  has 
been obtained we use the initial polynomial model together with  to compute predicted output values. The 
predicted output values are then multiplied by a random number between 0.95 and 1.05 to yield . Next, 
perform a regression analysis using  and , which generates a new polynomial model. Let βi denote the 
coefficients of the original model. Observe that these are the parameters we are trying to estimate. We let  
denote coefficients of the model obtained from  and . For every parameter βi, we compute the absolute 

percentage error (APE) given by . Using these values we then compute the mean absolute percentage 

error (MAPE). However, since the MAPE can be greatly influenced by one or two extreme terms, we also 
calculate the 90th percentile absolute percentage error (APE90). Observe that 90% of the absolute percentage 
errors will be below APE90 and 10% will be larger. Additional nonparametric statistical tests such as the Sign 
Test can also be performed to test the reliability of the coefficients. A summary of the complete simulation 
process is given in Figure 1. 
 

Obtain DOE/Regression Model 
Confirm Result 

 
 

Use random numbers to  
simulate measurement error 

 
 

Perform regression and obtain 
new polynomial model 

 
 

Compare original model to new model 
Calculate error, repeat 1,000 times 

 
 

Compute summary statistics 
Run hypothesis tests 

 
Model Reliable? 

 
 

 Make Predictions and Inferences        Revise DOE and Model 
Figure 1. The simulation process to test regression model reliability 
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3. Results and Discussion 
We propose through this study that once a regression model has been developed using a DOE, a random 
perturbation of ±5% should be introduced into the design points and the output values to help assess the model 
performance. The perturbation is intended to represent the measurement and systematic errors introduced when 
performing experiments with limited measurement resolution.  

We begin with an analysis of how the type of experimental design influences the robustness with respect to 
measurement errors. A summary of the 20 studies is given in Table 3. The data illustrates a significant potential 
of errors influencing the results with Box-Behnken designs which produced results with an average MAPE of 
180% and an average APE90 of over 400%. In contrast, mixture design seems to be more resilient to error with 
minimum % errors in both of the measures used. The percentages in Table 3 were obtained by finding the 
average MAPE and APE90 of the four studies in each design group shown in Table 1. 

 

Table 3. A summary of the simulation results for the twenty studies examined       

Design Type MAPE APE90 

Basic Factorial 51% 151%

Fractional Factorial 22% 56% 

Mixture Design 13% 35% 

Box-Benken 180% 440%

Central Composite 26% 59% 

 

A second factor considered is the sample size measured by the ratio of number of design points divided by the 
number of predictor variables used in the final model. These ratios varied from a low of 1.25 to a maximum of 
4.33. Surprisingly, the increase in this ratio does not necessarily decrease the MAPE. Sample size alone does not 
seem to be critical with respect to the robustness of the model. What is more important than sample size, is the 
location of the design points within the design space. In particular, the design types with points located 
throughout the design space, especially at or near the center, are the designs with the lowest MAPE. To test this 
rigorously we identified designs that have included design points in the interior of the design space vs. those that 
contain points only on the boundary. The results indicate a significant improvement in reducing the MAPE when 
interior points are included in the design. 

4. Design Specific Analysis 

The full factorial designs studies cited in Table 1 all had either 3 or 4 input variables, and between 8 and 16 
predictor variables. The R2 values for the models constructed were typically good and all above 0.95. When 
looking at the full factorial designs as a group we see that the MAPE’s vary considerably with a minimum of 5%  
(Lima et al., 2007), to a maximum of 135% (Saadat & Karimi-Jashni., 2011). If one averages the MAPE’s over 
the 4 studies we obtain a grand mean of 51% for the full factorial designs (Table 2). The design used in (Bhunia 
& Ghangrekar, 2007) is a full factorial 23 design with 11 design points which includes 3 center points, and 
yielded the model given in equation (1). The model constructed in (Saadat & Karimi-Jashni., 2011) is based on a 
full factorial 24 design, no additional interior or exterior points, but with repeated trials and is given below in 
equation (2). 

                Y = -26.1 + 190.78x1 + 0.09x2 + 159.65x3 − 0.19x1x2  − 676.56x1x3                    (1) 

Y = 57.4 + 18.0x1 + 22.7x2 − 1.2x3 + 0.7x4  − 12.8x1x2 + 4.9x1x3 − 0.1x1x4 − 6.0x2x3  + 0.1x2x4 − 

0.1x3x4 − 2.3x1x2x3 − 0.03x1x2x4 + 0.08x1x3x4 − 0.05x2x3x4 − 0.2x1x2x3x4                         (2) 
The residual plot for the model described in equation 1 suggests that despite low number of sample size, the 
assumptions are not violated. When introducing measurement error into the model constructed in (Bhunia & 
Ghangrekar, 2007), we obtained an MAPE of 11% and an APE90 of 24%.  

The model (2) was obtained with a sample of 32 design points for 16 predictor variables, so the sample size is 
only twice the number of predictor variables. A potential source of error that arises in the model given in 
equation (2) is the inclusion of 3-way and 4-way cross terms with relatively small coefficients. Terms such as 
these are very sensitive to small measurement errors. Unless there is extreme confidence in the measurement 
system, we believe that a high degree term should not be included. Indeed, this is consistent with the 
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“sparsity-of-effects-principle” which states that a system is usually dominated by main effects and low order 
interactions. The principle has been explained in depth by (Wu & Hamada, 2000). The residuals are essentially 
normally distributed with mean zero. However, the constant variation assumption is violated with a large 
variation in the vertical spread, and there is a nonrandom pattern with decreasing residuals illustrated in the 
residuals versus observation order plot. Hence time is related to decreasing residuals indicating a violation of 
time independent residuals. After introducing random perturbations we obtained an MAPE of 135% and an 
APE90 of 444%. Hence, the model is neither reliable nor robust to the input data variations.  The study (Prasad 
& Srivasta, 2009) exhibits similar problems. There are too many variables artificially inflating R2 and the 
constant variation of residuals requirement is violated. 

Mixture designs have recently been developed and are included as an option in most computer aided 
experimental design software. For a comprehensive reference on mixture designs, see (Cornel, 1981). Unlike the 
previous two types of designs, mixture design have more than half of their points in the interior of the design 
space, including one point in the center.  In full factorial designs the design space is an n-dimensional 
hypercube where n is the number of input variables. However, in a mixture design each point gives the 
proportion of each input into the mixture. Hence, there is a constraint that requires the sum of the proportions to 
be one. This implies that the design space is now an n-dimensional simplex. 

The study (Abdullah & Chin, 2010) utilizes a simplex-centroid design for optimizing the composting of kitchen 
waste. The response is the carbon to nitrogen ratio Y, and the model developed is shown in equation (3).  
Observe that the model contains 3 input variables and 3 interaction terms for a total of 6 predictor terms.  

Y = 14.9x1 + 8.2x2 + 281.6x3 + 17.7x1x2 − 273x1x3 − 509.3x2x3               (3) 
The experimental design consists of 13 design points which yields a ratio of roughly 2 times as many sample 
points as predictor variables. The model shown in (3) had a high goodness of fit with a R2 of 0.98. The residuals 
do not violate any of the residual assumptions. Perhaps a better assessment of accurate parameter estimation is 
indicated by the MAPE being only 2.7% and the APE90 at 5.8% (Table 1).  The other studies in Table 1 based 
on a mixture design all produced remarkably similar results with respect to the error measures MAPE and APE90, 
even when the residuals appeared to be violated. The mixture design is an example of a design that is very robust 
to small perturbations in the input data.  

The next group considered are the Box-Behnken designs listed in Table 1, which are a special case of response 
surface designs. In (Gurkok et al., 2011) a three-level Box-Behnken design was used in an optimization study. 
The model developed is a second order model with three independent variables and eight predictor terms. An 
inspection of the residual plots confirms the residual assumptions. When perturbations are introduced the MAPE 
is 4.5% and the APE90 is 8.3%.  Clearly this design is robust with respect to the regression assumptions.  

In study (Anunziata & Cussa, 2008) a Box-Behnken was also used to develop a model with 11 predictor terms 
using 27 data points. The model is given in equation (4). 

Y = 21.6404 + 1.52833x1 − 2.52083x2 − 12.5292x3 + 8.875x4 − 2.17x1x2 − 0.005x1x3 − 9.475x1x4      (4) 

− 0.0125x2x3 + 0.825x2x4 − 1.525x3x4       
Inspection of the residual plots does not reveal any violations.  However, when applying perturbations to the 
design we obtained an MAPE of 674%, with a APE90 of 1,679%. We believe that the model is hyper-sensitive to 
measurement error because of low number of data points used in the study. 

We observed an inconsistency among Box-Behnken designs with respect to the inclusion of interior points in the 
design. The design used in (Annuziata and Cussa, 2008) did not include any center points. Whereas, the designs 
used in (Gurkok et al., 2011), (Baskan & Pala, 2010), and (Dopar et al., 2011) included 6, 5, and 3 center points 
respectively. The results obtained in (Baskan & Pala, 2010) and (Dopar et al., 2011) are much more reliable 
when subjected to random perturbations with an MAPE of 33% and 8% respectively.  

The last group of regression models examined is those based on a central composite design listed in Table 1. 
Central composite designs are often used to obtain a quadratic model that will facilitate optimization. As 
illustrated in Table 3, this group would be ranked second best with respect to the error measures. The model that 
performed best when subjected to input perturbations was (Mohajeri et al., 2010), which involves 4 input 
variables and 30 design points; where 16 of the points consist of a 24 basic factorial design, 8 points are axial 
points, and 6 points are center points. The response Y for this model is the weathered crude oil removal 
percentage and is given in equation (5). Observe that there are 11 predictor terms which implies a run to 
predictor variable ratio of roughly 2.7. Moreover, there are no predictor terms with three factors. 
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Y = 68.43 − 10.55x1 + 3.66x2 + 10.14x3 + 5.57x4 + 4.79(x2)
2 − 14.89(x3)

2 − 7.08(x4)^
2        (5) 

− 2.28x1x2 + 8.63x1x3 + 1.81x3x4               
The axial points are identical to the center points except for one factor, which will take on values both below and 
above the median of the two factorial levels, and typically both outside their range. Interestingly, the number of 
center points used in the central composite designs of Table 1 is: 12, 3, 6, 6 respectively, and the number of axial 
points used in these designs is 8, 0, 8 ,8, respectively. The design with 3 center points and 0 axial points was the 
only “non-robust” central composite design. As in the case of Box-Behnken designs, we see an inconsistency in 
the number of center and axial points used. 

5. Conclusions 

While the goal of the study was not intended to be comprehensive in the sense of testing a majority of designs, 
we present a simulation tool that could be used by investigators to test their designs and developed models for 
coefficient reliability. The study results in the following conclusions: 

• The reliability of a regression model is dependent on the type and parameters of the experimental design. 
Including numerous design points in the interior of the design space, such as center and axial points, 
increases the reliability and robustness of the model. 

• Scientists should evaluate the robustness of the regression model assumptions before making inferences.   
Models with very good R2 and p-values may not be very reliable when measurement errors are taken into 
consideration leading to false inferences.  Testing the regression model using simulation would provide a 
greater degree of confidence in the scientific inferences made. It may also provide new insight into the 
sensitivity of the scientific process being studied. 

• High order terms should be avoided as much as possible. Primary effect terms and two-way interactions 
and squared term are usually sufficient and lead to models that are much more stable than models with high 
order terms. 
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