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Abstract 
This study concerns a theoretical design of a condensing heat exchanger for a 320 MW unit of Bandar Abbas 
thermal power plant in the south of Iran. A film theory in conjunction with heat and mass transfer analogy is 
used as the theoretical basis of the design. The condensing unit is used for heat and mass recovery from the 
natural gas-fired boiler flue gases. The assumed condensing unit includes 4 equal capacity condensing heat 
exchangers, each of which is supposed to reduce the flue gas temperature from 160 ℃ to 53℃. Decreasing the 
flue gas temperature to below the dew point temperature of its water vapor causes condensation (latent) and 
sensible heat transfer. The analysis was done for 13%, 15%, and 17% of the water vapor volume fraction in the 
flue gases, and based on the 17% water vapor fraction, 52.8 tons/hr of water was recovered. This recovered 
water could be used as the cooling tower makeup, and accordingly, almost 14% of water consumption is saved. 
The recovered heat by the condensing unit is also being used as the heat source of an ORC cycle, and up to 2.8 
MW power is estimated to be generated depending on the evaporation temperature. 
Keywords: Condensing heat exchanger, latent heat recovery, Organic Rankine Cycle (ORC), waste heat 
recovery, water recovery 
1. Introduction 
Energy and water shortage are of the immense life challenges worldwide. The issues of waste heat and water 
recovery have attracted attention as part of efficiency improvement in energy plants by different CHP  methods 
(Wang, Husnain & Fareed, 2019; Chen, Finney, Zhang, Zhou, Sharifi & Swithenbank, 2012). Steam power 
plants are  larger consumers of water than any other industry  (Xiong, Niu, Tan, Liu & Wang, 2014). The 
electricity demand is ever-growing, which consequently enhances water demands for power generation. As result, 
water availability issues are becoming increasingly important. The exhaust flue gas of a power plant boiler is 
wasted in the atmosphere with a temperature normally above 150℃. For a 600 MW power plant, the flue gas 
flow rate is about 2.87 million kg/hr, and 10-20 % of the flue gas volume is water vapor. This considerable waste 
stream can be a great source of water and energy (Goel, 2012; Comakli, 2008; Terhan & Comakli, 2016). 
The exhaust flue gases from boilers contain a significant amount of energy and water vapor that is wasted in the 
environment. The discharged heat with the flue gases accounts for about 50-80 percent of boiler heat losses, and 
a large percent of the heat loss is due to the latent water vapor. Therefore, the boiler efficiency could be 
potentially improved by recovering the waste heat and water vapor. To recover the latent heat of water vapor, the 
temperature of the flue gases must be reduced to a level lower than the dew point of the water vapor. The water 
vapor concentration is based on the fuel type which is fired in the boiler. Water vapor concentration is 11-13, 
13-17 and 10-20 percent by volume for oil-fired, natural gas-fired, and coal-fired boilers, respectively. An 
increase in the flue gas water vapor volume fraction causes the dew temperature to rise  (Goel, 2012; Levy, 
Bilirgen, Jeong, Kessen, Samuelson & Whitcombe, 2008). In general, the flue gas water vapor dew point 
temperature is about 50-60 ℃ (Levy, Bilirgen, Jeong, Kessen, Samuelson & Whitcombe, 2008). The exact 
amount of this temperature depends on the percentage of excess air used in the combustion process. Therefore, 
condensing the flue gas's water vapor can recover its sensible and latent heat, and the condensed water could be 
used again (Goel, 2012). Exhaust flue gases with a water vapor volume fraction more than 10 % and a 
temperature above 120 ℃ attracted growing interest in waste heat and water extraction (Zhao, Yan, Wang, Wei, 
Qi & Wu, 2017; Wang, He, Sun, Wu, Yan & Pei, 2012). 
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The best way to recover the exhaust flue gas's heat and water is to use condensing heat exchangers (Huang, 
Zheng, Baleynaud & Lu, 2017; Levy, Bilirgen, Kessen, Hazell & Carney, 2011). The condensing heat exchanger 
uses a cooling fluid to decrease the flue gas temperature to a level below the water vapor dew point. Thus, water 
vapor can be condensed, and both sensible and latent heat is transferred to the cooling fluid. Therefore, waste 
heat and water can be recovered. In the case of power plants, the heat that is recovered by condensing heat 
exchanger can be used for combustion air and boiler feed water preheating and utilities or as a heat source for an 
ORC cycle. These applications of recovered heat lead to a decrease in the power plant heat rate and fuel 
consumption and an increase in the boiler efficiency (Levy, Bilirgen, Jeong, Kessen, Samuelson & Whitcombe, 
2008). Condensing heat exchangers can recover 50 percent of waste energy in flue gases (Cortina, 2006).  
Chen, Finney, Zhang, Zhou, Sharifi and Swithenbank (2012) technically and economically investigated the 
feasibility of recovering heat and water vapor from exhausted flue gases of a 40 MW boiler. By using an indirect 
heat exchanger, the flue gas temperature was decreased to 30℃. In order to avoid corrosion, heat exchange tubes 
were coated with polypropylene carbon steel. The coating caused an increase in thermal resistance and then an 
increase in the heat exchanger area. According to present reliable value results, the cash return period of a 
stainless heat exchanger is longer than that of a carbon steel heat exchanger. 
Cho, Lee, Kang, Jung, Lee, Kharangate, Ha, Huh and Lee (2022) studied the condensation in the presence of 
non-condensable gases on a circular tube. They developed a data base included geometric parameters and 
operational conditions: air mass fraction, tube diameter, tube length, total pressure, wall sub cooling temperature, 
average condensation heat transfer coefficient and Reynolds number of the film. The data base was used in a 
multilayer perception neural network model for predicting the heat transfer coefficient in the condensation.   
Gundermann, Raab and Botsch (2021) experimentally investigated a correction factor that could calculate the 
heat transfer coefficient in the condensation at the presence of non-condensable gases. The presented correction 
factor depends on the water vapor volume fraction, the Reynolds number and the geometry ration between the 
inner diameter and the tube length.  
Mohammadaliha, Amini and Bahrami (2020) analyzed the pipe thermal conductivity effect on the 
performance of a condensing heat exchanger in the presence of corrosive substances. They found that 
thermal conductivity bigger than o.75 W.m-1.k-1 has no effect on performance improvement. Therefore 
materials such as natural graphite, plastics, polymers and ceramics can be used in condensing heat 
exchangers manufacturing.  
Jeong, Kessen, Bilirgen, and Levy (2010) evaluated the flue gas and heat and water recovery experimentally and 
theoretically. They described a heat and mass transfer process for designing a condensing heat exchanger. The 
results of the pilot scale and theoretical model were almost the same. 
Nabati (2011) studied the water vapor condensation in flue gas with high CO2 concentration. He explored a 
simple vertical plane to easily solve and focus on the physical model. He developed two condensation models 
and used a numerical approach to implement these models. His results showed that the combination of developed 
condensation models with the numerical solution can model the water vapor condensation behavior together with 
non-condensable gases. The results of this study can be used to design power plant condensing heat exchangers. 
Wang, Husnain and Fareed (2019)  investigated the condensation of a turbulent flue gas water vapor 
numerically and experimentally. They used a mixture of water vapor produced by a steam generator and hot air 
as flue gas for the experimental setup. The numerical model was studied in ANSYS-FLUENT. There was a good 
harmony between numerical and experimental results. Their results showed that the major thermal resistance in 
the condensing heat exchanger originates from the gas side. 
Li, Yan, Zhang , Chen, Cui, Song, Chang and Ma (2016) studied the performance of a 300MW coal-fired power 
plant thermally and economically. They used a direct contact condensation heat exchanger to recover the 
sensible heat, latent heat, and water vapor from the boiler exhaust flue gases. In this type of condensation, the 
flue gas desulfurization scrubber is used as a cooling exchanger and minimizes the problems caused by acid 
condensation in the flue gas. Based on currently available values, this type of flue gas condensation can be 
profitable in the case of coals with high-moisture concentration. 
Terhan and Comakli (2016) designed a heat and water recovery heat exchanger for the flue gas of a 60 MW 
boiler and conducted an economic analysis. By using the designed heat exchanger, the temperature of flue gas 
reduced from 160 ℃ to 40℃. The recovered heat was transferred to the cooling water and caused a temperature 
increase from 10 ℃ to 60℃. The heated water could obtain 184 flats' needs for hot water. The efficiency of 
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water vapor condensation was reported as 17.8%, and the payback of reducing fuel consumption was calculated 
at about 40700 $/year. 
Kessen (2012) designed an optimal air-cooled condensation heat exchanger for heat and water vapor recovery 
from exhausted flue gas of a power plant boiler. Both bare and fin tubes were used in the heat exchanger. The 
efficiency of water vapor condensation was reported as 50 percent. 
Maalouf, Ksayer and Clodic (2016) investigated electricity generation with an Organic Rankine Cycle using the 
recovered heat of industrial low-temperature flue gases. They used an indirect condensation heat exchanger and 
studied the cycle performance in different flue gas water vapor dew point and evaporator temperatures. 
2. Theoretical Analysis 
2.1 Condensing Heat Exchanger 
In a condensing heat exchanger (CHE), when the tube wall temperature goes below the dew point temperature of 
water vapor in flue gas, the condensation proceeds as a result of combined heat and mass transfer. Typically, the 
heat exchanger is divided into two zones, including the non-condensing and condensing zones. These zones 
should be studied separately. The reason is that only heat transfer occurs in the non-condensing zone. However, 
both heat and mass transfer are observed in the condensing zone due to vapor condensation.  
As shown in Figure1, when the condensation starts, a film of condensate covers the tube surface, and an interface 
forms between liquid and flue gas. Water vapor in the gas bulk diffuses toward the liquid-gas interface. The 
non-condensable gases' mass fraction increases along the tube wall as the water vapor mass fraction decreases.  
 

 
Figure 1. Water vapor condensation in the flue gas 

 
In order to model the condensation of mixtures, a common assumption is the equilibrium of vapor and liquid at 
the interface.  The use of film theory has proven to be more accurate for designing vapor condensers in the 
presence of non-condensable gases compared to the solution of the conservation equations. This method was 
first introduced by Colburn and Hougen and then completed by Colburn and Drew.  
The transferred heat flux from the gas bulk to the cooling water includes three heat transfer types, namely the 
sensible heat due to water vapor cooling, the latent heat due to water vapor condensation, and sensible heat of the 
liquid film cooling. Colburn, Hougen, and Drew considered only the sensible cooling and the latent heat of the 
water vapor condensation and neglected the liquid film sensible cooling. Ackerman  considered the sensible 
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condensate cooling by applying a correction factor in the flue gas heat transfer coefficient. The Colburn and 
Drew equation with Ackerman correction factor for the surface element dA is given in equation (1): 

 ൣℎ௙௚ ൈ 𝜀 ൈ ൫𝑇௙௚ െ 𝑇௜൯ ൅ 𝑁௧ ൈ 𝜆൧ ൈ 𝑑𝐴 = ሾ𝑈௢ ൈ ሺ𝑇௜ െ 𝑇௖௪ሻ   ሿ  ൈ 𝑑𝐴 (1)

In the above equation, on the left, the first term refers to the sensible heat transfer from the flue gas to the heat 
exchanger tube, and the second term is water vapor latent heat transfer. ℎ௙௚ represents the convective heat 
transfer coefficient on the flue gas side, 𝜀 is the Ackerman  correction factor for heat transfer in the presence 
of mass transfer, and 𝑇௙௚ and 𝑇௜ are the bulk temperature of flue gas and interface temperature, respectively. 𝑁௧ is the water vapor condensate rate, and 𝜆 is the latent heat of water vapor evaporation. 𝑇௖௪ is the cooling 
water temperature, and 𝑈௢ is the overall heat transfer coefficient.  
The water vapor condensate rate 𝑁௧ can be calculated from equation (2). 

 𝑁௧ = 𝐹 ∗ 𝐿𝑛 ൤1 െ 𝑌ூ1 െ 𝑌 ൨  (2)

Where 𝑌ூ  and 𝑌  are the mole fraction of water vapor (as condensing gas) at the interface and gas bulk, 
respectively. F is the mass transfer coefficient and can be estimated using the heat and mass transfer analogy: 

 𝐹 = ℎ௙௚𝑐௣ି௙௚ ൈ 𝐿𝑒ଶ/ଷ  
(3)

In the above equation, Le is the Lewis number of the water vapor in the flue gas and is calculated using equation 
(4). 

 𝐿𝑒 = 𝑆𝑐𝑃𝑟 = 𝛼௙௚𝐷ுమ௢ି௚௔௦  
(4)

Where, Sc is Schmidt number, Pr is Prandtl number, 𝛼௙௚ is thermal diffusivity of flue gas, and 𝐷ுమ௢ି௚௔௦ is 
diffusion coefficient of the water vapor into the flue gas. 
Antoine's equation can be used to calculate 𝑌ூ at the interface. This equation gives the relationship between 
temperature and saturated pressure of vapor at the water vapor interface (Jeong, Kessen, Bilirgen & Levy, 2010): 

 𝑌ூ = exp ሺ𝑎 െ 𝑏𝑇௜ ൅ 𝑐ሻ𝑃௧௢௧ a = 16.262, b = 3799.89 and c =  226.35 (5)

And  𝑃௧௢௧ is the total pressure of the flue gas. 
Ackerman's correction factor is calculated using equation (6). 

  𝜀 = 𝑁௧ ൈ 𝑐௣ି௩ℎ௙௚1 െ exp ሺെ𝑁௧ ൈ 𝑐௣ି௩ℎ௙௚ ሻ  

(6)

According to the above equation, when there is no condensation (𝑁௧ = 0), the Ackerman correction factor equals 
1. Thus, the heat transfer coefficient of flue gas in equation (1) does not change. 
Thermal resistances in heat transfer are illustrated in figure (1). The overall heat transfer coefficient is found 
using equation (7) (Kakac & Liu, 1998), when the condensation film resistance is ignored. 

  𝑈𝑜 = 1𝑟𝑜𝑟𝑖 ൈ 1ℎ𝑐𝑤 ൅ 𝑟𝑜𝑘 ൈ 𝑙𝑛 ቀ𝑟𝑜𝑟𝑖 ቁ ൅ 1ℎ𝑓𝑔 (7)

Where k, 𝑟௢, 𝑟௜ are thermal conductivity, outer radius, and inner radius of heat exchanger pipe, respectively. 
The flue gas heat transfer coefficient for in-line tube bundles can be found using equation (8) (Cengel, 2006). 

 ℎ௙௚ = 𝑁𝑢஽ ൈ 𝑘௙௚𝑑௢  
(8)
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 Nuୈ = 0.27 ൈ 𝑅𝑒௠௔௫଴.଺ଷ ൈ 𝑃𝑟଴.ଷ଺ ൈ ሺPr/Prୱሻ଴.ଶହ 1000 ൏ Re୫ୟ୶ ൏ 2 ൈ  10ହ (9)

 
The flue gas Reynolds number can be found using following equation (Cortina, 2006). 

 Re୫ୟ୶ =  𝜌௙௚ ൈ 𝑑௢ ൈ 𝑉௙௚ି௠௔௫𝜇௙௚  
(10)

The cooling water heat transfer coefficient ሺℎ௖௪ሻ can be found using the following equations: 

 ℎ௖௪ = 𝑁𝑢௖௪ ൈ 𝑘௖௪𝑑௜  
(11)

For water turbulent flow inside a smooth pipe, the Nusselt number is calculated using equation (12) (Cortina, 
2006). 

 𝑁𝑢௖௪ = 0.023 ൈ 𝑅𝑒଴.଼ ൈ 𝑃𝑟଴.ସ 𝑅𝑒 ൐ 10000 
(12)

 𝑅𝑒 =  𝜌௖௪ ൈ 𝑑௜ ൈ 𝑉௖௪𝜇௖௪  
(13)

 𝑉௖௪ =  4 ൈ 𝑚ሶ ௖௪𝜌௖௪ ൈ 𝜋 ∗ 𝑑௜ଶ 
(14)

 
In order to model the heat and mass transfer from the flue gas in the CHE, the pipes of the CHE are divided into 
several cells with the length of dL. The cooling water and the flue gas are counter cross-flow in each cell and 
separated with the pipe wall. The heat and mass are transferred from the gas bulk to the gas-liquid interface and 
then are transferred to the cooling water. The output data of each cell is the input data for the next cell, and all 
needed variables in the referred equations are calculated for each cell separately.  
The theoretical analysis was developed based on the following assumptions: 

 CHE with counter cross flow  
 One-dimensional, steady-state flow 
 Vapor and non-condensable gases in the flue gas are well mixed and are at thermodynamic equilibrium. 
 Condensing film thickness assumed as zero 
 Film condensation in the CHE 
 No heat loss from the CHE to the surroundings 
 No fog formation in the gas phase 

2.2 ORC Cycle 
As shown in figure 2, the cooling water passing through the CHE is heated up by the flue gas stream and sent to 
the ORC cycle evaporator as an energy input source for electricity generation. As shown in figure 2, the heated 
water enters the ORC cycle (point i) evaporator from the CHE and vaporizes the cycle's working fluid (point 3). 
The superheated vapor is sent to the turbine, which is coupled to a power-producing generator. Working fluid 
leaves the turbine as a low-pressure vapor (point 4) and is condensed in the ORC cycle (point 1) condenser, and 
then the working fluid is pumped back to the evaporator. Figure 2 also shows the T-S diagram of the studied 
ORC cycle. 
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Figure 2. ORC cycle 

The thermodynamic equations of the ORC cycle are written as below: 
1. Evaporator: 

 𝑄ሶ௘௩௔ =  𝑚ሶ ௥ ൈ ሺℎଷ െ ℎଶሻ (15)
2. Turbine: 

 𝑊ሶ ௧ =  𝑚ሶ ௥  ൈ ሺℎଷ െ ℎସሻ (16)
3. Condenser: 

 𝑄ሶ௖௢௡ௗ =  𝑚ሶ ௥ ൈ ሺℎସ െ ℎଵሻ (17)
4. Pump: 

 𝑊ሶ௣ =  𝑚ሶ ௥ ൈ ሺℎଶ െ ℎଵሻ (18)
In the above equations, 𝑄ሶ௘௩௔ and 𝑄ሶ௖௢௡ௗ are heat transfer rate in evaporator and condenser, respectively. 𝑊ሶ ௧ is 
the generated power by the turbine, and 𝑊ሶ௣ is the consumed power by  the pump. 𝑚ሶ ௥ is the mass flow rate of 
the working fluid, and h is the enthalpy.  
The evaporator superheating can be determined using equation (19). 

 𝑆𝐻௘௩௔ =  𝑇ଷ െ 𝑇ଶ௕  (19)

The net generated power by a turbine is calculated using equation (20). 

 𝑊ሶ ௡௘௧,௧ =  𝑊ሶ ௧ െ 𝑊ሶ௣ (20)

The recovered heat from the flue gas (𝑄ሶ௥௘௖௢௩௘௥௘ௗ) or the transferred heat from CHE cooling water is calculated 
using equation (21). 

 𝑄ሶ௥௘௖௢௩௘௥௘ௗ = 𝑚ሶ ௖௪ ൈ 𝑐௣ି௖௪ ൈ ሺ𝑇௜ െ 𝑇௘ሻ (21)

In the above equation, 𝑚ሶ ௖௪ is the mass flow rate of the condensation in heat exchanger cooling water. 𝑇௜ and  𝑇௘ are the enter and exit temperature of cooling water to the ORC evaporator, respectively. 
The turbine and pump isentropic efficiency is expressed using equation (22) and equation (23). 

 𝜂௜௦,௧ = ሺℎଷ െ ℎସሻሺℎଷ െ ℎସ௦ሻ 
(22)

 

 𝜂௜௦,௣ = ሺℎଶ௦ െ ℎଵሻሺℎଶ െ ℎଵሻ  
(23)
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According to the thermodynamics first law, the ORC cycle thermal efficiency can be found using Eq. (24): 

 
𝜂௖௬௖௟௘ = 𝑊ሶ ௡௘௧,௧𝑄ሶ௥௘௖௢௩௘௥௘ௗ (24)

3. System Description 
In this study, a heat and water recovery unit for the flue gas of a thermal power plant boiler is designed. The 
main purpose of this study is to recover heat and water and use them in the process or elsewhere, namely 
recovered water for cooling tower makeup water and recovered heat for power generation through an ORC cycle. 
The exact data of the Bandar Abbas power plant are used in the theoretical analysis. Bandar Abbas power plant 
has four units with an equal capacity of 320 MWs. The recovery setup is designed for one unit. The boiler data 
of the studied unit is presented in Table (1).   
Table 1. Bandar Abbas boiler data 

Fuel Fuel 
flow rate 

Flue gas outlet 
temperature 

Flue gas 
flow rate 

Water vapor 
Volume concentration 

Excess air
 

Natural gas 27000  m3/hr 160 ℃ 1190 ton/hr      13-17%        12% 
Figure 3 shows the diagram of the thermal power plant and the heat and water recovery unit. The boiler exit flue 
gas is passed through a CHE. In this heat exchanger, the flue gas is cooled to a temperature lower than the dew 
point temperature of its water vapor.  
The cooling water circulating in the CHE is heated by the transferred heat from the flue gas. Then, the heated 
cooling water is sent to the ORC cycle to evaporate and superheat the organic fluid of the ORC cycle. Then, the 
superheated fluid is expanded in the turbine of the cycle and leads to power generation. The condensed water in 
the CHE is collected and sent to the treatment unit and then is used as the cooling tower makeup water.  

 
Figure 3. Diagram of power plant and heat-water recovery unit 
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4. Results 
4.1 Condensing Heat Exchanger 
A  MATLAB code is developed to simulate the combined heat and mass transfer process in the condenser. The 
stream properties are calculated using REFPROP 9. The generated data by the code are verified using the data 
presented by Terhan and Comakli (2016), who designed a CHE for cooling and condensation process of the 
exhaust flue gas of a 60 MW boiler. Figure 4 compares our developed code and the one presented by Terhan and 
Comakli (2016). The flue gas is cooled from 158 ℃ to 40 ℃ , and the cooling water is heated from 10 ℃ to 
60 ℃  in a counter-current manner. As shown in figure 4, the generated results of the code well align with 
those of Terhan and Comakli (2016). 

 
Figure 4. Comparison of the calculated temperature of flue gas and cooling water with results from Ref. [6] 

Figure 5 shows the geometry of the designed counter-cross U-shaped CHE. The condensing unit includes 4 units 
with equal capacities. The design parameters of each condensing heat exchanger are listed in table 2. 
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Figure 5. The geometry of a CHE 

Table 2. Desinged CHE parameters 
Parameter Value 

Flue gas mass flow rate 82.64  𝑘𝑔/𝑠 

Cooling water mass flow rate 82.64  𝑘𝑔/𝑠 

Pipe outer diameter 55.57 mm 

Pipe inner diameter 50.80 mm 

Number of tube bundles  
Height of each pipe  

60 
6 m 

 
The temperature change of the flue gas and the cooling water, along the length of the counter current CHE for 15% 
water vapor volume concentration, are shown in figure 6. As observed in the figure, the gas temperature reduces 
from 160 ℃  to 53.4 ℃ , and the cooling water temperature increases from 27.15 ℃  to 80 ℃ . The 
condensation occurs at 72.9% of the CHE length, and heat transfer rate increases by releasing the latent heat of 
the water vapor. 
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Figure 6. Flue gas and cooling water temperature change along the length of CHE 

 
As shown in figure 3, the rejected heat from the CHE cooling water is used as the heat source for the ORC cycle. 
It is assumed that the cooling water inlet and outlet temperature in the CHE are 27.15 ℃ and 80 ℃, 
respectively.  Table 3 lists The calculated temperature of the flue gas and the cooling water for different water 
vapor  concentrations in the counter-cross condensing heat exchanger. As the amount of water vapor in the flue 
gas increases, condensation begins earlier at a higher temperature and increases latent heat transfer and a 
decrease in heat exchanger area requirement. The calculated area of designed heat exchangers for different water 
vapor concentrations is shown in figure 7. 
 
Table 3. The calculated temperature in the heat exchanger 

 
Water vapor 
volume 
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 Tfg                 Tc.w 

     Outlet 
 Tfg               Tc.w              

Inlet 
 Tfg                    Tc.w           

Outlet 
 Tfg                      Tc.w         

13 % 160               52.19 58              80 58               27.15 49.7             52.19   
15 % 160               52.4 60.88         80 60.88         27.15 53.4            52.4 
17 % 160               52.68 63.41         80 63.41         27.15 56.58          52.68 
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Figure 7. Area of designed condensing heat exchanger 

 
Due to condensation, the mass transfer from the exhausted flue gases to the interface occurs, and thus the water 
vapor mole fraction decreases in the gas bulk. As a result, the non-condensable gases mole fraction increases. 
Along the CHE length, non-condensable gasses accumulate at the interface, and then the water vapor mole 
fraction decreases. figure 8 shows the mole fraction change of water vapor and non-condensable gases and the 
CHE for 15 % water vapor concentration. 

 
Figure 8. Change of mole fractions along the length of CHE  

 
Figure 9 shows the amount of cumulative recovered heat in the condensing unit (including 4 condensing heat 
exchangers). Before condensation begins, the heat transfer rate decreases due to the decrease in temperature 
difference between the hot and cold streams. However, the heat recovery rate increases with the start of 
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condensation and latent heat transfer of the water vapor. As shown in Figure 9, for lower water vapor 
concentrations in the flue gas, a larger CHE length is exposed to the condensation and increases the condensing 
zone area. Due to corrosion problems in the condensing zones, higher price materials are used in manufacturing 
the tube bundles. Thus, with an increase in condensing zone area, the manufacturing cost will increase. 

 
Figure 9. Cumulative recovered heat along the condensing unit 

 
Figure 10 shows the mass flow rate of the condensed water along the CHE length. As shown in Figure 10, 
approaching the end of the heat exchanger reveals increases in the cumulative mass flow rate of the condensed 
water. In addition, the temperature of flue gas and also its water vapor content decreases towards the end of the 
condensing zone. Meantime, the flue gas faces cooling water with lower temperature (at the inlet) towards the 
exit point. Although the cumulative condensation increases along the condenser, the condensation decreases 
toward the end of the condenser due to the reduction of water vapor content. This, in turn, causes an increase in 
the concentration of non-condensable gases at the interface of the liquid film and the gas bulk.  
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Figure 10. Mass flow rate of condensed water along the CHE 

 
Table 4 presents the amount of water that could be recovered from a 320 MW natural gas-fired power plant 
based on different water vapor concentrations. In a 320 MW power plant, the water evaporation rate in the 
cooling tower is 107.5 kg/s. According to Table 4, almost 14% of the cooling tower makeup water could be 
saved using the condensing unit. 
 
Table 4. Recovered water mass flow rate in the condensing unit 
Water vapor concentration (%) 13 15 17 
Recovered water (kg/s) 13.98 14.39 14.67 
 
4.2 ORC cycle 
The ORC cycle operating conditions are given in Table 5. It is essential to consider the pintch point between the 
ORC cycle working fluid and the hot water from condensing heat exchanger for maximum heat recovery from 
the hot stream. The pintch point is a key factor for the ORC cycle performance and should be as low as possible 
to increase the cycle efficiency. However, this will increase the evaporator heat transfer area and capital cost. 
The calculations in this study were made for pintch point of 3-k at the evaporator. 
The RC318 is chosen as the working fluid due to its good performance in low-temperature heat sources and low 
environmental damage. The heated water temperature originating from the condensed heat exchanger to the 
evaporator is 80 ℃  for all calculations. The following calculations are based on varying evaporation 
temperatures as a key parameter for ORC cycle efficiency.  
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Table 5. ORC cycle input data 
Parameter Value 

Condensing temperature 25  ℃ 
Condenser sub-cooling 3  ℃ 

Evaporator superheating temperature 5 ℃ 
Evaporator pinch temperature 3 ℃ 
Turbine and pump isentropic 

efficiency 
85 % 

Inlet heated water temperature to 
evaporator 

80 ℃ 

Heated water mass flow rate 330.5 kg/s 
 

Figure11 shows the evaluation of the ORC net generated power as a function of evaporation temperature. It 
should be noted that the net generated power is maintained by the turbine if the pump power consumption is 
considered almost negligible. As shown in figure11, the net power first increases and then decreases by 
increasing the evaporation temperature. This can be explained by referring to equation (16). The power produced 
by the turbine depends on two terms that change differently with the evaporation temperature. The cycle working 
fluid mass flow rate decreases when evaporation temperature decreases, and the enthalpy difference term " h3 – 
h4" increases when the evaporation temperature increases. The optimum net-generated power can be achieved in 
an evaporation temperature of 50 ℃. 

 
Figure 11. ORC generated power change by increasing evaporator temperature  

 
As figure 12 illustrates, the rise in the evaporator operating temperature would increase the circulating water 
temperature (cooling water circulating the condensing heat exchanger as a cooler and the evaporator as a heater). 
By raising the temperature of this circulating water at the evaporator inlet to maintain better performance, the 
temperature of the water leaving the evaporator increases as the energy source for the ORC cycle. Accordingly, 
due to the constant temperature of the flue gas, the heat amount (and heat due to the recovered mass) in the CHE 
decreases. 
This finding is also noted by referring to figure 6 The flue gas temperature leaving the CHE decreases as a result 
of the increase in inlet cooling water temperature. Thus, less water vapor could be condensed in the CHE. Fig.13 
shows the decrease in water vapor recovery efficiency due to increasing the evaporation temperature. The 
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maximum water recovery efficiency occurs at an evaporation temperature of 25 ℃ .  Water vapor's maximum 
recovery efficiency is 38% for 13% water vapor volume in the flue gas. 

 
Figure 12. Evaluation of cooling water temperature leaving evaporator by increasing the evaporation temperature 

 
Figure 13. Water vapor recovery efficiency by increasing evaporation temperature 

 
Figure14 shows the evaluation of ORC cycle efficiency by increasing the evaporation temperature. By increasing 
the evaporation temperature, the evaporator heat load decreases and leads to an increase in the ORC efficiency. 
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Figure 14. ORC cycle efficiency by increasing the evaporation temperature 

5. Conclusion  
In this study, water and heat recovery from the boiler's exhaust gases in the Bandar Abbas power plant was 
investigated. In the Bandar Abbas power plant, the boiler flue gases are discharged to the atmosphere at a 
temperature of 160 ℃ and 13-17 % flue gas volume of water vapor. Using film theory and a heat and mass 
transfer analogy, we designed a condensing heat exchanger to recover the flue gas's heat and water vapor content 
in the shell and applied cooling water as a coolant passing through the condenser tubes. In this process, the flue 
gas temperature is reduced to a level below its dew point. Accordingly, heat and mass are recovered from the 
flue gases.  
A condensing unit consisting of 4 condensing heat exchangers was designed for a 320 MW unit of the power 
plant. The recovered heat by the cooling water was used as the heat source of the ORC cycle, and up to 2.8 MW 
power was produced depending on the evaporation temperature. After treatment, the recovered water was used 
as makeup water in the cooling tower of the power plant and saved almost14 % of water consumption. 
Several studies were carried out based on the volume percentage of water vapor in the flue gases. Mostly, they 
found that with increasing water vapor, water recovery efficiency increases, and the size of both condensing and 
non-condensing zones decreases. Also, a parametric analysis was performed based on evaporation temperature 
changes from 25 ℃  to 57 ℃. It was found that with increasing the evaporation temperature, the power 
production of the ORC cycle first increases and then decreases. The water vapor recovery efficiency decreases in 
the condensing heat exchanger, and the ORC cycle efficiency increases. Therefore, in addition to thermodynamic 
and thermal analysis, optimization should be done based on the amount of water recovery and power production. 
Nomenclature 
A Heat transfer area [m2] 𝑐௣ି௖௪    Specific heat of cooling water [kJ/kg K] 𝑐௣ି௙௚    Specific heat of flue gas [kJ/kg K] 𝐷ுమ௢ି௚௔௦ Mass diffusivity of water vapor in flue gas [m2/s] d୭ Outer diameter of tube [m] 
F       Mass transfer coefficient 
h Enthalpy [kj/kg] ℎ௖௪ Heat transfer coefficient of cooling water side [W/m2 K] ℎ௙௚ Heat transfer coefficient of flue gas [W/m2 K] 
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k Thermal conductivity [W/m K] 
Le Lewis number 𝑚ሶ ௖௪ Mass flow rate of cooling water [kg/s] 𝑚ሶ ௥ Mass flow rate of ORC [kg/s] 
Nu Nusselt number 
Nt Water vapor condensate rate [kg/s.m2] 
P Pressure [Pa] 
Pr Prandtl number 𝑄ሶ  Heat load [kW] 𝑟௜    Inner radius [m] 𝑟௢   Outer radius [m] 
Re Reynolds number 
Sc Schmidt number 
T Temperature [℃] 𝑈௢ Overall heat transfer coefficient [W/m2 K] 
V Velocity [m/s] 
Y Mole fraction 𝑊ሶ  Power [kW] 
 
Greek symbols 𝛼 Thermal diffusivity [m2/s] 𝜀 Ackerman's correction factor 𝜂 Efficiency 𝜆 Latent heat [kj/kg] 𝜌 Density [kg/m3] 

 
Subscripts 
cw Cooling water 
cond Condenser 
CHE Condensing heat exchanger 
CHP Combined heat and power 
eva Evaporator 
fg Flue gas 
i Interface 
is Isentropic 
ORC Organic Rankine cycle 
p Pump 
SH Super heating 
tot Total 
v Vapor 
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