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Abstract

In wireless mobile communication system, radio spectrum is limited resource. However, efficient use of
available channels has been shown to improve the system capacity. The role of a channel assignment scheme is
to allocate channels to calls or mobiles in such a way as to minimize call blocking or call dropping probabilities,
and also to maximize the quality of service. Channel assignment is known to be an NP-hard optimization
problem. In this paper, a new channel-assignment algorithm using a modified Hopfield neural network is
proposed. The channel-assignment problem is formulated as an energy-minimization problem that is
implemented by a modified discrete Hopfield network. In this algorithm, an energy function is derived, and the
appropriate interconnection weights between the neurons are specified. The interconnection weights between the
neurons are designed in such a way that each neuron receives inhibitory support if the constraint conditions are
violated and receives excitatory support if the constraint conditions are satisfied. The algorithm will be tested by
solving seven benchmark problems, where the total number of frequencies varied from 73 to 533. This new
algorithm, together with the proposed regular interval initialization and new interconnection weights, has better
performance results than the existing algorithms in all of the seven problems.
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1. Introduction

Recently, the demands for cellular mobile communication systems have rapidly increased due to the portability
and the availability of the systems. On the other hand, the electromagnetic frequency spectrum allocated for this
purpose has been limited. As a result, the efficient use of the frequency spectrum or channels has gained the
importance in order to meet the increasing demands. The channel assignment problem has been extensively
studied to solve this important task in cellular mobile communication systems.

The channel assignment problem (CAP) in this paper is based on a common model. The service area of the
system is divided into a large number of hexagonal cells. A cell composes a unit area to provide communication
services, where every user is located in one cell. When a user requests a call for this system, a channel or
frequency spectrum is assigned there to provide the communication service. This channel assignment must
satisfy the constraints to avoid the radio interference between channels. Funabiki, Okutani and Nishikawa (2000)
states that “ Three types of constraints have usually been considered in CAP.

1) The Cochannel Constraint (CCC): The same channel cannot be reused in the cells within a certain distance
from each other. A set of channel-reuse forbidden cells is called a cluster, where a different channel must be
assigned to every call.

2) The Adjacent Channel Constraint (ACC): Adjacent channels cannot be assigned to adjacent cells
simultaneously. In other words, any pair of channels in adjacent cells must have a specified distance. Note that
the distance indicates the difference in the channel domain.

3) The Cosite Constraint (CSC): Any pair of channels in the same cell must have a specified distance. this
distance for CSC is usually larger than that for ACC.

The goal of CAP is to find a channel assignment to every requested call with the minimum number of channels
subject to the above three constraints.”’(p.397)

1.1 Problem formulation of CAP

Gamst and Rave(1982) defined the general form of the channel assignment problem in an arbitrary
inhomogeneous cellular radio network. In their definition, the electromagnetic compatibility constraints in an
N-cell network are described by an NXN symmetric matrix which is called compatibility matrixC. Each
nondiagonal element c; in C represents the minimum separation distance in the frequency domain between a
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frequency assigned to cell # and a frequency to cell #; . The cochannel constraint (CCC) is represented by c; =
1, and the adjacent channel constraint (4CC) is represented by c;=2. ¢;=0 indicates that cells # and # are
allowed to use the same frequency. Each diagonal element ¢; in C represents the minimum separation distance
between any two frequencies assigned to cell #, which is the cosite constraint (CSC), where c¢;>1 is always
satisfied. The channel requirements for each cell in an N-cell network are described by an N-element vector
which is called demand vector D. Each element d; in D represents the required channel numbers(RCN’s) to be
assigned to cell #. When f; indicates the kth frequency assigned to cell #i, the electromagnetic compatibility
constraints are represented by:

‘fik —fj,‘ZCij, for i=1,.,N,j=1..,N

k=1,.,d,
(D
and
[=1,..,d,
except
i=j, k=1

The channel assignment problem in the cellular radio network is finding a conflict-free frequency assignment
with the minimum number of total frequencies, where C and D are given(pp.309-315). Consider a channel
assignment problem in a four-cell network proposed by He et al.(2002):

Fig. 1 shows the compatibility matrix C, The demand vector D, and the corresponding networks topology, as
well as that of several interference-free optimum solutions with 11 channels. The network topology
corresponds to the compatibility matrix C. The vertex represents a cell, and the edge represents the existence
of CCC or ACC between two cells. The diagonal term ¢;=5 indicates that any two channels assigned to cell #i
must be at least five channels apart in order to satisfy CSC. Channels assigned to cells #1 and #2 must be at
least ¢;,=4 channels apart. Off-diagonal terms of ¢;=1 and ¢;=2 correspond to CCC and ACC, respectively.
The CAP, as demonstrated by using this example, tries to find a conflict-free channel assignment that
satisfies the constraint conditions with the minimum number of total channels with given C and D. Suppose
that M represents the number of channels available. Why is the minimum number of channels needed for an
interference-free assignment 11 in this example? From Fig.1, because cell #4 requires at least 11(=1+5X%2)
channels, the minimum number of channels needed for an interference-free assignment in this example is 11.
Thus, M=11 is the lower bound, and we will be unable to find any interference-free assignments if M<11
(pp-1387-1388).

In this paper, an energy function is derived, which represents the constraints that should be satisfied in order to
find the best assignment. The appropriate interconnection weights are designed such that the constraints on the
channel-assignment problem are expressed in terms of inhibitory connections between neurons. A 2-D discrete
Hopfield network is implemented to minimize the energy function. The state of each neuron in the Hopfield
network represents the possibility of assigning a certain channel to a cell. To escape the local minima during the
solution search, the assigned channel numbers (ACN’s) in a cell are checked, and if the ACN’s are less than the
RCN’s, then a forced frequency-assignment method is used. The forced frequency assignment method is an
additional assignment of one or more channels although the energy is increased by the additional channel
assignment since the extra assignment has violated the constraints. This simple technique dramatically increases
the convergence rate of assignment since most of the local minima are due to a lack of assigned frequencies,
which satisfy all three constraints for each cell. Initialization method and updating technique, which use the
specific characteristics of the channel-assignment problem (e.g., CSC, CCC, and ACC) in cellular radio networks
are investigated to reduce the number of iterations and to increase the convergence rate of channel assignment.
The proposed frequency-assignment technique uses a modified discrete Hopfield network to achieve a solution
that simultaneously satisfies all the constraints by using new interconnection weights and external inputs. In this
paper channel assignment to the calls in a cell, which determines the lower bound on the total number of
channels are fixed after regular interval initialization method.

Many researchers (Sivarajan, McEliece, and Ketchum, 1989; Gamast and Rave, 1982; Kunz, 1991; Funabiki and
Takefuji, 1992; Chan, Palaniswami and Everitt, 1994; Kim et al., 1997; Funabiki, Okutani and Nishikawa, 2000;
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Vidyarthi, Ngom and Stojmenovic, 2005) have investigated the CAP in telephone networks. Sivarajan, McEliece
and Ketchum (1989) proposed an ((n2) time sequential heuristic algorithm, based on the first algorithm
introduced by Gamst and Rave (1982). Sivarajan, McEliece and Ketchum (1989) applied their algorithm to
several problems, where the values of total frequencies in solutions are shown without any actual assignment
results(pp.846-850). Kunz (1991) used the continuous Hopfield network, where the output of each neuron V; was
a fixed function f of the internal state u, , i.e., V;i=f{u;) , where f{x)=1/2(1+tanh( A x)). The Kunz neural-network
model required a large number of iterations in order to reach the final solution, and there were also difficulties in
finding the proper values for and the parameters in the interconnection weights and energy function. Kunz (1991)
considered cochannel and cosite interference in his neural-network model(pp.188-193). Funabiki and Takefuji
(1992) proposed a neural-network parallel algorithm for channel-assignment problem. All input values are
sequentially updated, while all output values are fixed. Then, all output values are sequentially updated, while all
input values are fixed. Their neural-network model is composed of the hysteresis McCulloch—Pitts neurons. In
the Funabiki and Takefuji model(1992), four heuristics were used to improve the convergence rate of channel
assignment. They also fixed the channel assignment in one or more certain cells in order to accelerate the
convergence time. The results were favorable in some cases, but not in others (PP.430-436). Chan, Palaniswami
and Everitt (1994) used a feed forward neural network, which had a learning process prior to actual channel
assignment. For the learning process, they used training data that was dependently obtained by other assignment
methods. The performance of their algorithm is totally dependent on the used training data. Also, only the
cochannel constraint (CCC) was considered (PP.279-288). Kim ef al.(1997) used a modified Hopfild network. In
their algorithm, used new interconnection weights an external inputs to the neurons with the initialization and
updating methods(pp.957-967). Funabiki ef al. (2000) proposed a three-stage algorithm of combining sequential
heuristic methods into a parallel neural network for the NP-complete channel assignment problem(p.397).
Vidyarthi et al.(2005) proposed a hybrid channel assignment approach using an efficient evolutionary strategy.
They developed an evolutionary strategy(ES) which optimized the channel assignment(pp.1887-1895).

In this paper, a modified discrete Hopfield neural-network algorithm for the channel-assignment problem is
proposed in order to improve the convergence rate and to reduce the number of iterations. My experimental
results are also compared with that of Kim et al(1997). In this paper, the channel-assignment problem is
formulated as an energy-minimization problem such that the energy is at its minimum when all the constraints
are satisfied and the number of assigned frequencies are the same as the required channel numbers (RCN’s) in
each cell.

2. Modified Hopfield Network for Channel Assignment

Each processing element (neuron) is fully interconnected in the Hopfield network. The ith neuron is described by
its state, which is denoted by V;. Each neuron has two possible states. The value of each state is determined by
the total input from other neurons followed by a thresholding operation. The input of the ith neuron is derived
from two sources: the outputs of other neurons scaled by the connection weights and an appropriate external
input. The total input to neuron #i is denoted by U;

U, = ZWU.VJ. +1, ®)
J

where W) is the connection weight from neuron #j to neuron #i and /; is the external input. Each neuron updates
its own state according to a thresholding rule with threshold 7HD as shown by
{1 if U, > THD

i

: )

0 otherwise

The thresholding rule can be applied asynchronously (in series) or synchronously (in parallel). In the
asynchronous mode, this rule is applied sequentially to each neuron, and the state of each neuron is updated
individually. In the synchronous mode, this thresholding operation is simultaneously applied to every neuron,
and the states of all neurons are updated at the same time. The updating operation is terminated when the states
are unchanged or the energy has reached a minimum value. According to Kim ef al.(1997), The energy function
E is defined as

E=— WY, -V, @
i Jj i

This energy function is minimized by the Hopfield neural network updating procedure. The successive
application of the updating procedure will force the network to converge such that the energy of the network
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becomes smaller during the updating procedure. When the network reaches a stable state, it has fallen into
minimum energy state, where this could be a local or global minimum. #; and /; should be set appropriately for
the applications so that E represents the function, which is minimized to solve the combinatorial optimization
problems. The energy function should represent all the constraints of the problem.

In my algorithm, a discrete Hopfield network is implemented, which is updated until the energy is equal to zero
or a predefined maximum iteration number has been reached. In the simulation, I considered a mobile radio
network that has N cells (or base stations) and M available frequency channels. The value of M is set to be the
lower bound of required number of channels LB for a given channel assignment problem. Fig.2 shows a
two-dimensional (2-D) Hopfield network for the channel-assignment problem. Each ith cell can carry any of the
d; frequencies among the M frequencies if the carriage of frequencies does not violate the imposed constraints of
the channel-assignment problem. The value of the processing unit Vj;, 1<i<N and 1<;<M indicates if
frequency #; is assigned to cell #i: V; =1 meaning that the frequency j is assigned to cell #i and V}; =0, which
means that the frequency # cannot be assigned to cell #i. In Fig.2, i and p represent the cell number; jand ¢
indicate the frequency number, respectively. The state of the current processing neuron to be updated is
represented by V;. An energy function is derived to represent the three constraints of the channel-assignment
problem. In CSC, a frequency f;, cannot be assigned to cell #i if the distance of f;, and any assigned frequency f;;,
1<j< M is less than ¢; (minimum frequency distance for CSC). The energy function for cell #i (for CSC) can
be defined as

M

Eé’SC ZZZVI/I/M]X (5)
Jj=1 g=1

where
l, ifg#j and

X, = Jj—(c;,=D<qg<j+(c;, -1 (6)
0, otherwise.

For both ACC and CCC, the frequency f;; cannot be assigned to cell #i if the distance of f; and any other assigned
frequency f,, 1is less than c;, (minimum frequency separation between the frequencies in cell #i and cell #p). The
energy function of ith cell for ACC and CCC can be defined as

E ycc.cco) ZZZ iV vaYiivg ™)

J=1 p=1 q=1
Where

l, ifp#i and
g = ¢, >0and j—(c,—-1)<qg<j+(c, -1 )
0, otherwise.

In addition to the three constraint conditions, the total ACN’s in the ith cell must be the same as the RCN’s for
cell #i. The energy function for the ACN can be defined as

Eyy = {d Z j ©)

From (5), (7), and (9), the energy function for ith cell can be defined as

2
M M
- df‘.ley +ZZVVXW+ZZZ i vaYive: (10)

Jj=1 g=1 Jj=1 p=1 g=1
The total energy function for the channel-assignment problem is as follows:

M N M

d; ZV +ZZVV)(W+ZZZ i’ pq t/pq i (11)

J=1¢=1 Jj=1 p=l ¢=1

Published by Canadian Center of Science and Education 119



www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

The channel-assignment problem is now formulated as an energy-minimization problem. This energy function
can be minimized by an equivalent Hopfield neural network with the appropriate interconnection weights and the
external inputs. The interconnection weights must represent the constraints of the optimization problem such as
the RCN’s for each cell and the three constraint of the channel-assignment problem. Each of the constraints are
invoked by inhibitory and excitatory support. If neuron Vj; takes a value of unity, which means frequency f;; can
be used at cell #i, then the neuron V;, within the interference must be inhibited by the CSC condition. The
constraint can be specified in the form

Wese =—0,a;,(¢c;) (12)

where O is the Kronecker delta function and defined with & ; as follows:

L ifie i
5, = yi=J (13)
Y 0 otherwise
L,  ifli—jl<x
a;(x)= | | (14)

0, otherwise.

In both ACC and CCC, if neuron Vj; takes a value of unity, then a neuron V;, within the interference must be
inhibited. This constraint can be specified in the form

W iceccey = _‘(1 - 5ip )‘ajq (¢;) (15)

To make ACN’s the same as the RCN’s, I have to feed inhibitory support to the neuron by an amount

proportional to the number of assigned frequencies. If RCN is less than or equal to the ACN’s, the additional
frequencies cannot be assigned to a cell. This constraint can be expressed as

W ion ==0,|1=6,,) (16)

Equation (16) shows that the self-inhibition is not allowed. The purpose of W,cy is to give the inhibitory
support to neurons in the same cell in order to avoid the case of ACN>RCN.

From (12), (15), and (16), the total interconnection weight is
Wipg = =03, (c;)) = ‘(1 ~0, )‘a/‘q (¢;) =9, ‘(1 ~9 )‘ a7

The interconnection weight Wy, between V; and V), is symmetrical, i.e., W,,= W,,; for 1<i, p<Nand 1<,
g <M. Self-feedback is not allowed, i.e., W;;=0.

In this paper, to increase the convergence rate, a nonlinear function is applied on the weights as follows

VV!‘ipq(neW) =4 XSign(VViipq )X equVKJ‘pq ‘) (18)
The external input /; is defined as
I=(d -1 (19)

The external input /; is used to give excitatory support to neurons in the same cell to make them to be satisfied
by the traffic demand constraint. If a frequency assignment satisfies all the three constraints (CSC, CCC, and
ACC) for a cell and the ACN’s are less than the RCN’s, then that cell must receive excitatory support as it relates
to reinforcing that assignment. The summation of inputs from all neurons for the current updating neuron is —(d;
-1) which should be given an excitatory bias. The input to each neuron (i,j) in the original Hopfield neural net is
defined as

N M
Uij - z Z VVI‘}pq qu + Ii (20)

p=1 g=1
When a neuron receives an input, only frequencies which are satisfied by the three channel-assignment
constraints are selected as usable frequencies for the cell. A local minimum can be achieved for the channel
assignment given in (20) by using the Hopfield updating procedure. If all the assigned frequencies are satisfied
by the three channel-assignment constraints, but one or more of the cells have fewer channels than the RCN’s,
the frequency assignment will never change and the energy value cannot reach the global minima even though
more iterations are performed. To prevent this from occurring, I incorporate a forced assignment method, which
allows for a frequency to be assigned to a cell by another excitatory input, even though the channel-assignment
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constraints are violated and the energy is increased. The forced assigned frequency can change the frequency
assignment for other cells too. The algorithm will then search for another solution space in order to attempt to
reach the global minima when the current assigned channels does not satisfied the traffic demand constraint. The
algorithm checks for the ACN with the value of RCN . The difference between the RCN and the ACN
constraints is used as an additional excitatory input, which is given by

M
I =[d[ —ZVqu @)

The values of W,y and I; are constant for the neurons in the same cell. However, the value of /g; is variable
based on the current neuron states. In /g, the difference of (RCN-CAN) is fed into the neurons in cell #i. To
count ACN, V;; isincluded in ACN of (21).

It is possible that the forced reassignment fails, i.e., ACN<RCN although the additional term /g; is introduced. If
ACN<RCN even after the forced reassignment is applied, it means that the assignment for some calls are failed,
which will cause the call drops. The number of callers who could not have the channels and their calls are
dropped is (RCN-ACN). This case is considered as a nonconvergence case. On the other hand, when all calls
have the assigned frequencies without any call dropping, it is considered as convergence case. In the simulation
results, the convergence rate is the number of cases that all calls have the assigned frequencies without any call
dropping before the maximum number of iterations is reached when 100 simulation runs were performed. Input
to each neuron of the modified network is defined as

N M
Uy =D D W,V +1+1 (22)

ipq” pq
p=l g=1

The schematic description of the input to a neuron is shown in Fig.3. The output function consists of a threshold
operation. The final output state of the neuron is

Vi= o Uy) 23)
Where

I, ifU, >THD
Sou = {0, otherwise
and THD is the threshold value and THD=0 in this paper.
3. Applying Modified Hopfield Network

In this section, the implementation of the algorithm is discussed. The overall algorithm is summarized in the
following steps.

24

1) The initial state of neurons is set to one or zero according to the initialization method.
2) Repeat the following steps until all neurons are picked.

a) Pick neuron V; according to the updating method.

b) Calculate the input to this neuron by (22).

c¢) Decide the new state of this neuron by (23) and (24).

3) Compute the energy E of the current assignment. If E=0, stop and go to Step 4), otherwise, repeat the process
from Step 2).

4) The output state of the neurons V; will be the final assignment based on the compatibility matrix C and
demand vector D.

3.1 Initialization method

In general, a random initialization method is used as the initial states for the neurons in the Hopfield network. In
my algorithm, initialization technique with the frequency assignment constraints are investigated in order to
increase the convergence rate and to decrease the iteration number. The total frequency spectrum is composed of
a certain number of blocks for the initialization with consideration of the constraints. Fig.4(a) shows the
frequency block structures. M is the total number of frequencies, and the total frequency spectrum consists of B
blocks. Every frequency block except the last one has the same number of frequency slots. The last block might
not have the same number of frequency slots depending on the LB and the block width (BW), which is the

Published by Canadian Center of Science and Education 121



www.ccsenet.org/cis Computer and Information Science Vol. 4, No. 1; January 2011

number of channels in the block. In Fig.4(a), for example, all blocks have BW=5, 1 <i<(B-1) except the last
block B, which has BWg=2. Frequency j refers to the number of each frequency slot, with each slot identified by
Jfi» 1<i<N, 1<j<M. The channel number in block (CNB) is the frequency number in the block, and the
sequence is repeated for each block.

In my algorithm, the initial state of neurons, V; = 0 or ¥;=1, where 1 <i<N, 1 <j< M indicates whether or not
the frequency slot f;; is to be assigned to the jth call in the cell i. Fig. 4(b) shows the fixed interval initialization
method, which will be explained later in detail. In Fig. 4(b), the frequency slots with the initial state value V};=1
are indicated by the dark slots. In the frequency-assignment network, the lower bound (LB) on the total of
channels can be obtained from demand vector D and the compatibility matrix C for the cell Cy,.. . The distance
between the frequencies for a certain cell should be at least ¢;. LB for the network is defined by

LB=(d,_, —1.c,;+1 (25)
The BW is defined by
c; if M=LB
BW = M . (26)
y " otherwise

where| q | is the largest integer, which is equal or less than a. The number of blocks B is defined by

M
B=| 2 27
(BW] @)

Where LaJ is the smallest integer, which is equal or greater than a. The procedure of regular interval

initialization method is as follows.

1) For the cell #i with d; calls, randomly choose the frequency block and channel number in the chosen block
(CNB) k, 1 <k<BW in the chosen frequency block, which does not violate CCC and ACC with the previously
assigned frequencies of other cells. Assign a “one” to the chosen frequency slot, Vy=1. If the cell #i is Cy , k=1.
2) For the remaining calls of the cell, assign a “one”to the frequency slot, which has the distance BW with the
previous assigned slots, Vik, =1, where k' = (k + df_B W) mod M for d;=1,2,...,d;-1.

3) Fixed channel assignment for the cell Cy,..

3.2 Updating Method

In an asynchronous Hopfield network, the neurons are selected randomly or sequentially by a certain order for
the updating. In my algorithm, both random and sequential selection techniques are used along with updating
method.

According to Kim ef al.(1997), The procedural step for updating method is as follows.
1) Make a list of cells according to the descending order of RCN for each cell.

2) Execute the iteration subroutine as follows until the counter reached to a prespecified maximum iteration
number 500 or £=0.

a) Choose the cell #i according to the order of the cell list.
b) Randomly choose one neuron #; in cell #i [neuron(i,j) ] and update that neuron.

¢) For the next updating neuron, the direction is randomly chosen whether in favor of the left- [neuron(i, j-1)]
or the right-side neuron [neuron(i, j+1)].

d) After the initial direction is decided by Step ¢), the next neurons are updated sequentially.
e) Repeat Steps a) — @) until all frequencies for all the cells are assigned.

3) Repeat Step 2) for the next cell in the list (pp.963-964).

4. Simulation and Discussion

A mobile system consisting of 21 or 25 cells is used in my simulation. The 21-cell system is repeated in Fig. 5.
The output threshold (THD) in (24) is fixed at THD=0. The simulation results according to the regular interval
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initialization method and new interconnection weight will be discussed and then compared with that of Kim et
al.(1997) in this paper.

Table I shows the specifications of the problems, which are also used by Kim ez al.(1997). LB is the lower bound
on required frequencies for each problem. Figs.6 shows the compatibility matrices and the demand vectors for
these problems. In Table II, the result of this paper with new interconnection weight and initialization method are
compared with the result in Kim ef al.’s (1997) algorithm. The average iteration number and the convergence
rate to the solution are also shown in Table II. The average iteration number is the average number of iterations,
which are increased until £=0. Convergence rate is the probability that the network has E=0 before the
maximum number iteration is reached. In these simulations, the maximum number of iterations is fixed at 500.
To investigate the number of iterations and the convergence rates, 100 simulation runs were performed with
different initial seed values using a random number generator for each of the seven problems. In table II, the
simulation results in this paper have a smaller average iteration number and a higher convergence rate than Kim
et al.’s (1997) results. For example, in problem #1, my algorithm found the solution with 156.23 average
iteration number and 95% convergence rate, but Kim et al.’s (1997) algorithm found the solution with 263.4
average iteration number and 61% convergence rate. It demonstrates that generally, my algorithm has a better
performance (i.e., smaller iteration numbers and higher convergence rates) than Kim ez al.’s (1997) algorithm. It
also shows that my proposed initialization method with fixed channel assignment for the cell C,..., has better
performance than the random initialization method which is usually used. For example, fig.7 and Table III shows
the distribution of the frequency for each cell in problem #1 and cell #9 has the largest element in the demand
vector, so the frequency assignment of cell #9 was fixed in this algorithm. Fixing a single cell frequency
assignment can drastically reduce the searching space and consequently the convergence time is shortened. In
addition, Fig.8 shows two typical trajectory of problem #1 and #2 that demonstrates the convergence rate.

5. Conclusion

In this paper, a modified Hopfield neural-network algorithm is proposed in order to obtain an optimal solution
for the channel-assignment problem in the mobile cellular environment. This improved algorithm drives itself to
the solution by using new interconnection weights and external inputs to the neurons with the initialization and
updating method. The interconnection weight is set initially to take into account the RCN in each cell and the
three channel-assignment constraints. The three constraints that are considered are the CCC, ACC, and CSC. The
compatibility matrix C, demand vector D, and the lower bound number of total frequencies are presented as
input. In the simulation results, the average iteration number and convergence rates are shown and compared
with that of Kim et al.’s(1997) results. The proposed algorithm using the suggested initialization method and
new interconnection weight has a better performance than Kim ez al.’s(1997) algorithm. This algorithm is simple
to implement in very large scale integration (VLSI) since the algorithm has only simple functions such as adder,
inverter, and comparator. Also, it has a modular structure since each neuron can be constructed as a module.
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Table 1. Specification of Simulation Problems.

Number of Lower Compatibility Demand

Problem Radio Cells  bound Matrix Vector
# N LB C D
1 25 73 G D;
2 21 381 C; D;
3 21 533 Cy D;
4 21 533 Cs Dy
5 21 221 C; D,
6 21 309 Cy D,
7 21 309 Cs D,

Table 2. Summary of Simulation Results

Hopfield network Kim’s et al.
Problem# | LB | M
Average Iter. | Convergence | Average Iter. | Convergence

No. Rate No. Rate
1 73 73 156.23 95% 263.4 61%
2 381 | 381 11.59 100% 67.1 100%
3 533 | 533 3.34 100% 85.9 98%
4 533 | 533 44.78 100% 129.5 99%
5 221 | 221 28.59 98% 65.6 95%
6 309 | 309 32.44 100% 118.2 96%
7 309 | 309 64.77 60% 119.1 40%
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Table 3. Distribution of the frequency for each cell with 533 frequency in problem #3.

Cell number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
16 17 188 24 33 43 18 3 1 2 20 S5 5 1 4 5] 7 17 16 6 48
61 25 201 167 89 97 34 11 8 10 30 50 31 29 19 13 21 151 51 14 76
124 40 215 196 189 137 45 20 15 28 46 92 58 104 28 23 31 173 126 130 124
212 94 275 227 197 244 93 27 22 42 84 99 88 113 53 32 38 327 277 150 332
457 149 322 346 235 260 100 35 29 52 214 117 118 162 83 46 58 348 304 198 369
487 185 329 499 306 275 140 47 36 86 299 138 126 180 70 59 74 410 364 231 392
511 192 455 513 375 295 150 69 43 93 326 148 159 201 83 72 103 454 462 282 404
525 200 485 530 497 330 255 82 50 123 341 176 168 242 102 81 112 504 482 349 499
209 352 300 91 57 137 364 201 176 269 125 88 122 S17 377
221 379 322 101 64 144 371 222 202 282 14> 97 199 529 395
242 431 378 108 71 168 408 264 209 327 151 107 212 406
276 482 385 118 78 194 416 278 223 411 164 117 257 515
294 499 395 132 85 208 508 405 230 486 181 128 301 523
339 526 404 139 92 237 415 253 496 207 136 334
349 533 412 146 99 248 458 262 509 216 143 345
364 493 167 106 258 271 204 154 352
375 503: 1777 113 272 291 236 161 360
392 530 184 120 283 312 47 175 367
422 193 127 318 323 261 186 387
459 206 134 328 342 572 196 403
469 214 141 342 351 587 203 413
482 226 148 366 358 317 210 423
496 238 155 390 386 308 217 437
504 245 162 439 409 335 227 447
515 256 169 448 417 346 234 460
263 176 457 440 354 241 478
271 183 468 472 373 251 486
279 190 503 490 410 259 506
290 197 497 418 268
298 204 506 427 280
305 211 521 434 293
314 218 441 303
332 225 480 312
350 232 488 321
357 239 510 333
369 246 504 340
380 253 347
388 260 335
397 267 362
405 274 374
417 281 381
425 288 389
443 295 396
454 302 409
465 309 416
472 316 429
481 323 438
490 330 446
500 337 453
507 344 467
516 351 474
532 358 483
365 492
372 502
379 513
386 520
393 528
400
407
414
421
428
435
442
449
456
463
470
471
484
491
498
502
512
519
526
533
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Figure 1. A CAP: compatibility matrix C, required D, the corresponding network

topology, and the optimum solution with 11 channels
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Figure 2. A 2-D Hopfield network for the channel-assignment problem
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Figure 3. A 2-D Hopfield network for the channel-assignment problem

Block#1 Block#2 Block#(B-1) Block#B
Freq# 1 2 3 4 5 6 7 8 9 10 11 . . . M-1)M
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Figure 4. Structure of frequency domain and initialization: (a) frequency and block structure,

(b) regular interval initialization method

‘ 4 5

Figure 5. The 21-cell system used in this paper
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Figure 7. Distribution of the frequency for each cell with 533 frequency in problem #3.
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Figure 8. two typical convergence rate trajectory: (a) Problem #1 and (b) Problem #2
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