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Abstract 

In wireless mobile communication system, radio spectrum is limited resource. However, efficient use of 
available channels has been shown to improve the system capacity. The role of a channel assignment scheme is 
to allocate channels to calls or mobiles in such a way as to minimize call blocking or call dropping probabilities, 
and also to maximize the quality of service. Channel assignment is known to be an NP-hard optimization 
problem. In this paper, a new channel-assignment algorithm using a modified Hopfield neural network is 
proposed. The channel-assignment problem is formulated as an energy-minimization problem that is 
implemented by a modified discrete Hopfield network. In this algorithm, an energy function is derived, and the 
appropriate interconnection weights between the neurons are specified. The interconnection weights between the 
neurons are designed in such a way that each neuron receives inhibitory support if the constraint conditions are 
violated and receives excitatory support if the constraint conditions are satisfied. The algorithm will be tested by 
solving seven benchmark problems, where the total number of frequencies varied from 73 to 533. This new 
algorithm, together with the proposed regular interval initialization and new interconnection weights, has better 
performance results than the existing algorithms in all of the seven problems.  
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1. Introduction 

Recently, the demands for cellular mobile communication systems have rapidly increased due to the portability 
and the availability of the systems. On the other hand, the electromagnetic frequency spectrum allocated for this 
purpose has been limited. As a result, the efficient use of the frequency spectrum or channels has gained the 
importance in order to meet the increasing demands. The channel assignment problem has been extensively 
studied to solve this important task in cellular mobile communication systems. 

The channel assignment problem (CAP) in this paper is based on a common model. The service area of the 
system is divided into a large number of hexagonal cells. A cell composes a unit area to provide communication 
services, where every user is located in one cell. When a user requests a call for this system, a channel or 
frequency spectrum is assigned there to provide the communication service. This channel assignment must 
satisfy the constraints to avoid the radio interference between channels. Funabiki, Okutani and Nishikawa (2000) 
states that “ Three types of constraints have usually been considered in CAP. 

1) The Cochannel Constraint (CCC): The same channel cannot be reused in the cells within a certain distance 
from each other. A set of channel-reuse forbidden cells is called a cluster, where a different channel must be 
assigned to every call. 

2) The Adjacent Channel Constraint (ACC): Adjacent channels cannot be assigned to adjacent cells 
simultaneously. In other words, any pair of channels in adjacent cells must have a specified distance. Note that 
the distance indicates the difference in the channel domain. 

3) The Cosite Constraint (CSC): Any pair of channels in the same cell must have a specified distance.  this 
distance for CSC is usually larger than that for ACC. 

The goal of CAP is to find a channel assignment to every requested call with the minimum number of channels 
subject to the above three constraints.’’(p.397) 

1.1 Problem formulation of CAP 

Gamst and Rave(1982) defined the general form of the channel assignment problem in an arbitrary 
inhomogeneous cellular radio network. In their definition, the electromagnetic compatibility constraints in an 
N-cell network are described by an NN symmetric matrix which is called compatibility matrixC. Each 
nondiagonal element cij in C represents the minimum separation distance in the frequency domain between a 
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frequency assigned to cell #i and a frequency to cell # j . The cochannel constraint (CCC) is represented by cij = 
1, and the adjacent channel constraint (ACC) is represented by cij=2. cij=0 indicates that cells #i and #j are 
allowed to use the same frequency. Each diagonal element cii in C represents the minimum separation distance 
between any two frequencies assigned to cell #i, which is the cosite constraint (CSC), where cij 1 is always 
satisfied. The channel requirements for each cell in an N-cell network are described by an N-element vector 
which is called demand vector D. Each element di in D represents the required channel numbers(RCN’s) to be 
assigned to cell #i. When fik indicates the kth frequency assigned to cell #i, the electromagnetic compatibility 
constraints are represented by: 

 

 

 

             (1)  

 

 

 

 

 

The channel assignment problem in the cellular radio network is finding a conflict-free frequency assignment 
with the minimum number of total frequencies, where C and D are given(pp.309-315). Consider a channel 
assignment problem in a four-cell network proposed by He et al.(2002): 

Fig. 1 shows the compatibility matrix C, The demand vector D, and the corresponding networks topology, as 
well as that of several interference-free optimum solutions with 11 channels. The network topology 
corresponds to the compatibility matrix C. The vertex represents a cell, and the edge represents the existence 
of CCC or ACC between two cells. The diagonal term cii=5 indicates that any two channels assigned to cell #i 
must be at least five channels apart in order to satisfy CSC. Channels assigned to cells #1 and #2 must be at 
least c12=4 channels apart. Off-diagonal terms of cij=1 and cij=2 correspond to CCC and ACC, respectively. 
The CAP, as demonstrated by using this example, tries to find a conflict-free channel assignment that 
satisfies the constraint conditions with the minimum number of total channels with given C and D. Suppose 
that M represents the number of channels available. Why is the minimum number of channels needed for an 
interference-free assignment 11 in this example? From Fig.1, because cell #4 requires at least 11(=1+52) 
channels, the minimum number of channels needed for an interference-free assignment in this example is 11. 
Thus, M=11 is the lower bound, and we will be unable to find any interference-free assignments if M<11 
(pp.1387-1388). 

In this paper, an energy function is derived, which represents the constraints that should be satisfied in order to 
find the best assignment. The appropriate interconnection weights are designed such that the constraints on the 
channel-assignment problem are expressed in terms of inhibitory connections between neurons. A 2-D discrete 
Hopfield network is implemented to minimize the energy function. The state of each neuron in the Hopfield 
network represents the possibility of assigning a certain channel to a cell. To escape the local minima during the 
solution search, the assigned channel numbers (ACN’s) in a cell are checked, and if the ACN’s are less than the 
RCN’s, then a forced frequency-assignment method is used. The forced frequency assignment method is an 
additional assignment of one or more channels although the energy is increased by the additional channel 
assignment since the extra assignment has violated the constraints. This simple technique dramatically increases 
the convergence rate of assignment since most of the local minima are due to a lack of assigned frequencies, 
which satisfy all three constraints for each cell. Initialization method and updating technique, which use the 
specific characteristics of the channel-assignment problem (e.g., CSC, CCC, and ACC) in cellular radio networks 
are investigated to reduce the number of iterations and to increase the convergence rate of channel assignment. 
The proposed frequency-assignment technique uses a modified discrete Hopfield network to achieve a solution 
that simultaneously satisfies all the constraints by using new interconnection weights and external inputs. In this 
paper channel assignment to the calls in a cell, which determines the lower bound on the total number of 
channels are fixed after regular interval initialization method.   

Many researchers (Sivarajan, McEliece, and Ketchum, 1989; Gamast and Rave, 1982; Kunz, 1991; Funabiki and 
Takefuji, 1992; Chan, Palaniswami and Everitt, 1994; Kim et al., 1997; Funabiki, Okutani and Nishikawa, 2000; 
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Vidyarthi, Ngom and Stojmenovic, 2005) have investigated the CAP in telephone networks. Sivarajan, McEliece 
and Ketchum (1989) proposed an 0(n2) time sequential heuristic algorithm, based on the first algorithm 
introduced by Gamst and Rave (1982). Sivarajan, McEliece and Ketchum (1989) applied their algorithm to 
several problems, where the values of total frequencies in solutions are shown without any actual assignment 
results(pp.846-850). Kunz (1991) used the continuous Hopfield network, where the output of each neuron Vi was 
a fixed function f of the internal state ui , i.e., Vi=f(ui) , where f(x)=1/2(1+tanh( x)). The Kunz neural-network 
model required a large number of iterations in order to reach the final solution, and there were also difficulties in 
finding the proper values for and the parameters in the interconnection weights and energy function. Kunz (1991) 
considered cochannel and cosite interference in his neural-network model(pp.188-193). Funabiki and Takefuji 
(1992) proposed a neural-network parallel algorithm for channel-assignment problem. All input values are 
sequentially updated, while all output values are fixed. Then, all output values are sequentially updated, while all 
input values are fixed. Their neural-network model is composed of the hysteresis McCulloch–Pitts neurons. In 
the Funabiki and Takefuji model(1992), four heuristics were used to improve the convergence rate of channel 
assignment. They also fixed the channel assignment in one or more certain cells in order to accelerate the 
convergence time. The results were favorable in some cases, but not in others (PP.430-436). Chan, Palaniswami 
and Everitt (1994) used a feed forward neural network, which had a learning process prior to actual channel 
assignment. For the learning process, they used training data that was dependently obtained by other assignment 
methods. The performance of their algorithm is totally dependent on the used training data. Also, only the 
cochannel constraint (CCC) was considered (PP.279-288). Kim et al.(1997) used a modified Hopfild network. In 
their algorithm, used new interconnection weights an external inputs to the neurons with the initialization and 
updating methods(pp.957-967). Funabiki et al. (2000) proposed a three-stage algorithm of combining sequential 
heuristic methods into a parallel neural network for the NP-complete channel assignment problem(p.397). 
Vidyarthi et al.(2005) proposed a hybrid channel assignment approach using an efficient evolutionary strategy. 
They developed an evolutionary strategy(ES) which optimized the channel assignment(pp.1887-1895).  

In this paper, a modified discrete Hopfield neural-network algorithm for the channel-assignment problem is 
proposed in order to improve the convergence rate and to reduce the number of iterations. My experimental 
results are also compared with that of Kim et al.(1997). In this paper, the channel-assignment problem is 
formulated as an energy-minimization problem such that the energy is at its minimum when all the constraints 
are satisfied and the number of assigned frequencies are the same as the required channel numbers (RCN’s) in 
each cell. 

2. Modified Hopfield Network for Channel Assignment 

Each processing element (neuron) is fully interconnected in the Hopfield network. The ith neuron is described by 
its state, which is denoted by Vi . Each neuron has two possible states. The value of each state is determined by 
the total input from other neurons followed by a thresholding operation. The input of the ith neuron is derived 
from two sources: the outputs of other neurons scaled by the connection weights and an appropriate external 
input. The total input to neuron #i is denoted by Ui 

 
j

ijiji IVWU                                                (2) 

where Wij is the connection weight from neuron #j to neuron #i and Ii is the external input. Each neuron updates 
its own state according to a thresholding rule with threshold THD as shown by 
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The thresholding rule can be applied asynchronously (in series) or synchronously (in parallel). In the 
asynchronous mode, this rule is applied sequentially to each neuron, and the state of each neuron is updated 
individually. In the synchronous mode, this thresholding operation is simultaneously applied to every neuron, 
and the states of all neurons are updated at the same time. The updating operation is terminated when the states 
are unchanged or the energy has reached a minimum value. According to Kim et al.(1997), The energy function 
E is defined as 
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This energy function is minimized by the Hopfield neural network updating procedure. The successive 
application of the updating procedure will force the network to converge such that the energy of the network 
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becomes smaller during the updating procedure. When the network reaches a stable state, it has fallen into 
minimum energy state, where this could be a local or global minimum. Wij  and Ii should be set appropriately for 
the applications so that E represents the function, which is minimized to solve the combinatorial optimization 
problems. The energy function should represent all the constraints of the problem. 

In my algorithm, a discrete Hopfield network is implemented, which is updated until the energy is equal to zero 
or a predefined maximum iteration number has been reached. In the simulation, I considered a mobile radio 
network that has N cells (or base stations) and M available frequency channels. The value of M is set to be the 
lower bound of required number of channels LB for a given channel assignment problem. Fig.2 shows a 
two-dimensional (2-D) Hopfield network for the channel-assignment problem. Each ith cell can carry any of the 
di frequencies among the M frequencies if the carriage of frequencies does not violate the imposed constraints of 
the channel-assignment problem. The value of the processing unit Vij , 1 iN and 1 jM indicates if 
frequency #j is assigned to cell #i: Vij =1 meaning that the frequency j is assigned to cell #i and Vij =0, which 
means that the frequency #j cannot be assigned to cell #i. In Fig.2, i and p represent the cell number; j and q 
indicate the frequency number, respectively. The state of the current processing neuron to be updated is 
represented by Vij . An energy function is derived to represent the three constraints of the channel-assignment 
problem. In CSC, a frequency fiq cannot be assigned to cell #i if the distance of fiq and any assigned frequency fij , 
1 jM is less than cii  (minimum frequency distance for CSC). The energy function for cell #i (for CSC) can 
be defined as 
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For both ACC and CCC, the frequency fij cannot be assigned to cell #i if the distance of fij and any other assigned 
frequency fpq  is less than cip (minimum frequency separation between the frequencies in cell #i and cell #p). The 
energy function of ith cell for ACC and CCC can be defined as 
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In addition to the three constraint conditions, the total ACN’s in the ith cell must be the same as the RCN’s for 
cell #i. The energy function for the ACN can be defined as 
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From (5), (7), and (9), the energy function for ith cell can be defined as 
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The total energy function for the channel-assignment problem is as follows: 
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The channel-assignment problem is now formulated as an energy-minimization problem. This energy function 
can be minimized by an equivalent Hopfield neural network with the appropriate interconnection weights and the 
external inputs. The interconnection weights must represent the constraints of the optimization problem such as 
the RCN’s for each cell and the three constraint of the channel-assignment problem. Each of the constraints are 
invoked by inhibitory and excitatory support. If neuron Vij takes a value of unity, which means frequency fij can 
be used at cell #i, then the neuron Viq within the interference must be inhibited by the CSC condition. The 
constraint can be specified in the form 

)( iijqipCSC cW                                                              (12) 

where is the Kronecker delta function and defined with ij as follows: 
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In both ACC and CCC, if neuron Vij takes a value of unity, then a neuron Viq within the interference must be 
inhibited. This constraint can be specified in the form 

)()1(),( ijjqipCCCACC cW                                                    (15) 

To make ACN’s the same as the RCN’s, I have to feed inhibitory support to the neuron by an amount 
proportional to the number of assigned frequencies. If RCN is less than or equal to the ACN’s, the additional 
frequencies cannot be assigned to a cell. This constraint can be expressed as 

)1( jqipACNW                                                              (16) 

Equation (16) shows that the self-inhibition is not allowed. The purpose of WACN  is to give the inhibitory 
support to neurons in the same cell in order to avoid the case of ACN>RCN. 

From (12), (15), and (16), the total interconnection weight is 

)1()()1()( jqipijjqipiijqipijpq ccW                                 (17) 

The interconnection weight Wijpq between Vij and Vpq is symmetrical, i.e., Wjpq= Wpqij for 1 i , pN and 1 j , 
qM. Self-feedback is not allowed, i.e., Wijij =0. 

In this paper, to increase the convergence rate, a nonlinear function is applied on the weights as follows  

   ijpqijpqnewijpq WWsignAW exp)(                                              (18) 

The external input Ii  is defined as 

)1(  ii dI                                                                     (19) 

The external input Ii  is used to give excitatory support to neurons in the same cell to make them to be satisfied 
by the traffic demand constraint. If a frequency assignment satisfies all the three constraints (CSC, CCC, and 
ACC) for a cell and the ACN’s are less than the RCN’s, then that cell must receive excitatory support as it relates 
to reinforcing that assignment. The summation of inputs from all neurons for the current updating neuron is –(di 

-1) which should be given an excitatory bias. The input to each neuron (i,j) in the original Hopfield neural net is 
defined as 
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When a neuron receives an input, only frequencies which are satisfied by the three channel-assignment 
constraints are selected as usable frequencies for the cell. A local minimum can be achieved for the channel 
assignment given in (20) by using the Hopfield updating procedure. If all the assigned frequencies are satisfied 
by the three channel-assignment constraints, but one or more of the cells have fewer channels than the RCN’s, 
the frequency assignment will never change and the energy value cannot reach the global minima even though 
more iterations are performed. To prevent this from occurring, I incorporate a forced assignment method, which 
allows for a frequency to be assigned to a cell by another excitatory input, even though the channel-assignment 
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constraints are violated and the energy is increased. The forced assigned frequency can change the frequency 
assignment for other cells too. The algorithm will then search for another solution space in order to attempt to 
reach the global minima when the current assigned channels does not satisfied the traffic demand constraint. The 
algorithm checks for the ACN with the value of RCN . The difference between the RCN and the ACN 
constraints is used as an additional excitatory input, which is given by 
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The values of WACN and Ii are constant for the neurons in the same cell. However, the value of IEij is variable 
based on the current neuron states. In IEij , the difference of (RCN-CAN) is fed into the neurons in cell #i. To 
count ACN, Vij  is included in ACN of (21).  

It is possible that the forced reassignment fails, i.e., ACN<RCN although the additional term IEij is introduced. If 
ACN<RCN even after the forced reassignment is applied, it means that the assignment for some calls are failed, 
which will cause the call drops. The number of callers who could not have the channels and their calls are 
dropped is (RCN-ACN). This case is considered as a nonconvergence case. On the other hand, when all calls 
have the assigned frequencies without any call dropping, it is considered as convergence case. In the simulation 
results, the convergence rate is the number of cases that all calls have the assigned frequencies without any call 
dropping before the maximum number of iterations is reached when 100 simulation runs were performed. Input 
to each neuron of the modified network is defined as 
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The schematic description of the input to a neuron is shown in Fig.3. The output function consists of a threshold 
operation. The final output state of the neuron is 

)( ijoutij UfV                                                                    (23) 

Where 
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and THD is the threshold value and THD=0 in this paper. 

3. Applying Modified Hopfield Network 

In this section, the implementation of the algorithm is discussed. The overall algorithm is summarized in the 
following steps. 

1) The initial state of neurons is set to one or zero according to the initialization method. 

2) Repeat the following steps until all neurons are picked. 

a) Pick neuron Vij according to the updating method. 

b) Calculate the input to this neuron by (22). 

c) Decide the new state of this neuron by (23) and (24). 

3) Compute the energy E of the current assignment. If E=0, stop and go to Step 4), otherwise, repeat the process 
from Step 2). 

4) The output state of the neurons Vij will be the final assignment based on the compatibility matrix C and 
demand vector D. 

3.1 Initialization method 

In general, a random initialization method is used as the initial states for the neurons in the Hopfield network. In 
my algorithm, initialization technique with the frequency assignment constraints are investigated in order to 
increase the convergence rate and to decrease the iteration number. The total frequency spectrum is composed of 
a certain number of blocks for the initialization with consideration of the constraints. Fig.4(a) shows the 
frequency block structures. M is the total number of frequencies, and the total frequency spectrum consists of B 
blocks. Every frequency block except the last one has the same number of frequency slots. The last block might 
not have the same number of frequency slots depending on the LB and the block width (BW), which is the 
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 a

number of channels in the block. In Fig.4(a), for example, all blocks have BWi=5, 1 i (B-1) except the last 
block B, which has BWB=2. Frequency j refers to the number of each frequency slot, with each slot identified by 
fij , 1 iN, 1 jM. The channel number in block (CNB) is the frequency number in the block, and the 
sequence is repeated for each block. 

In my algorithm, the initial state of neurons, Vij = 0 or Vij =1, where 1 iN, 1 jM indicates whether or not 
the frequency slot fij is to be assigned to the jth call in the cell i. Fig. 4(b) shows the fixed interval initialization 
method, which will be explained later in detail. In Fig. 4(b), the frequency slots with the initial state value Vij =1 
are indicated by the dark slots. In the frequency-assignment network, the lower bound (LB) on the total of 
channels can be obtained from demand vector D and the compatibility matrix C for the cell Cdmax . The distance 
between the frequencies for a certain cell should be at least cii . LB for the network is defined by 

1).1( max  iicdLB                                                            (25) 

The BW is defined by 

 
   
 

 
where  a  is the largest integer, which is equal or less than a. The number of blocks B is defined by 







BW

M
B                                                                     (27) 

Where    is the smallest integer, which is equal or greater than a. The procedure of regular interval 

initialization method is as follows. 

1) For the cell #i with di calls, randomly choose the frequency block and channel number in the chosen block 
(CNB) k, 1 kBW in the chosen frequency block, which does not violate CCC and ACC with the previously 
assigned frequencies of other cells. Assign a “one” to the chosen frequency slot, Vik=1. If the cell #i is Cdmax , k=1. 

2) For the remaining calls of the cell, assign a “one”to the frequency slot, which has the distance BW with the 
previous assigned slots, 1kiV , where                   mod M for df =1,2,…,di -1. 

3) Fixed channel assignment for the cell Cdmax. 

3.2 Updating Method 

In an asynchronous Hopfield network, the neurons are selected randomly or sequentially by a certain order for 
the updating. In my algorithm, both random and sequential selection techniques are used along with updating 
method.  

According to Kim et al.(1997), The procedural step for updating method is as follows. 

1) Make a list of cells according to the descending order of RCN for each cell. 

2) Execute the iteration subroutine as follows until the counter reached to a prespecified maximum iteration 
number 500 or E=0. 

a) Choose the cell #i according to the order of the cell list. 

b) Randomly choose one neuron #j in cell #i [neuron(i,j) ] and update that neuron. 

c) For the next updating neuron, the direction is randomly chosen whether in favor of the left- [neuron(i , j-1)] 
or the right-side neuron [neuron(i , j+1)]. 

d) After the initial direction is decided by Step c), the next neurons are updated sequentially. 

e) Repeat Steps a) – d) until all frequencies for all the cells are assigned. 

3) Repeat Step 2) for the next cell in the list (pp.963-964). 

4. Simulation and Discussion 

A mobile system consisting of 21 or 25 cells is used in my simulation. The 21-cell system is repeated in Fig. 5. 
The output threshold (THD) in (24) is fixed at THD=0. The simulation results according to the regular interval 
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initialization method and new interconnection weight will be discussed and then compared with that of Kim et 
al.(1997) in this paper. 

Table I shows the specifications of the problems, which are also used by Kim et al.(1997). LB is the lower bound 
on required frequencies for each problem. Figs.6 shows the compatibility matrices and the demand vectors for 
these problems. In Table II, the result of this paper with new interconnection weight and initialization method are 
compared with the result in Kim et al.’s (1997) algorithm. The average iteration number and the convergence 
rate to the solution are also shown in Table II. The average iteration number is the average number of iterations, 
which are increased until E=0. Convergence rate is the probability that the network has E=0 before the 
maximum number iteration is reached. In these simulations, the maximum number of iterations is fixed at 500. 
To investigate the number of iterations and the convergence rates, 100 simulation runs were performed with 
different initial seed values using a random number generator for each of the seven problems. In table II, the 
simulation results in this paper have a smaller average iteration number and a higher convergence rate than Kim 
et al.’s (1997) results. For example, in problem #1, my algorithm found the solution with 156.23 average 
iteration number and 95% convergence rate, but Kim et al.’s (1997) algorithm found the solution with 263.4 
average iteration number and 61% convergence rate. It demonstrates that generally, my algorithm has a better 
performance (i.e., smaller iteration numbers and higher convergence rates) than Kim et al.’s (1997) algorithm. It 
also shows that my proposed initialization method with fixed channel assignment for the cell Cdmax, has better 
performance than the random initialization method which is usually used. For example, fig.7 and Table III shows 
the distribution of the frequency for each cell in problem #1 and cell #9 has the largest element in the demand 
vector, so the frequency assignment of cell #9 was fixed in this algorithm. Fixing a single cell frequency 
assignment can drastically reduce the searching space and consequently the convergence time is shortened. In 
addition, Fig.8 shows two typical trajectory of problem #1 and #2 that demonstrates the convergence rate. 

5. Conclusion 

In this paper, a modified Hopfield neural-network algorithm is proposed in order to obtain an optimal solution 
for the channel-assignment problem in the mobile cellular environment. This improved algorithm drives itself to 
the solution by using new interconnection weights and external inputs to the neurons with the initialization and 
updating method. The interconnection weight is set initially to take into account the RCN in each cell and the 
three channel-assignment constraints. The three constraints that are considered are the CCC, ACC, and CSC. The 
compatibility matrix C, demand vector D, and the lower bound number of total frequencies are presented as 
input. In the simulation results, the average iteration number and convergence rates are shown and compared 
with that of Kim et al.’s(1997) results. The proposed algorithm using the suggested initialization method and 
new interconnection weight has a better performance than Kim et al.’s(1997) algorithm. This algorithm is simple 
to implement in very large scale integration (VLSI) since the algorithm has only simple functions such as adder, 
inverter, and comparator. Also, it has a modular structure since each neuron can be constructed as a module. 
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Table 1. Specification of Simulation Problems. 
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Table 2. Summary of Simulation Results 
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Table 3. Distribution of the frequency for each cell with 533 frequency in problem #3. 
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Figure 1. A CAP: compatibility matrix C, required D, the corresponding network 

topology, and the optimum solution with 11 channels 
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Figure 2. A 2-D Hopfield network for the channel-assignment problem 
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Figure 5. The 21-cell system used in this paper 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A 2-D Hopfield network for the channel-assignment problem 
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Figure 7. Distribution of the frequency for each cell with 533 frequency in problem #3. 

 

Figure 6. Compatibility matrices and demand vectors in simulated problems. (a) Compatibility matrix C2 . 

(b) Demand vector D2. (c) Compatibility matrix C3. (d) Demand vector D3. (e) Compatibility matrix C4.       

(f) Demand vector D4. (g) Compatibility matrix C5 
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Figure 8. two typical convergence rate trajectory: (a) Problem #1 and (b) Problem #2 


