
www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

Published by Canadian Center of Science and Education 215

Payload Inspection Using Parallel Bloom Filter in Dual Core
Processor

Arulanand Natarajan (Corresponding author)

Anna University Coimbatore, TN, India

E-mail: arulnat@yahoo.com

S. Subramanian

Sri Krishna College of Engineering and Technology, TN, India

E-mail: dsraju49@gmail.com

Abstract

This paper presents payload inspection for identification of spam files using bloom filter in dual core processor.
Spam files flood the Internet in an attempt to dump the messages on recipients who do not intend to receive it.
Spam costs the sender very little to send and most of the costs are levied to the recipients or the carriers. The
proposed system identifies and filters the incoming spam files using Bloom filter algorithm implemented in dual
core processor. The results of the Bloom filter algorithm are examined and these results demonstrate the
performance of Sequential Bloom filter and Parallel Bloom filter in a Dual Core Processor.

Keywords: Bloom filter, Dual Core Processor, Spam, Payload Inspection

1. Introduction

An electronic message is a spam if the recipient’s personal identity and context are irrelevant because the
message is equally applicable to many other potential recipients and recipient has not granted explicit permission
for it to be sent. The transmission and reception of the message appears to the recipient to give a disproportionate
benefit to the sender. Most spam is commercial advertising, often for dubious products, get-rich-quick schemes,
or quasi-legal services. Spamming remains economically viable because advertisers have no operating costs
beyond the management of their mailing lists and it is difficult to hold senders accountable for their mass
mailings.

Payload is the essential data that is being carried within a packet or other transmission unit. The payload does not
include the overhead data required to get the packet to its destination. In general usage, the payload consists of
the bits that get delivered to the end user. Bloom filters are compact data structures for probabilistic
representation of a set to support membership queries. Its core concept is associative containers. Given a string X,
the Bloom filter computes k hash functions on it producing k hash values ranging from 1 to m. It then sets k bits
in an m-bit long vector at the location corresponding to k hash values. This procedure is repeated for all the
members of the set. This process is called programming the bloom filter. The query process is similar to
programming the filter. A string whose membership is to be verified is sent as input to the bloom filter algorithm
to generate k hash values using the same hash functions that were used to program the filter. The bits in the m-bit
long vector at the locations corresponding to the k hash values are looked up. If at least one of these k bits is not
found in the m-bit long vector, then the string is declared to be a nonmember of the set. However, if all the bits
are found in the m-bit long vector, then the string is said to belong to the set with a certain probability. This
uncertainty in the membership comes from the fact that those k bits in the m-bit vector can be set by any other
n-1 members. Thus finding a bit set does not necessarily imply that it was set by the particular string being
queried. However, finding a bit not set certainly implies that the string does not belong to the set.

In a single-core processor, the CPU is fed with strings of instructions. The CPU executes the instructions and
then selectively stores it in its cache for quick retrieval. When data that does not reside on the cache is required,
it is retrieved through the system bus from RAM or from storage devices. Accessing data outside the cache slows
down the performance of the CPU. In a dual core processor, each core handles incoming data strings
simultaneously using multi-threading to improve efficiency. When one core is executing, the other core can
either access the system bus or execute its own code.

This paper deals with the performance of the Dual core processor for payload inspection using multi-threading
concept. Section 2 provides the methods of spam filters. Section 3 gives a general overview of the Bloom filter.
The proposed system is explained in Section 4. The experimental setup and performance analysis of the results
are described in Section 5.

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

 ISSN 1913-8989 E-ISSN 1913-8997 216

2. Spam Filters

This section describes several methods of spam filtering. The complexity, advantages and limitations of each
method are explained.

2.1 Rule-based Filtering

In a rule-based algorithm, rules are defined to classify emails as spam based on the characteristics of the message.
As an example, a rule could be that all emails with magenta-colored text are spam. A good rule-based filter
combines all the rules to make a decision. The problem with rule-based filters is that the rules are written looking
for the obvious characteristics of spam. Spams are written in such a way that it appears like a normal message.
As a result, it is hard to write simple rules that work well in all cases.

2.2 Blacklisting

Blacklisting is a form of rule-based filtering that uses one rule to decide which email messages are spams. A
blacklist is a list of traits that spam emails have, and if an email being tested contains any of those traits, it is
marked as spam. It is possible to organize a blacklist based on “From:” fields, originating IP addresses, the
subject or body of the message, or any other part of the message that makes sense.

Blacklists can be used either at a large scale or a small scale. A large-scale blacklist would usually be provided
by a third party. The user typically does not contribute to a large list. On a smaller scale, the user could simply
tell their email client not to allow email from certain addresses. A small-scale blacklist works fine if the user gets
spam from one particular address. On a larger scale, where the user does not have any control over the blacklist,
there must be a mechanism in place for dealing with accidental blacklisting of other users.

2.3 Whitelisting

While blacklisting is a way of deciding emails which are spam, whitelisting decides which emails are non-spam
and assumes that the rest of the messages are spam. Users would presumably whitelist everyone that they would
expect to receive email from. The obvious problem is that it is impossible to predict who is going to send email,
and anyone previously unknown to the user will be filtered out. One way to avoid this problem is to read through
the filtered email regularly.

Another method is to let the senders of all emails to be marked as spam, while providing them with a method of
getting added to the whitelist. It probably blocks all spam, but there is still a problem of dealing with automated
order confirmations and mailing lists. When a user joins the mailing list, that address can be included in their
whitelist, but it has to be done manually. For order confirmations, for example, the user can not always know
from where the confirmation will be coming. Hence this approach is also subjected to some limitations.

2.4 Paul Graham’s Bayesian Filtering

Bayesian filters use probabilistic reasoning to decide whether or not a message is spam. These filters work on
Bayes’ rule, which is useful for calculating the probability of one event when one knows another event is true. In
the case of email, the rule is used to determine the probability that an email is spam given that it contains certain
words.

The probability that an email is spam is based on the words it contains. The filter needs to know about the emails
that a user receives. Since the interest is solely in the words and their frequencies (and not their ordering in this
implementation), the solution is to keep a hash table to record how often each word appears. Spams and
non-spams are kept in a separate hash table, so that the probabilities can be calculated later. When an email is
declared spam, the spam table is updated by incrementing the frequency count of each word contained in that
email. Similarly, non-spam counts are incremented. Over a period of time, the hash tables begin to characterize a
person’s spam and non-spam messages.

Graham (2003) suggests a modified Bayes’ rule to calculate probabilities. Bayes’ rule combines multiple
probabilities:

 C ︶|P ︵B
C ︶A|C ︶P ︵B|P ︵AC ︶B|P ︵A


 (1)

Graham’s modification of Baye s’ rule is:

 C ︶ ︶|P ︵AB ︶ ︶ ︵1|P ︵A︵1C ︶|B ︶p ︵A|P ︵A
C ︶|C ︶P ︵A|P ︵AC ︶B|P ︵A 

 (2)

P(A|B ^ C) is the probability that event A is true, given that events B and C are true. In the case of spam filtering,
event A would represent an email being spam, while B and C correspond to certain words being in the email.

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

Published by Canadian Center of Science and Education 217

Probability that an email is spam (A) is known when it contains words B and C. This equation can be expanded
to include more words (Graham proposes using the most interesting 15 words). Graham’s Bayes’ rule assumes
that one already knows the probability that an email is spam for each individual word. This is calculated with the
following formula:

 nbad
b

ngood
g
nbad
b

word ︶|P ︵Spam



 (3)

Here ‘b’ and ‘g’ represent the number of times a word appears in spam and non-spam emails respectively and
‘nbad’ and ‘ngood’ represent the total numbers of spam and non-spam emails received respectively.

3. Bloom filter

Bloom filter implements the above concepts through the use of multiple distinct hash functions. Bloom filter
guarantees that for any membership query there will never be any false negatives; however there may be false
positives. The false positive probability can be controlled by varying the size of the table used for the Bloom
filter and also by varying the number of hash functions.

Subsequent research work done in the area of hash functions and tables on Bloom filters by Border and
Mitzenmacher (2004), suggests that an optimal Bloom filter (one which provides the lowest false positive
probability for a given table size) constructed with at most two distinct hash functions, greatly increases the
efficiency of membership queries. Bloom filters are commonly found in applications such as spell-checkers,
string matching algorithms, network packet analysis tools and network/internet caches.

3.1 Literature Review

In figure 1 the arrows show the positions in the bit array that each set element is mapped to. The element w is not
in the set {x, y, z}, because it hashes to one bit-array position containing 0. In this figure 1, the values of m and
k are taken as 18 and 3 respectively.

An empty Bloom filter is a bit array of m bits, all set to 0. There must also be k different hash functions defined,
each of which maps or hashes some set element to one of the m array positions with a uniform random
distribution. To add an element, each of the k hash functions is fed to get k array positions. The bits at all these
positions are set to 1.

To query for an element, each of the k hash functions is fed to get k array positions. If any of the bits at these
positions are 0, the element is not in the set. Otherwise all the bits would have been set to 1 when it was inserted.
If all are 1, then either the element is in the set, or the bits have been set to 1 during the insertion of other
elements.

A Bloom filter program consists of a set of hash functions, a hash function buffer to store hash results
temporarily, a look up array to signify hash values and a decision component made of an AND to test the
membership of testing string as shown in figure 2.

The requirement of designing k different independent hash functions may be prohibitive for large k. For a good
hash function with a wide output, there should be little if any correlation between different bit-fields of such a
hash, so this type of hash can be used to generate multiple different hash functions by slicing its output into
multiple bit fields. Alternatively, pass k different initial values (such as 0, 1, 2, ..., k-1) to a hash function that
takes an initial value; or add these values to the key. For larger m and/or k, independence among the hash
functions can be relaxed with negligible increase in false positive rate (Dillinger & Manolios 2004a; Kirsch &
Mitzenmacher 2006). Specifically, Dillinger & Manolios (2004b) show the effectiveness of using enhanced
double hashing or triple hashing, variants of double hashing, to derive the k indices using simple arithmetic on
two or three indices computed with independent hash functions.

Unfortunately, removing an element from this simple Bloom filter is not possible. The element maps to k bits,
and although setting any one of these k bits to zero suffices to remove it. This has the side effect of removing any
other element that maps onto that bit and there is no way of determining whether any such element has been
added. Such removal may introduce a possibility for false negatives, which is not allowed.

Removal of an element from a Bloom filter can be simulated by having a second Bloom filter that contains items
that have been removed. However, false positives in the second filter become false negatives in the composite
filter, which is not permitted. This approach also limits the semantics of removal since re-adding a previously
removed item is not possible. However, it is often the case that all the keys are available but are cumbersome to

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

 ISSN 1913-8989 E-ISSN 1913-8997 218

enumerate. When the false positive rate goes very high, the filter can be regenerated; this should be a relatively
rare event.

Bloom filters can be implemented in hardware but they have their own limitations. The hardware Bloom Filters
are expensive. They are primarily used in huge mail servers. The initial data set is fixed in these hardware filters
and updating these cost time and money. The Hardware systems are also prone to frequent failures and they have
to be shut down when they are being updated thus leaving the network vulnerable. The software implementation
proposed here is primarily aimed at small scale levels where hardware implementation is not a viable option. The
proposed parallel implementation boosts performance in the long run. Dharmapurikar et al (2004) have presented
a hardware-based technique using Bloom filters, which can detect strings in streaming data without degrading
network throughput. They group signatures according to their length (in bytes) and store each group of string in a
unique Bloom filter. An analyzer is employed to resolve false positives. They have also proposed a technique for
reducing packet inspection time by using parallel Bloom filters.

Artan and Chao (2005) have proposed a space-efficient method to follow and detect signatures that are
fragmented over multiple packets. Prefix Bloom filter was used along with chain heuristic to achieve this
purpose. A fault in Bloom filters, however, may cause false negatives to occur. For a string already programmed
in a Bloom filter, a faulty hashing unit might generate an incorrect location (i.e., a hash value) at which 0 is
stored instead of 1, resulting in a false negative. For a given fault, the probability that false negatives will occur
is high unless some provisions are made to detect and eliminate them.

Myeong-Hyeon Lee and Yoon-Hwa Choi (2007) presented a hardware-based fault-tolerant Bloom filter which
detects and eliminates false-negatives during normal operation. It is based on property checking of a Bloom filter
with some extra hardware circuits. The design is simple to implement with negligible overhead. As a result,
packets may proceed at line speed, regardless of the added circuits.

3.2 Space and Time Complexity

Bloom filter is used to speed up answers in a key-value storage system. Values are stored on a disk which has
slow access time. Bloom filter decisions are much faster. However some unnecessary disk accesses are made
when the filter reports a false positive. Overall answer speed is better with the Bloom filter than without the
Bloom filter. Use of a Bloom filter for this purpose, however, does increase memory usage.

While risking false positives, Bloom filters have a strong space advantage over other data structures for
representing sets, such as self-balancing binary search trees, tries, hash tables, or simple arrays or linked list of
the entries.

Most of these require storage space for at least the data items themselves, which can require anywhere from a
small number of bits, for small integers, to an arbitrary number of bits, such as for strings (tries are an exception,
since they can share storage between elements with equal prefixes). Linked structures incur an additional linear
space overhead for pointers.

A Bloom filter with 1% error and an optimal value of k, on the other hand, requires only about 9.6 bits per
element regardless of the size of the elements. This advantage comes partly from its compactness, inherited from
arrays, and partly from its probabilistic nature. If 1% false positive rate seems to be too high, then each time
about 4.8 bits per element are added, it decreases it by ten times.

Bloom filters also have the unusual property that the time needed to either add items or to check whether an item
is in the set is a fixed constant, O (k), completely independent of the number of items already in the set. No other
constant-space set data structure has this property, but the average access time of sparse hash tables can make
them faster in practice than some Bloom filters. In a hardware implementation, the Bloom filter works better
because its k lookups are independent and can be parallelized.

To understand space efficiency, it is necessary to compare the general Bloom filter with its special case when k =
1. If k = 1, then in order to keep the false positive rate sufficiently low, a small fraction of bits should be set,
which means the array must be very large and contain long runs of zeros. The information content of the array
relative to its size is low. The generalized Bloom filter (k greater than 1) allows many more bits to be set while
still maintaining a low false positive rate, when the parameters (k and m) are chosen well.

3.3 False Positive Rate

The false positive probability p is defined as a function of number of elements n in the filter and the filter size m.
An optimal number of hash functions k = (m / n) ln2 has been assumed. A hash function selects each array
position with equal probability. If m is the number of bits in the array, the probability that a certain bit is not set

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

Published by Canadian Center of Science and Education 219

to one by a certain hash function during the insertion of an element is given by

 m
11 (4)

The probability that it is not set by any of the hash functions is

k

m
11 





  (5)

If n elements are inserted, the probability that a certain bit is still 0 is

kn

m
11 





  (6)

The probability that it is 1 is therefore

kn

m
111 





  (7)

The test membership of an element is not in the set. Each of the k array positions computed by the hash functions
is 1 with a probability as given above. The probability of all of them being 1, which would cause the algorithm to
erroneously claim that the element is in the set, is represented as

 kkn/m

kkn

e1
m
1111 
















  (8)

The probability of false positives decreases as m (the number of bits in the array) increases, and increases as n
(the number of inserted elements) increases. For a given m and n, the value of k (the number of hash functions)
that minimizes the probability is

 n
m0.7

13n
9mln2

n
m

 (9)

which gives the false positive probability of

n
mk 0.61852 

By taking the optimal number of hashes, the false positive probability (when <=0.5) can be rewritten and
bounded (Starobinski et al 2003) as

 ln2
1

n
m
 (10)

In order to maintain a fixed false positive probability, the length of a Bloom filter must grow linearly with the
number of elements being filtered. The required number of bits m for given n (the number of inserted elements)
and a desired false positive probability p, and assuming the optimal value of k is

22 ︶︵ln
plnnm  (11)

Table 1 shows the false positive ratios for common combinations of m/n and k in Bloom Filter

4. Parallel Bloom Filter in a Dual Core Processor

Two basic operations are defined for Bloom Filter. The first one is programming the look up array using hash
functions for all the strings in the data set. The second one is for checking the membership of a test string.
Bloom Filter represents the set of n-signatures X= {X1, X2, … , Xn} in an m-bit array. The elements in this
array are set to ‘0’ before programming. Each signature is of b bits and is hashed k-times by independent hash
functions H1, H2, H3………Hk. It is assumed that each hash function maps uniformly to a random number in
range {0,1, 2……..m-1} where m defines the number of bits in look up array. The random number describing
hash function value indicates a bit location in m-bit look up array, which is then set to ‘1’. A particular bit
location in m-bit look up array can be set to 1 more than once.

In the testing phase, a string is tested for membership by querying the programmed Bloom Filter. The string is
hashed k- times as before. If all the hash values point to the bit locations that are set to ‘1’ then this indicates that
the test string may be a member of the set with a certain probability (false positive) which is called as match. If
any one of the hash values points to a bit location that is set to ‘0’ then the test string is definitely not a member
of the set and is called as mismatch.

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

 ISSN 1913-8989 E-ISSN 1913-8997 220

5. Experiment Results

Hash functions with high distribution coefficients are chosen to avoid collisions. A hash function is said to have a
high distribution coefficient, if the signatures generated by the hash function have a wide range. This is essential
for hash functions chosen for designing Bloom filters as they operate on a large dataset. Wide distribution of the
hash function reduces the probability of collisions. To implement this system in the proposed work, two stable
hash functions are chosen with high distribution coefficient, namely the AP hash function and the BKDR hash
function. The initial dataset is populated with spam strings acquired from cooperative spam databases which
contain the most widely countered spam strings.

The bit vector is of a predefined size which is calculated with respect to the size of the initial dataset and the
allowable probability of false positives. In this work, 210 words are taken as spam words and the length of the
bit vector is set as 2048. The false positive ratio for the proposed work for given m, n and k is 0.0329 which is
shown in the Table 1. The signatures generated by the hash functions are integers and they are normalized to the
size of the bit vector and their position is mapped onto the bit vector. The corresponding position on the bit
vector is set to 1. The same position in the bit vector can be set to 1 multiple times. Thus the signatures generated
by two hash functions for all the spam strings are mapped on to the bit vector.

For experiment results, 10 different 1 KB spam files are chosen for testing. The strings are parsed from the payload
and compared with the bit vector generated using the initial dataset. The strings are tested for membership. If a
string parsed from the user file passes the membership test then the string is present in the initial dataset and the file
is classified as spam. In sequential membership, testing method employs a single membership testing function for
the parsed strings of all length. The normalized signatures generated for a string in the initialization phase are fed
into this function. The normalized signatures denote positions in the Bit Vector. If the positions denoted by the
normalized signatures of a string in the Bit Vector are all set to 1, then the string passes the membership test. Even
if a single position is set to 0, then the string fails the membership test. In Parallel membership, there are multiple
testing functions each dedicated to strings of particular length. The operating principle is same as that of the
sequential membership testing function. But here there are multiple independent sequential membership testing
functions that can be executed in parallel. Figure 4 shows the experiment results obtained from sequential and
parallel bloom filters in dual core processor with 1 KB spam files. The execution time of both sequential and
parallel bloom filter depends on the spam word position of the payloads.

The performance of the parallel bloom filter outperforms the sequential bloom filter in a dual core processor. In a
dual core processor, the parsing of a string from the payload, hash key generation and the query matching process
are all done in parallel for different size of strings using multithreading concept. The main advantages of multi
threading is that, if a thread gets couple of cache misses, the other thread(s) can continue running, taking advantage
of the unused computing resources. This leads to faster overall execution, as these resources would have been idle
if only one single thread was executed. Also, if several threads work on the same set of data, they can actually share
their cache, leading to better cache usage and synchronization on its values. The advantages of dual core processor
is that the computer will use less energy and delivers better performance from both its cores compared to a single
high performance chip design.

Conclusion

In this work, both sequential and parallel Bloom filters are implemented for payload inspection in a dual-core
processor. A dual core processor has the advantage of boosting the system's multithreading computing power. It
improves the utilization of the operating system and the applications running on the computer that supports
thread-level parallelism. As the experimental results show, parallel bloom filters implemented in a dual core
processor has the potential to increase the execution speed of bloom filters using software implementation.
Bloom filter algorithm can be easily extended and adapted for parallel execution using multi-cores. With today’s
availability of dual core, quad core and 8 core processors this speed could supersede the speed that can be
achieved through hardware implementation. This increase in speed can be used advantageously in many
applications. Hence implementation of parallel bloom filters using multi core processor based on multithreading
concept provides a large scope for further investigation and research.

References

Artan, N. S., & Chao, H. J. (2005). Multi-packet Signature Detection using Prefix Bloom Filters. Proceedings of
48th Annual IEEE Global Communications Conference.

Bloom, B. (1970). Space/time tradeoffs in hash coding with allowable errors. Communications of the ACM,
13(7), 422–426.

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

Published by Canadian Center of Science and Education 221

Border, A., & Mitzenmacher, M. (2004). Network applications of Bloom filters: A survey. Internet Mathematics,
1(4), 485–509.

Graham, P. (2003). Better Bayesian Filtering. Proceedings of Spam Conference.

Dharmapurikar., S., Krishnamurthy, P., Sproull, T. S., & Lockwood, J. W. (2004). Deep packet inspection using
parallel Bloom filters. IEEE Micro, 52–61.

Dillinger, P., C., Manolios, P. (2004a). Fast and Accurate Bitstate Verification for SPIN, Proceedings of the 11th
International Spin Workshop on Model Checking Software, Springer-Verlag, Lecture Notes in Computer Science
2989.

Dillinger, P., C., & Manolios, P. (2004b). Bloom Filters in Probabilistic Verification, Proceedings of the 5th
International Conference on Formal Methods in Computer-Aided Design, Springer-Verlag, Lecture Notes in
Computer Science 3312.

Kirsch, A., & Mitzenmacher, M. (2008). Less Hashing, Same Performance: Building a Better Bloom Filter,
Random Structures & Algorithms, 33(2), 456–467.

Lee, M., & Choi, Y. (2007). A Fault-Tolerant Bloom Filter for Deep Packet Inspection, Proceedings of 13th
Pacific Rim International Symposium on Dependable Computing, 389-396.

Starobinski, D., Trachtenberg, A., & Agarwal, S. (2003). Efficient PDA Synchronization, IEEE Transactions on
Mobile Computing, 2(1), 40.

Table 1. False Positive Ratio

m/n K k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

2 1.39 0.393 0.400

3 2.08 0.283 0.237 0.253

4 2.77 0.221 0.155 0.147 0.160

5 3.46 0.181 0.109 0.092 0.092 0.101

6 4.16 0.154 0.0804 0.0609 0.0561 0.0578 0.0638

7 4.85 0.133 0.0618 0.0423 0.0359 0.0347 0.0364

8 5.55 0.118 0.0489 0.0306 0.024 0.0217 0.0216 0.0229

9 6.24 0.105 0.0397 0.0228 0.0166 0.0141 0.0133 0.0135 0.0145

10 6.93 0.0952 0.0329 0.0174 0.0118 0.00943 0.00844 0.00819 0.00846

11 7.62 0.0689 0.0276 0.0136 0.00864 0.0065 0.00552 0.00513 0.00509

12 8.32 0.08 0.0236 0.0108 0.00646 0.00459 0.00371 0.00329 0.00314

13 9.01 0.074 0.0203 0.00875 0.00492 0.00332 0.00255 0.00217 0.00199

14 9.7 0.0689 0.0177 0.00718 0.00381 0.00244 0.00179 0.00146 0.00129

15 10.4 0.0645 0.0156 0.00596 0.003 0.00183 0.00128 0.001 0.000852

etc…

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

 ISSN 1913-8989 E-ISSN 1913-8997 222

Figure 1. An Example of Bloom filter representing the set {x,y,z}

. Figure 2. Block diagram for checking membership of a string.

 Figure 3. Parallel Bloom Filter for Payload Inspection

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 4; November 2010

Published by Canadian Center of Science and Education 223

 Figure 4. Experiment results using sequential and parallel bloom filter

