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Abstract 

Vast pools of historical financial information are available on economies, industry, and individual companies that 
affect investors’ selection of appropriate portfolios. Fuzzy data provides a good tool to reflect investors’ opinions 
based on this information. A possibilistic mean variance safety-first portfolio selection model is developed to 
support investors’ decision making, to take into consideration this fuzzy information. The 
possibilistic-programming problem can be transformed into a linear optimal problem with an additional 
quadratic constraint using possibilistic theory. We propose a cutting plane algorithm to solve the programming 
problem. A numerical example is given to illustrate our approach. 
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1. Introduction 

Portfolio selection regards asset selection which maximizes an investor’s return and minimizes her risk. In 1952, 
Markowitz (1952, 1959) published his pioneering work and laid the foundation of modern portfolio analysis. The 
core of the Markowitz mean variance model is to take the expected return of a portfolio as investment return and 
the variance of the expected return of a portfolio as investment risk. The main input data of the Markowitz mean 
variance model are expected returns and variance of expected returns of these securities. However, Markowitz’s 
mean variance framework has been criticized due to several drawbacks (Korn,1997.). This framework employs 
the variance of the portfolio return as the only security risk measure. Controlling (Minimizing) the variance 
imposes bounds on both downside and upside deviation from the expected return, which may limit possible gains. 
A large literature on Markowitz’s mean variance framework exists; see a review from Damodaran (1996) and 
Copeland (2000). 

Another popular portfolio selection model is safety-first portfolio models originated from Roy (1952). This set of 
models helps investors to look at only a low-risk portfolio that offers some modest growth potential(Ortobelli, 
Rachev, 2001). There are also vast numbers of portfolio models using safety-first models (Copeland, Koller, 
Murrin, 2000). Both Markowitz’s mean variance framework and safety-first portfolio models and a great deal of 
extensions are based on probability theory, where the theory of expected utility is usually used derived from a set 
of axioms concerning investor behaviour as regards the ordering relationship for deterministic and random 
events in the choice set. In other words, it is assumed that a probability measure can be defined on the random 
outcomes. However, if the origins of such random events are not well known, then the probability theory 
becomes inadequate because of a lack of experimental information (Wu, Zhang, Olson, 2009). 

In the information age, vast pools of historical financial datas are available on the economy, industry, and 
individual companies which can all affect investors’ selection of appropriate portfolios. In fact, investors are 
faced with so much possibly useful data that they find it difficult, often impossible, to process all. Their opinion 
of this information is often fuzzy, which motivates the utilization of fuzzy set theory in portfolio selection. It is 
traditionally supposed that data regarding the expected return for financial instrument is random or deterministic. 
However, since there is statistic error in estimating the return, the return variable might be introduced as a fuzzy 
number given the uncertainty inherent in financial markets. It is also apparent the fuzzy determination of 
financial risks is reasonable since risk concept can be very vague. Therefore, it is reasonable to solve the 
portfolio selection problem under assumption of fuzzy data(Olson,Wu,2006). 

Since the 1960s, fuzzy set theory has been widely used to solve many problems in financial risk management. 
By using fuzzy approaches, experts' knowledge and investors' subjective opinions can be better integrated into a 
portfolio selection model. Bellman and Zadeh (1978) proposed fuzzy decision theory. Ramaswamy (1998) 
presented a fuzzy bond portfolio selection, where fuzzy return-risk tradeoff is analyzed for an assumed market 
scenario. A similar approach for portfolio selection was proposed in Leon et al(2002) by use of the fuzzy 
decision theory. Ostermark(1998) proposed a dynamic portfolio management model where the fuzzy decision 
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principle can be combined. Watada(2001) presented another type of portfolio selection model based on the fuzzy 
decision principle. This model is directly related to the mean-variance model, where the goal rate for an expected 
return and the corresponding risk are described by logistic membership functions. Tanaka et al(2000) formulate 
fuzzy decision problems based on probability events. Carlsson et al(2002) studied a portfolio selection model in 
which the rate of return of securities follows the possibility distribution. Enriqueta et al(2007) presented a fuzzy 
downside risk approach for managing portfolio problems in the framework of risk-return trade-off using 
interval-valued expectations. Lacagnina and Pecorella (2006) proposed a multistage stochastic soft constraints 
fuzzy model to solve a portfolio management problem. Liu and Wang (1998) constructed a pair of two-level 
mathematical programming models, based on which the upper bound and lower bound of the objective values 
were obtained. Recent advances of portfolio selection model considered integration of various muti-criteria 
decision making models such as fuzzy AHP in Tiryaki and Ahlatcioglu (2009) and expert systems such as 
Smimou et al(2008). Xiaoxia(2007) gave a new defnition of risk for random fuzzy portfolio selection, 
Weiguo(2007) proposed two kinds of portfolio selection models based on lower and upper possibilistic means 
and possibilistic variances. Very limited research has been attempted on possibilistic mean-variance safety-first 
portfolio models. 

In this paper, we assume the securities which has fuzzy rate of return and develop a possibilistic mean-variance 
safety-first portfolio model. Vague input data can be specified for these quantitative risk factors using historical 
data based on historical data quantile described in existing work such as Zmeskal(2001) and Wu et al(2009). 
Using the possibilistic means and variances, the possibilistic programming problem can be transformed into a 
linear optimal problem with an additional quadratic constraint by possibilistic theory. For such problem there are 
no special standard algorithms, we propose a cutting plane algorithm to solve them. 

Using our proposed approach, fuzzy variance and covariance are derived directly from fuzzy numbers, which are 
different from the probability theory where variance and covariance are derived from a great deal of historical 
data such as Markowitz’s mean variance framework and the safety-first portfolio model. This will, on the one 
hand, reduce the computation complexity and on the other hand, overcome the hurdle of semi-positive 
covariance matrix as required in a great deal of portfolio models based on the probability theory. 

The rest of the paper is organized as follows. In Section 2, we briefly introduce possibilistic mean variance 
approach and possibilistic mean safety-first approach and present a possibilistic mean variance portfolio 
selection model with safety-first. In Section 3 we present the proposed possibilistic mean variance safety-first 
portfolio selection model and the solution approach. In Section 4, a example is given to illustrate the proposed 
model. The last section concludes the paper. 

2. Mean variance portfolio selection model with safety-first 

The expected losses, conditional on the states where there are large losses, may be higher sometimes. The 
mean-variance approach encourages risk diversification, but the mean safety-first approach discourages risk 
diversification sometimes. The mean-variance approach not only controls the downside risk of security return, 
but also bounds the possible upside gains. In contrast, the mean safety-first approach only controls the downside 
risk of security return. Another limitation of both approaches is that the underlying distribution of the rate of 
return is not well understood, and there are no higher degree information is utilized except means, covariances 
(variances), so we propose the following mean variance safety-first portfolio selection model: 
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3. Possibilistic Mean Variance safety-first Portfolio Selection Model  

3.1 Possibility theory 

Possibility theory was proposed by Zadeh(1978) and advanced by Dubois and Prade (1998) where fuzzy 
variables are associated with possibility distributions in a similar way that random variables are associated with 
probability distributions in probability theory. The possibility distribution function of a fuzzy variable is usually 
defined by the membership function of the corresponding fuzzy set. We call a fuzzy number a  of any fuzzy 

subset R with membership function : [0,1]a R  . Let a , b  be two fuzzy numbers with membership 

function ( ), ( )a bx x  ,  respectively. Based on the concepts and techniques of possibility theory founded by 

Zadeh(1978), we consider in this paper the trapezoidal fuzzy numbers which are fully determined by quadruples 

1 2 3 4( , , , )r r r r r of crisp numbers such that 1 2 3 4r r r r   . Their membership functions can be denoted by: 

1
1 2

2 1

2 3

4
3 4

3 4

,               r

1,                r
( )

,                r

0,                

x r
x r

r r

x r
x

x r
x r

r r

orthewise



   
 

    
 



 

We note that the trapezoidal fuzzy number is a triangular fuzzy number if 2 3r r . 

3.1.1 Fuzzy numbers and operation. 
   The sum of two trapezoidal fuzzy numbers is also a trapezoidal fuzzy number, and the product of a 
trapezoidal fuzzy number and a scalar number is also a trapezoidal fuzzy number. The sum of 

1 2 3 4( , , , )a a a a a  and 1 2 3 4( , , , )b b b b b is defined  

as 1 1 2 2 3 3 4 4( , , , )a b a b a b a b a b      . We also have 
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possibility value of the first trapezoidal fuzzy number being no larger than the second is defined as (Liu, 
Iwamura,1998): 
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Specifically, when b  takes a crisp value of 0, the definition is is simplified as 
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The following lemma holds: 

Theorem 1. Assume the trapezoidal fuzzy number 1 2 3 4( , , , )r r r r r , then for any given confidence level 

)10(   ,  0}r~Pos{  if and only if 0)r-(1 21  r . 

Proof: If  0}r~Pos{  then we have either 0r 1   or 
 21

1 
rr

r
. If 0r 1   then 012  rr , 
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so we have 0)r-(1 21  r ; if 
 21

1 
rr

r
 then )(r 211 rr    by the fact that 21r r . Hence 

we have 0)r-(1 21  r  for all cases. 

If 0)r-(1 21  r , the argument  breaks down into two cases when 0r 1  , we have 00}r~Pos{   

which implies that  0}r~Pos{ ,when 0r 1  , we have 0r 21  r . We can rearrange 

0)r-(1 21  r  as 
 21

1 
rr

r
, i.e.,  0}r~Pos{ . 

3.1.2 Possibilistic mean value and variance 

The  -level set of a fuzzy number ),,,(~
4321 rrrrr   is a crisp subset of R and is denoted by 

},)(|{]~[ Rxxxr   . For the trapezoidal fuzzy number, 

    )].(r ),([},)(|{]~[ 344121 rrrrrRxxxr     

Carlsson et al(2001) introduced the notation of crisp possibilitic mean value of continuous possibility 

distributions, which are consistent with the extension principle. Let )](),([]~[ 21  aar  , then the crisp 

possibilistic mean value of ),,,(~
4321 rrrrr   is computed as 
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Then the crisp possibilistic covariance value of 1 2 3 4( , , , )a a a a a and 1 2 3 4( , , , )b b b b b  can be computed 
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3.2 Model formulation 

In standard portfolio models uncertainty is handled in the form of randomness using probability theory. One of 
the main difference between the possibility and probability measures is that probability is additive whereas 

possibility is subadditive, which means for the possibility measure that the possibility of an event being 
partitioned into smaller events, is less than or equal to the sum of the possibilities of the smaller events. The 
subadditive property of the possibility measure fits the requirements of risk metrics in financial theory. Moreover, 
in probability, estimation of prior probability distributions of parameters such as mean and variance are usually 
obtained from judgment. Determination of the probability distribution of the parameters is difficult(Leon,Liern, 
Vercher,2002). Using probability theory can hardly account for the uncertainty in the probability distribution of 
the uncertain variables. In contrast, measurement of the uncertainty in a possibilistic model can be done by the 
sum of the possibilities of an event and its complement minus one. 

So we will assume that the rates of return on assets are modeled by possibility distributions rather than 
probability distributions. Applying possibilistic distribution may have two-fold advantages (Inuiguchi,1992): 
first, the knowledge of the expert can easily be introduced to the estimation of the return rates; Second, the 
reduced problem is more tractable than the result of the stochastic programming approach. The rate of return on 
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the jth asset will be represented by a fuzzy number jr  in our method, and we will consider only trapezoidal 

possibility distributions for simplicity. In addition, we denote the disaster level by the trapezoidal fuzzy number 

1 2 3 4( , , , )b b b b b . Thus we use the shortfall possibility constraint instead of the shortfall probability constraint 

and formulate our possibilistic mean variance safety-first portfolio selection model as follows.  
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Theorem 1 provides a simplified deterministic form of Model (FMVSF). 
Theorem 2: Solving (FMVSF) is equivalent to solving the following problem: 
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the proof. 

Remark: An investor yields his optimal portfolio by giving the value of V ,  , w  and solving the resulting 

model (FMVSF). 
3.3 Cutting plane algorithm 

Problem (FMVSF) is a linear optimal problem with an additional quadratic constraint. For such problems there 
are no special standard algorithms. Of course, one could treat this problem with general methods of nonlinear 
optimization, but this would lead to local solutions. In this paper, we propose to solve Problem (FMVSF) using a 
cutting plane algorithm, which was first introduced by Kelley (1960) and Cheney and Goldstein(1959) for 
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solving convex programming problems. 

Let 
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where g(x) is a concave function on nR . Let { : ( ) 0}G x g x   and  
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cutting plane algorithm proceeds from Step 1 to 3. 
Step 1. Solve the linear programs: 
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Let 0x  be the optimal solution of (FMVSF0). If 0x  is contained in the set { : , ( ) 0}G x x T g x   , an 

optimum of (FMVSF) has been achieved and stop. Otherwise let 0k   and go to Step 2. 
Step 2. Solve the linear programs: 
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Step 3. Let 1kx   be the optimal solution of the preceding linear program. If 1kx G  , stop. Otherwise, set 

1k k   and return to step 2. 

Let us state and prove the convergence of the cutting plane algorithm. Denoted by kS  the feasible set of linear 

program solved in step 2 of Iteration k. These sets are nested, i.e., 1 0k kS S S    

Theorem 3 Let g be closed concave function on the compact convex set nT R  such that at every point 
x T , the sets of subgradient ( )g x are nonempty and there exists a K such that 

sup{ : ( ), }g x x T K     , 

Further assume that G the feasible set of (FMVSF), is nonempty and contained in T. let  
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contains a subsequence that converges to an optimal solution of (FMVSF). 

Proof: First we observe from 1 0k kS S S   that  { ( )}kf x  is monotonically decreasing. Hence if 

{ }kx  contains a subsequence that converges to a point *x G , then { ( )}kf x  converges to *{ ( )}f x  and 
*x G  solve (FMVSF). Suppose now that kx does not have a subsequence converging to a point in G. Then 

there exists an 0   such that ( )kg x    . If 1kx   maximizing Tc x  on kS , then 1kx T   and  
1( ) ( ) ( ) 0, 0,1, , .h k T k hg x g x x x h k       

From the last two relations and the Schwarz inequality, it follows that  
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1 1( ) ( ) ( ) .h h T k h k hg x g x x x K x x         

 Hence for every subsequence { }pk of indices we have , .p qk kx x q p
K


    This means { }kx  does 

not have a Cauchy subsequence, which contradicts that { }kx T  is bounded. 

4. Numerical example 

In this section,we present a numerical examples to demonstrate our proposed approach: for a 3-security practical 
problem which allows us to show a step-by-step computation using the proposed approach.  

We first consider a market risk manager’s decision of choosing 3-securities: IBM, GE and MSFT. The manager 
structuring an equity portfolio only has vague views regarding equity return scenarios described as “bullish”, 
“bearish” or “neutral”. The manager forms such views as a result of the subjective or intuitive opinion of the 
decision-maker on the basis of information available at a given point in time. It is recognized that a fuzzy set can 
be used to characterize the range of acceptable solutions to the portfolio selection problem under this 
circumstance.  

The manager may specify the following possibility distribution for expected rates: 

1 2 3(0.12,0.15,0.21,0.24), (0.12,0.16,0.22,0.26), (0.20,0.28,0.38,0.40)r r r    
 

The above trapezoidal fuzzy data can also be yielded by fuzzifying historical stochastic data. The approach for 
stating vague input data using historical data is similar to an interesting  and practically applicable method 
based on historical data quantile employed in Zmeskal(2001) and Wu et al(2009). For parameters such as return, 
risks, and skewness are derived from standard error of historical values and normal density function of error is 
assumed as an approximation. For example, based on probability theory, suppose the mean and standard error  
(S.E.) of the first security are 18%   and 3%  . The following formula is used to transform this 

historical stochastic data into Trapezoidal fuzzy data: 1 2 32 , ,a a a           , and 

4 2a    , where  and   are mean and S.E. standard error of related historical data. The deviation of 

one times S.E. for 2a  and 3a  corresponds to 34.1% quantile and 2 times S.E. for 1a  and 4a  corresponds 

to 47.7% quantile. Results are generated in 3 seconds using Matlab software. 
The covariance matrix of three securities are calculated as: 

0.0017 0.0024 0.0037

0.0024 0.002 0.0041

0.0037 0.0041 0.0046

 
 
 
 
   

Here, variance and co-variance are derived directly from fuzzy numbers, which is different from the probability 
theory where variance and co-variance are derived from a great deal of historical data such as Markowitz’s mean 
variance framework and the safety-first portfolio model. Therefore, comparing to existing research based on 
probability theory, computation complexity is reduced. Moreover, the problem of semi-positive co-variance 
matrix is handled. 

We continue to our computation and let 0.5, 0.01, (0.11,0.115,0.12,0.123)j b    , 

0.0025w  .Substituting parameter values into (FMVSF) we obtain: 

2

1 2 3

2 2 2
1 1 2 1 3 2 3 3

1 2 3

1 2 3

max  ( ) 0.18 0.19 0.32

.  0.0017 0.0048 0.0074 0.002 0.0082 0.0047 0.0025

     0.1203 0.1204 0.2008 0.123 0

     1

    0 0.5, ( 1,2,3).j

f x x x x

s t x x x x x x x x x

x x x

x x x

x j

  

     

   
  
  

 
Denote by 
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3
3

1 2 3
1

{ : , 1,0.1203 0.1204 0.2008 0.123 0,0 0.5, ( 1, 2,3)}j j
j

T x x R x x x x x j


         
an

d  

2

2 2 2
1 1 2 1 3 2 3 3( ) 0.0025 0.0017 0.0048 0.0074 0.002 0.0082 0.0047g x x x x x x x x x x      

Now we 
apply the cutting plane algorithm in Section 3.3. We first solve the linear program of maximizing ( )f x  subject 

to x T . The optimal solution is 0 (0,0.5,0.5)x  , where 0 0( ) 0.25165, ( ) 0.0012 0f x g x    . 

We then construct the linear constraint  
0 0 0( ) ( ) ( ) 0Tg x g x x x   ,or 1 2 30.0061 0.0061 0.0088 000625 0x x x      

Now we solve the linear program: 

1 2 3

1 2 3

1 2 3

1 2 3

max  ( ) 0.18 0.19 0.32

.  0.0061 0.0061 0.0088 000625 0

     0.1203 0.1204 0.2008 0.123 0

     1

    0 0.5, ( 1, 2,3).j

f x x x x

s t x x x

x x x

x x x

x j

  

    

   

  

  
 

which leads to the optimal solution: 1 (0.4444444,0.5,00555556)x  . Therefore, the return of the 

portfolio is 0.1927778, the risk(variance) of the portfolio is 0.00232747. 
5. Conclusion 

In this paper, we consider trapezoidal possibility distributions as possibility distribution of the rates of return on 
the securities, and propose a possibilistic mean variance safety-first portfolio selection model. The possibilistic 
mean variance safety-first portfolio selection model can be transformed into a nonlinear programming problem 
based on possibilistic theory. Using this approach, fuzzy variance and co-variance are derived directly from 
fuzzy numbers, which is different from the probability theory where variance and co-variance are derived from a 
great deal 

of historical data such as Markowitz’s mean variance framework and the safety-first portfolio model. This, on the 
one hand, reduces the computation complexity and on the other hand, overcomes the hurdle of semi-positive 
co-variance matrix as required in classical portfolio models based on the probability theory. 

We have developed a cutting plane algorithm to solve the proposed fuzzy portfolio selection model. Two 
numerical examples are given to illustrate the proposed method. From the computation, we know that to obtain 
greater expected fuzzy returns on investments, one must be willing to take on greater risk. Interesting finding is 
regarding the change of the investor’s strategy. As the investor’s risk tolerance increases, the portfolio strategy 
changes by including more risky securities and exclude less risky securities. As a result, the investor’s return 
increases. 

Limitations of the proposed approach should be identified. First, the model did not consider dynamic situations, 
which means one further research can be an extension of the model to fuzzy dynamic portfolio selection and 
corresponding algorithms. Second, large computation based on real data should be explored by use of the 
proposed approach. This may allow us to test the computational advantage of our approach. Based on this study, 
techniques such as fuzzy data mining and fuzzy decision support system can be further developed for predicting 
the security market uncertainty to help improve investors’ returns. 
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