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Abstract 

The channel-assignment problem is important in mobile telephone communication. Since the usable range of the 
frequency spectrum is limited, the optimal channel-assignment problem has become increasingly important. The 
goal of this problem is to find a channel assignment to requested calls with the minimum number of channels 
subject to interference constraints between channels. This algorithm consists of: 1) the fixed channel assignment 
stage; 2) the neural network stage. In the first stage, the calls in a cell determining the lower bound on the total 
number of channels are assigned channels at regular intervals, then the calls in adjacent six cells are assigned 
channels by a cluster heuristic method sequentially. In the second stage, the calls in the remaining cells are 
assigned channels by a binary neural network. The performance is verified through solving well-known 
benchmark problems. Especially for Sivarajan’s benchmark problems, my algorithm first achieves the lower 
bound solutions in all of the 12 instances.  

Keywords: Channel assignment, Fixed channel assignment, Neural network  

1. Introduction  

Recent demand for mobile telephone service has been growing rapidly. At the same time, the electromagnetic 
spectrum or frequencies allocated for this purpose are limited. This makes solving the problem of channel 
assignment more and more critical. The channel assignment problem involves efficiently assigning channels or 
frequencies to each radio cell in the cellular radio network, while satisfying the electromagnetic compatibility 
constraints.  

The channel assignment problem in this paper is based on a common model. The service area of the system is 
divided into a large number of hexagonal cells. A cell composes a unit area to provide communication services, 
where every user is located in one cell. When a user requests a call for this system, a channel or frequency 
spectrum is assigned there to provide the communication service. This channel assignment must satisfy the 
constraints to avoid the radio interference between channels. Three types of constraints have usually been 
considered in channel assignment problem.  

1) The Cochannel Constraint (CCC): The same channel cannot be reused in the cells within a certain distance 
from each other. A set of channel-reuse forbidden cells is called a cluster, where a different channel must be 
assigned to every call. 

2) The Adjacent Channel Constraint (ACC): Adjacent channels cannot be assigned to adjacent cells 
simultaneously. In other words, any pair of channels in adjacent cells must have a specified distance. Note that 
the distance indicates the difference in the channel domain. 

3) The Cosite Constraint (CSC): Any pair of channels in the same cell must have a specified distance. This 
distance for CSC is usually larger than that for ACC. 

The goal of channel assignment problem is to find a channel assignment to every requested call with the 
minimum number of channels subject to the above three constraints. 

In the simplest form of the channel assignment problem, the cochannel constraint only is considered, and the 
problem is known to be equivalent to a graph coloring problem. Since the graph coloring problem is known to be 
NP-complete, the computation complexity of searching for the optimum solution in the channel assignment 
problem grows exponentially with the problem size. Many researchers have investigated the channel assignment 
problem in the cellular radio network. In 1982 Gamst and Rave summarized four existing sequential 
approximation algorithms. The first algorithm has four different versions by combining two different assignment 
strategies-the frequency-exhaustive assignment and the requirement-exhaustive assignment, and two different 
ordering strategies-the node-degree order and the node-coloring order. The second algorithm repeatedly assigns 
frequencies according to the assignment difficulty of requirements. The third algorithm uses the heuristic 
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geometric principle of maximum overlap of denial areas. It states that a frequency should be assigned to cell 
whose denial area has the maximum overlap with the existing denial area of that frequency. The fourth algorithm 
is based on the graph theory, where the clique number plays a key role. In 1986 Gamst proposed procedures to 
generate lower bounds on the number of total frequencies. In 1989 Sivarajan et al. proposed an 0 (n2) time 
sequential heuristic algorithm, based on the first algorithm introduced by Gamst and Rave. Sivarajan et al. 
applied their algorithm to several problems, where the values of total frequencies in solutions are shown without 
any actual assignment results. In 1997 Smith and Palaniswami proposed two neural network algorithms for a 
different formulation of channel assignment problem, which treats the noninterference constraints as soft 
constraints in the objective function. In 1998 Ngo and Li proposed a genetic algorithm with a local search 
method. Unfortunately, none of the existing heuristic algorithms can find the lower bound solutions in all of the 
13 instances for Sivarajan’s benchmark problems. 

In this paper, I propose a two-stage algorithm for channel assignment problem by combining sequential heuristic 
algorithms into a parallel neural network algorithm. This algorithm consists of fixed channel assignment(FCA) 
stage and the neural-network assignment stage. The performance is verified through solving the benchmark 
problems by Sivarajan, Kunz, and Kim. For Sivarajan’s and Kunz’s problems, my algorithm first achieves the 
lower bound solutions in all the instances, whereas my algorithm provides the better solution quality than 
existing algorithms for Kim’s problems. 

2. Problem Representation 

Channel assignment in this paper follows the problem formulation by Funabiki, Okutani snd Nishikawa. The 
three constraints for the channel interference in the N- cell system are described by an NN symmetric 
compatibility matrix C. The nondiagonal element cij (i j) of C represents the minimum distance between a 
channel assigned to cell i  and a channel to cell j . The diagonal element Cii of C represents the distance 
between a pair of channels assigned to cell i . Thus, CCC is described by Cij =1, ACC is by Cij 2  and CSC is 
by Cii 1 in C, respectively. A set of requested calls in the N-cell system is given by an N-element demand 
vector D. The ith element di of D represents the number of channels for the requested calls in cell i. Let fik be 
the kth channel assigned to cell i for i=1,…,N and k=1,…,di. Then, the total number of required channels M 
can be represented by: 

 

                                         
 

 

Given a pair of a compatibility matrix C and a demand vector D, the goal of channel assignment problem is to 
find a channel assignment {fik} with the minimum value of M subject to the interference constraints: 
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3. Two - Stage Algorithm for Channel Assignment Problem 

This algorithm consists of: 1) the fixed channel assignment stage; 2) the neural-network assignment stage. In the 
first stage, the calls in a cell, which determines the lower bound on the total number of channels are assigned 
channels at regular interval, then the calls in adjacent six cells are assigned channels by a cluster heuristic 
method sequentially. Initially, the cluster region is composed of a cell, which determines the lower bound on the 
total number of channels and its adjacent cells because the channel assignment to cells with large demand is 
usually more difficult than the assignment to other cells. Then, every time the whole assignment is failed, the 
cluster region is expanded by additionally including the cells adjacent to the original region. In the second stage, 
the calls in the remaining cells are assigned channels by a binary neural network in parallel. when the neural 
network stage is applied to the remaining cells, the channel assignment result by the fixed channel assignment 
stage must be fixed in this algorithm.  

.

,...,1

,...,1

,,...,1,,...,1

lkandjiforexcept

dl

and

dk

NjNiforcff

j

i

ijjlik









.,...,1

,...,1}max{

i

ik

dk

and

NiforfM




                                    (1) 



www.ccsenet.org/cis                Computer and Information Science               Vol. 3, No. 4; November 2010 

Published by Canadian Center of Science and Education 95

The overall procedure of the this algorithm is described as follows. 

1) Input a compatibility matrix C and a demand vector D. 

2) Initialize the total number of channels M by the lower bound or its approximation. 

3) Apply the fixed channel assignment stage. 

a) Initialize the cluster region by a cell which determines the lower bound of M and its adjacent cells. 

b) Regular interval assignment to the cell which determines the lower bound of M. 

c) Apply the cluster assignment stage to the cluster region while the assignment by b) is fixed. If this 
assignment is failed, then increment M by one (M=M+1) and go to b). 

4) Apply the neural-network assignment stage to the remaining cells while the assignment by b) and c) is fixed. 
If this assignment is failed, then expand the cluster region by additionally including its adjacent cells and go 
to c). If no expandable cell exists, then increment by one and go to b). 

Fig. 1 shows a cellular system of 21 cells in Sivarajan’s benchmark problems. Each number inside a cell 
represents the number of requested calls. In this algorithm, the fixed channel assignment stage is applied to the 
cell with 77 calls and adjacent six cells, because the 77-call cell determines the lower bound of M. Then, the 
neural-network assignment stage is applied to the other cells. 

3.1 Fixed Channel Assignment Stage 

The fixed channel assignment stage assigns channels to the calls in the cell which determines the lower bound on 
M, at a regular interval of satisfying CSC in order to minimize the total number of channels M. Let us consider 
the channel assignment to cell i , where Cii and di represent CSC and the number of requested channels for 
cell i , respectively. Each of di calls is assigned a channel at an interval of either Cii or (Cii +1), after the first 
and last channels are assigned to cell i . Actually, the first x calls are assigned at the interval of Cii , whereas 
the rest (di -x) calls are assigned at the interval of (Cii +1).  

 

 

 

 

The value of x is given by solving the linear equation 

 

 

After channel assignment to the calls in the cell which determines the lower bound on M, then at the cluster 
assignment stage assigns channels sequentially by using the assignment list, which is made of calls in the cluster 
region after sorted in the descending order of the assignment difficulty in Box’s algorithm. Each call in this list is 
assigned a channel by the requirement exhaustive strategy proposed by Sivarajan. The procedure of this stage is 
as follows. 

1) Make a list of the calls in the cluster region in the ascending order of the cell index number. 

2) Initialize the assignment difficulty of every call in the list by zero and the iteration number t by one. 

3) Initialize the channel number j by one. 

4) Check whether or not channel #j can be assigned to each unassigned call in the list from the top to the bottom 
sequentially. If it can be assigned there without interference, then assign channel #j to that call. 

5) If every call in the list is assigned a channel, then terminate the procedure as success, else if j<M then 
increment t by one and go to 4). 

6) If the iteration number t reaches its upper limit G max, then terminate the procedure as failure, else increment 
t by one. 

7) Add a randomized real number between zero and one to the assignment difficulty for each unassigned cell in 
this iteration, clear the assignment result by this stage, remake the list by sorting the calls in the descending 
order of the assignment difficulty, and go to 3). 
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 ipcqj 

3.2 Neural-Network Assignment stage 
This algorithm is based on a two dimensional neural network model. Consider a channel assignment problem in 
a four-cell network proposed by Sivarajan. Fig.2 shows the compatibility matrix C and the demand vector D. Fig. 
3(a) shows the neural network representation for solving the channel assignment problem in Fig. 2. The 
frequency assignment to each cell requires 11 processing elements because there are 11 candidates or 
frequencies. A total of 44 (=411) are required for this problem. Generally, a total of NM processing 
elements is required for solving an N-cell-M-frequency problem, where N is the number of radio cells and M is 
the total number of frequencies. The output of the ijth processing element Vij indicates whether or not frequency 
#j is assigned to cell #i. The nonzero output (Vij=1) indicates that frequency #j is assigned to cell #i. The zero 
output (Vij=0) indicates that frequency #j is not assigned to cell #i. Fig. 3(b) shows the solution state of the 
neural network system, where black squares represent the nonzero output and white squares indicate the zero 
output.  

To satisfy channel requirements, a total of di processing elements among m processing elements for cell #i must 
have nonzero output, because a total of di frequencies are required for cell #i: 

 

 

 

is zero if and only if di processing elements for cell #i have nonzero output. In the co-site constraint, if frequency 
#q within distance cii from frequency #j              is assigned to cell #i, frequency #j must not be assigned 
to cell #i: 

 

 

 

 

is nonzero if the assignment of frequency #j  to cell #i  violates the co-site constraint. 

In the cochannel constraint and the adjacent channel constraint, if frequency #q within distance Cip from 
frequency #j              is assigned to cell #p for cip >0 and p # i, frequency #j must not be assigned to cell 
#i: 

              
                  
 
 
is nonzero if the assignment of frequency #j to cell #i violates the cochannel constraint and/or the adjacent 
channelconstraint. 

The motion equation of the ijth processing element in the N-cell-M-frequency problem is given by: 

 

                                                                 

The first term (A-term) forces di processing elements among M candidates for cell #i to have nonzero output, 
where the corresponding frequencies are assigned to cell #i. The second term (B-term) discourages the ijth 
processing element from having nonzero output if the assignment of frequency #j to cell #i violates the three 

 iicqj 

 







)1(

1

)1(

ii

ii

cj

Mq

jq

cjq
iqV                                                   (6) 

 


































  


















)1(

1,

)1(

0,

1

)1(

1

)1(

1

ii

ii

ip

ip

ip

cj

Mqjq

cjq

N

cip

p

cjq

Mq

cjq
pqiq

M

q
iiq

ijt

ij

VVB

dVA
V

E

d

dU

            (8)      





M

q
iiq dV

1

                                                  (5) 

 










N

c

ip

p

cj

Mq

cjq
pq

ip

ip

ip

V

0

1

)1(

1

)1(

                                                 (7) 



www.ccsenet.org/cis                Computer and Information Science               Vol. 3, No. 4; November 2010 

Published by Canadian Center of Science and Education 97

constraints mentioned previously. A and B are constant coefficients (A = B = 1). The energy function E for the 
channel assignment problem is given by considering (8): 

                  
 

 

 

 

 

 

 

3.2.1 Heuristics for the Global Minimum Convergence 

To increase the frequency of the global minimum convergence, the following four heuristics have been 
introduced empirically. 

1) The A-term saturation heuristic: the following function is used for the A-term in order to confine the A-term 
between two values: 

 

 

 

 

where f(x) is A-max if x > A_max, A-min if x < A_min, and x otherwise. A_max and A_min are the constant 
upper and lower bounds, respectively of the A-term (A_max = 5, A_min = 5). 

2) The omega function heuristic: two forms of the B-term are used periodically in the motion equation: 

 

 

 

 

 

 

 

          
 

 

 

where t is the number of iteration steps, and T and w are constant parameters (T = 10, w = 5). 

3) The hill climbing heuristic: the following term is added to the motion equation: 

 

 

 

 

where h(x) is 1 if x < 0, and 0 if 0x . C is randomly chosen among 3, 4, and 5 in each iteration step to 
avoid oscillation due to digital simulation, where otherwise, two or more processing elements continue to 
have the same states. The C-term encourages the ijth processing element to have nonzero output if fewer than 
di  processing elements for cell #i have nonzero output and Vij=0. 

4) The input saturation heuristic: the input of the processing element is confined between two values: 
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where Umax and Umin are the constant upper and lower bounds, respectively, of the input value Umin (Umax =30, 
Umin  =30). 

3.2.2 Parallel Algorithm 

The following procedure describes the proposed parallel algorithm based on the motion equation in (4) with the 
four heuristics, where the first-order Euler method is used. The data set of coefficients and parameters are 
determined empirically. 

1) Set  t = 0, A = B = 1, C = 3, 4, or 5, T = 10, w = 5, Umax = 30 Umin = -30, UTP = 5, LTP = -5, and T_max = 
500. 

2) Randomize the initial values of input Uij (t) for i =1,. . . , N  and  j = 1,. . . , M  between 0 and Umin. Assign 
the initial values of output Vij (t) for i = 1, . . . , N  and  j = 1, ..., M to 0. 

3) The channel assignment result by the fixed channel assignment stage must be fixed when the neural network 
stage is applied to the remaining cells. To represent this constraint correctly, all the fixed channel assignment 
must be reflected into the corresponding neuron outputs: 

 

 

 

4) Compute the change of inputUij (t) based on the motion equation in (8): 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

 

5) Update input Uij (t+1) based on the first-order Euler method: 
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6) Use the input saturation heuristic in (13): 

 

 

 

 

7) Update output Vij (t + 1) based on the hysteresis Mc- Culloch-Pitts neuron model: 

 

 

 

8) Increment the number of iteration steps by one. 

9) Check the termination condition: if all the constraints are resolved, then terminate this procedure as success, 
else if then terminate it as failure, else go to 4). 

4) Simulation and Discussion 

For the comparison, two heuristic algorithms by Sivarajan and by Box have also been implemented. The 
benchmark problems by Sivarajan, Kunz and Kim are used as simulated instances in this paper, where 
specifications are summarized in Tables I and II. Note that instance #12 in Table I is the Kunz’s problem. In the 
compatibility matrix of these tables, “Nc” is the cluster size for CCC, “cij” is the minimum channel distance 
between any pair of cells in the same cluster except for adjacent cells for CCC, “ acc” is the minimum channel 
distance between adjacent cells for ACC, and “cii” is the minimum distance within the same cell for CSC. In the 
demand vector, “case 1” and “case 2” represent the corresponding channel requirements in Sivarajan’s 
problem. ’’U(x,y)’’ represents a set of uniformly randomized integers between and , and “total call” is the total 
number of requested channels in each simulated instance. 

In the fixed channel assignment stage the cell with 77 calls in instances #1–8 and to the cell with 45 calls in 
instances #11,12 in Sivarajan’s problems are assigned channels at regular intervals, because they determine the 
lower bound on the total number of channels. In the cluster assignment stage, the iteration limit is set 100 and a 
maximum of ten trials using different random numbers is repeated for each cluster region until the assignment 
succeeds. In the neural-network assignment stage, a maximum of ten trials using different initial neuron states is 
repeated for each assignment result by the FCA stage until the assignment succeeds. 

A total of ten runs using different random numbers is executed by my algorithm and Box’s algorithm for each 
instance, whereas one run is executed by each of Sivarajan’s eight algorithms. Table III shows the lower bound 
in Sivarajan’s and Kunz’s problems, best and average solutions found by this algorithm. Here, we need to correct 
the lower bound on M in instances #1 and #2. Consider the channel assignment to the requests in the seven-cell 
cluster composed of the 77-call cell and its adjacent six cells. In this cluster, a different channel must be assigned 
to every call to satisfy CCC. When a channel is assigned to each call in the 77-call cell, this channel and its 
adjacent channels cannot be reused to the other cells in this cluster because of acc=2. Thus, the 77-call cell must 
occupy 229(=2 2+3 (77-2)) channels exclusively in this cluster. The remaining six cells need at least 
198(=25+8+52+28+57+28) different channels. Therefore, the channel assignment for this cluster requires at least 
427(=229+198) channels.  

Table III indicates that my algorithm first achieves the lower bound solutions in all of the benchmark instances, 
whereas the existing algorithms cannot find them in instances #1, #2, #3, #9, and #10. One run is executed by the 
FCA and neural network algorithm, Sivarajan’s eight algorithms, and Box’s algorithm for each of nine instances 
in Kim’s benchmark problems. Table IV compares the solutions by the FCA and neural network on the total 
numbers of required channels, where my algorithm can find the best solutions in all of the nine instances. Table 
V summarizes the simulation results, and shows the average number of iteration steps required to converge to the 
optimum solution and the convergence rate. Fig.4 shows the distribution of the frequency for each cell and fig.5 
shows the number of iteration step required to convergence to solution in instance #3.  
5. Conclusion 

This paper presents a FCA and neural network algorithm of combining sequential heuristic methods into a 
parallel neural network for the NP-complete channel assignment problem in cellular mobile communication 
systems. This algorithm consists of the fixed channel assignment stage and the neural-network assignment stage 
to seek the near-optimum solution. The performance is verified through solving the benchmark problems by 

 
minmin

maxmax

)1(,)1(

)1(,)1(

UtUifUtU

UtUifUtU

ijij

ijij




                           (18) 

 
   
    LTPtUiftV

UTPtUiftV

ijij

ijij





1,01

1,11
                              (19) 
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Sivarajan, Kunz, and Kim. Especially for all the instances in Sivarajan’s problems, my algorithm first achieves 
the lower bound solutions. For Kim’s problems, my algorithm provides the better solution quality than existing 
algorithms.  
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Table 1. Specifications for Sivarajan’S and Kunz’S Benchmark Problems 

 
Instance 

Compatibility matrix Demand Vector 
Nc cij acc cii Call distrib. Total calls

#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 

12 
7 

12 
7 

12 
7 

12 
7 

1 
1 
1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
1 
1 
1 
1 

5
5
7
7
5
5
7
7

case1 
case1 
case1 
case1 
case1 
case1 
case1 
case1

481 
481 
481 
481 
481 
481 
481 
481

#9 
#10 
#11 
#12 

12 
7 

12 
7 

1 
1 
1 
1 

2 
2 
2 
2 

5
5
7
7

case2 
case2 
case2 
case2 

470 
470 
470 
470 

 

Table 2. Specifications For Kim’S Benchmark Problems 

Demand Vector Compatibility matrix  
Instance total calls call distrib.ciiacc cij Nc 

619  
619  
619  
760  
760  
760  
976  
976  
976  

U(10,15)  
U(10,15)  
U(10,15)  
U(10,20)  
U(10,20)  
U(10,20)  
U(10,30)  
U(10,30)  
U(10,30)  

3  
5  
7  
3  
5  
7  
3  
5  
7  

1  
3  
4  
1  
3  
4  
1  
3  
4  

1  
2  
3  
1  
2  
3  
1  
2  
3  

7  
7  
7  
7  
7  
7  
7  
7  
7  

#1 
#2 
#3 
#4 
#5 
#6 
#7 
#8 
#9 
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Table 3. Simulation Results For Sivarajan’S And Kunz’S Benchmark Problems 
 

Box  Sivarajan  FCA and neural 
network algorithm 

 
LB

  

 
Instance 

average best  average Best  average best 
443.6  
443.4  
533.2  
533.0  
381.0  
381.0  
533.0  
533.0  

442  
442  
533  
533  
381  
381  
533  
533  

498.3  
498.3  
552.8  
550.1  
381.0  
381.0  
533.0  
533.0  

460  
447  
536  
533  
381  
381  
533  
533  

427.0  
427.0  
533.0  
533.0  
381.0  
381.0  
533.0  
533.0  

427  
427  
533  
533  
381  
381  
533  
533  

427 
427 
533 
533 
381 
381 
533 
533 

1 
2 
3 
4 
5 
6 
7 
8  

271.7  
261.6  
309.0  
309.0  

270  
260  
309  
309  

315.9  
294.4  
338.5  
330.6  

283  
269  
310  
310  

258.0  
258.0  
309.0  
309.0  

258  
258  
309  
309  

258 
258 
309 
309 

9 
10 
11 
12  

 

Table 4. Simulation Results For Kim’S Benchmark Problems 

Box 
  

Sivarajan  FCA and Neural 
Network Algorithm 

Instance 

102 
280  
402  
130  
350  
505  
169  
457  
650  

112.3 
307.5 
439.4 
146.5 
388.8 
555.3 
186.8 
524.3 
735.0 

106  
270  
389  
132  
343  
501  
178  
473  
673  

96  
253  
363  
127  
319  
467  
168  
434  
631  

#1 
#2 
#3  
#4  
#5  
#6  
#7  
#8  
#9  

Table 5. Summary of Simulation Results 

 

Convergence
Rate  

Average Number of
Iteration step to 

Solutions  

FCA and neural 
network algorithm  

 
LB 

 
Instance

  average best  
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100%  

150.4
170.2 
128.33 
137.88 
166.55 
152.62 
100.33 
140.5 

427.0  
427.0  
533.0  
533.0  
381.0  
381.0  
533.0  
533.0  

427  
427  
533  
533  
381  
381  
533  
533  

427 
427 
533 
533 
381 
381 
533 
533 

#1 
#2 
#3  
#4  
#5  
#6  
#7  
#8  

100% 
99% 
98% 
91%  

11.36
115.2 
120.3 
128.33

258.0  
258.0  
309.0  
309.0  

258  
258  
309  
309  

258 
258 
309 
309 

#9  
#10 
#11 
#12 

 

 

 

 

 



www.ccsenet.org/cis                Computer and Information Science               Vol. 3, No. 4; November 2010 

                                                          ISSN 1913-8989   E-ISSN 1913-8997 102

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The 21-cell system in Sivarajan’s benchmark problems. 









































3

1

1

1

5210

2500

1054

0045

1

1

D

C

                      

 

Figure 2. A four-cell channel assignment problem. 
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Figure 3. Neural network representation for the channel assignment problem in Fig. 2. 

(a) . 4 x 11 processing elements for the channel assignment problem in Fig. 2. 

(b) . The convergence of 4 x 11 processing elements to a solution. 
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Figure 5. The number of iteration step required to convergence in instance #3. 

 
Figure 4. Distribution of the frequency for each cell with 533 frequency in instance #3. 


