
www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 3; August 2010

Published by Canadian Center of Science and Education 149

From UML Specification into Implementation Using Object Mapping
Rosziati Ibrahim

Faculty of Information Technology and Multimedia
Universiti Tun Hussein Onn Malaysia

Parit Raja, Batu Pahat, 86400, Johor, Malaysia
Tel: 60-7-453-8001 E-mail: rosziati@uthm.edu.my

This research is supported by the Science Fund Grant Vote S014

Abstract
In information systems, a system is analyzed using a modeling tool. Analysis is an important phase prior to
implementation in order to obtain the correct requirements of the system. During the requirements phase, the
software requirements specification (SRS) is used to specify the system requirements. Then, this requirements
specification is used to implement the system. The requirements specification can be represented using either a
structure approach or an object-oriented approach. A UML (Unified Modeling Language) specification is a
well-known for representation of requirements specification in an object-oriented approach. In this paper, we
present one case study and discuss how mapping from UML specification into implementation is done. The case
study does not require advanced programming skills. However, it does require familiarity in creating and
instantiating classes, object-oriented programming with inheritance, data structure, file processing and control
loop. For the case study, UML specification is used in requirements phase and Borland C++ is used in
implementation phase. Based on the case study, it shows that the proposed approach improved the understanding
of mapping from UML specification into implementation.
Keywords: Object-Oriented Programming, Unified Modeling Language (UML)
1. Introduction
In information systems, modeling of any new systems can be done using a standard methodology. The model
used can be either of structured approach or object-oriented approach. Structured approach uses diagrams such
as entity relationship diagrams (ERD) and context diagrams to model and analyze the system requirements
(Hoffer et al., 2008). Object-oriented approach, on the other hand, uses diagrams such as use-case diagrams and
class diagrams to model and analyze the system requirements (Dennis et al., 2005). Unified Modeling Language
(UML) is one of the modeling tools that are often used for object-oriented approach. UML assumes a process
that is use-case driven, architecture-centered, iterative and incremental (Bahrami, 1999). UML is a standard
language for visually describing the structure and behavior of a system. Therefore, during analysis, the system
requirements are transformed into UML specification using diagrams. These diagrams include the Use-Case
Diagram, the Class Diagram, the Interaction Diagram, the Communication Diagram, the Activity Diagram, the
State Diagram, the Component Diagram and the Deployment Diagram (Miller, 2003). This paper illustrates a
case study where students are thought to map requirements analysis phase into implementation phase by using
the UML specification. From this case study, based on the results from student evaluation forms, the results show
that students improved their understanding on object mapping from UML specification into implementation.
The rest of this paper is organized as follows. Section 2 and Section 3 briefly review the basic of object-oriented
programming and the UML specification, respectively. Section 4 shows a case study on how to map from UML
specification into implementation and Section 5 concludes the paper.
2. The Basics of Object-Oriented Programming
Object-oriented programming (OOP) is one of the ways in organizing and developing software. The foundation
of OOP languages goes back to Simula and Smalltalk. In Simula, a program is a collection of objects. The notion
of objects was first introduced in the Simula language designed in the late 60s (Micallef, 1988). However, OOP
did not emerge as a new programming paradigm until Smalltalk came along in the late 70s. In object-oriented
approach, everything that can be touched is considered as an object. For example, a person, a car, a doll and a
house can be considered as objects. An object is an entity. It contains attributes and provides services. Figure 1
shows an example of an object.

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 3; August 2010

 ISSN 1913-8989 E-ISSN 1913-8997 150

Before an object can be used, it needs to be created (instantiated). An object is created from a class. A class is a
template from which objects are instantiated. A class consists of fields and methods. Fields are data for class
instances and methods are operations that access the data. Diagram 1 shows a class Car of an object MyCar from
Figure 1.
When an object wants to communicate with another object, that object sends a message to another object.
Objects communicate by sending messages. It does not allow violation of data within the object. Figure 2 shows
how objects interact with each other by means of messaging.
In C++, for example, if an object wants another object to do some work on its behalf, it can send a message to
that object and that object selects the appropriate method to invoke. Therefore, a message sent to an object must
be corresponded to a method invocation of the object. A method invocation is similar to a method call in C++.
Figure 3 shows an example of object communications in C++.
In reference to Figure 3, let us consider for example, class Student who wants to communicate with class Faculty.
Recall that we have to instantiate class Student and class Faculty first before messages can be sent. Let us
assume that we instantiated class Student to Angelina and class Faculty to FCSIT (Code for Faculty of Computer
Science and Information Technology). Then, a message can be sent from Angelina object. Here method Register
is called (denotes by Angelina.Register). From method Register, method RegisterCourse is indirectly called from
class Faculty via FCSIT object (denotes by FCSIT.RegisterCourse). In object-oriented approach, this
communication is also known as an association between objects. Figure 4 shows the association between these
two objects.
In OOP, inheritance is widely used because it allows reusable of existing source codes. Inheritance is a
relationship between classes where one class is parent class (superclass) of its child class (subclass). Inheritance
is also used to communicate the concept that one class can inherit part of its behaviour and data from another
class. For example, a subclass of a program can inherit some code from its superclass. Figure 5 shows an
example of inheritance. Further details regarding object-oriented programming using inheritance can be found in
(Rosziati et al., 2006).
3. Unified Modeling Language (UML) Specification
UML is a standard language for modeling of a system. UML is used to visually specify the structure and
behavior of a system. The system requirements are captured and then converted into UML specifications which
are represented by UML diagrams. A use case diagram is used to specify requirements of the system. In a
use-case diagram, two important factors are used to describe the requirements of a system. They are actors and
use cases. Actors are external entities that interact with the system and use cases are the behavior (or the
functionalities) of a system (Bahrami, 1999). The use cases are used to define the requirements of a system.
The class diagram, on the other hand, is the main static analysis diagram (Bahrami, 1999). It shows the static
structure of the model for the classes and their relationships. They are connected to each other as a graph. Each
class has its own internal structures and its relationships with other classes.
4. Object Mapping from UML Specification into Implementation: A Case Study
Mapping from UML specification into implementation involves using UML diagrams and converting them into
program source codes. In this paper, we present a case study and show how to come up with a proper
requirements analysis before implementing the system. The problem statement is analyzed in order to get UML
specifications. Then UML specifications are used for conversion into program source codes.

Problem Statement: Write a program for Research Management System. This program would be able
to read from a file that contains information regarding the researcher vote details (such as the name,
vote number and balance, and his/her password). The program then allows a user to login into the
system. If the user is able to login into the system successfully, then the user is able to commit making
the order for the item that he/she wishes to buy through the system and/or check the balance from
his/her research vote as well as display the information details of the user. If the user is an
administrator, the user will be able to view the order file.

From the problem statement above, we can convert it into programming style (which is known as pseudo-code).
If we understand the problem statement carefully, these are the tasks that we are supposed to do:
 Read from a file
 Login into the system

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 3; August 2010

Published by Canadian Center of Science and Education 151

 If successful, then do various activities such as
• Commit Order
• Check Vote Balance
• Display information details
• View Order File

 End
Then, from the pseudo-code, we would be able to come up with the requirements of the system such as to login
into the system, to commit making order for an item, to check vote balance, to view order file and to display
information details of the user. From these requirements, we come up with a use-case diagram which has six
use cases: Login, Commit, CheckBalance, DisplayDetails, ViewOrder and RecordOrder. Two actors can use this
system. They are Researcher and Administrator. Researcher would be able to Login, Commit, CheckBalance and
DisplayDetails and Administrator would be able to Login and ViewOrder. The Commit use case, on the other
hand, extends the RecordOrder use case. Diagram 2 shows the use-case diagram of our case study.
From the use-case diagram, we can proceed creating classes for a class diagram. Creating useful and meaningful
classes are important in order to implement the correct classes. Using the use-case diagram from Diagram 2, we
can create four important classes. The classes are Research, Activity, Order and System. From these classes we
can then create relationships between classes and develop a class diagram. Diagram 3 shows class diagram for
our case study.
From Diagram 3, it shows the relationships between classes where class System acts like a system that initiates
the whole program by having three functions namely ReadFile, Login and Menu. Then, class Activity will do the
activities from the Researcher and Administrator based from the activity selected from function Menu from class
System (that is from function Menu, either function Commit, CheckBalance, DisplayDetails or ViewOrder can be
invoked). Recall that from the use-case diagram in Diagram 2, Researcher has Login, Commit, CheckBalance
and DisplayDetails as use cases, Administrator has Login and ViewOrder as use cases and the Commit use case
extends the RecordOrder use case. These use cases are transformed into functions in class diagram in Diagram 3.
For class Activity, we can have functions such as Commit, CheckBalance and DisplayDetails. However, these
functions depend on attributes from class Research. Therefore, we can also use inheritance mechanism between
classes Activity and Research where class Activity is a subclass of class Research. Since class Activity inherits
class Research, class Activity can reuse data declared in class Research for the purpose of setting the data in
class Order. This simplifies the data used and the program written as well.
Diagram 3 also shows class Activity, which inherits from class Research. We also add two more functions,
namely GetActivityType and GetAnotherAct. Function GetActivityType is used to get the type of activities from a
user and function GetAnotherAct is used to obtain an input from a user as to whether he or she wants to continue
using the system (program).
Note that we have a class Order which is used from class Activity. This implies that class Activity requests to
communicate with class Order via message. That is, class Activity will send a message by means of a method
invocation to class Order. This communication is also known as association between two classes.
We can now implement our programs according to class diagram shown in Diagram 3. The mapping from UML
specification into implementation is followed strictly. All the program source codes in C++ adhere to classes
declared in Diagram 3. Note that, only the header files are shown in this paper.
Diagram 4 shows how class System is implemented. Class System has one attribute (Data is declared using
structure in C++ for details of the user) and three methods. Class System acts like a task that the system supposes
to do (more like the pseudo-code of the system). Therefore, for class System, we can have functions such as
ReadFile, Login and Menu. Once the system finishes reading a file and login is successful, the system will
proceed with executing one of the activities from function Menu (see Rosziati (2008) for full program source
codes).
Diagram 5 shows how classes Research and Activity are implemented using inheritance according to Diagram 3.
From Diagram 5, class Activity has no attributes. However, because of inheritance, class Activity can use all
attributes from class Research, which is its superclass. Note that from Diagram 3, because of association between
classes System and Activity, functions from class Activity will be invoking from the activity selected from
function Menu in class System.
Class Order records all the commit orders from all the researchers. Therefore, for class Order, we can have
functions such as RecordOrder and ViewOrder. Diagram 6 shows the class Order. Note that further details
regarding the full program source codes can be found in (Rosziati, 2008).

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 3; August 2010

 ISSN 1913-8989 E-ISSN 1913-8997 152

Recall that from use-case diagram in Diagram 2, use case Commit extends use case RecordOrder. Therefore,
from Diagram 6, function RecordOrder will be called via function Commit from class Activity.
The object mapping from UML specification into implementation shows the importance of getting the correct
requirements of a system. We present this case study to our students and show them how to implement the
system from requirements analysis using UML specifications (in particular using use-case diagram and class
diagram). Students appreciated the hardcore programming and this case study has made students appreciated the
rigorous analysis of the system that needs to be implemented. Of course, most industrial programming projects
are more complex than this case study. However, this case study emphasizes on students programming skills as
well as analytical thinking on requirements analysis. At the end of the semester, from students evaluation forms,
we also received testimony from our students of the benefits of completing this case study (39 out of 45 students
(87%) agreed that the case study improved their understanding of object mapping from UML specification into
implementation). They also suggested that more such case studies be included in future classes. This case study
motivates students to work from initial phase (getting correct requirements of the system) until the
implementation phase.
5. Conclusion
This paper has discussed the requirements analysis phase, the implementation phase and the object mapping
from UML specification into implementation using object-oriented approach. It is crucial to show to students the
importance of the object mapping in order to get consistency between requirements analysis and implementation.
In other cases, requirements analysis does not go along with implementation. Here, software developers have to
change the analysis due to changing of the program source codes during implementation. These will create errors
such as system does not meet the system requirements. If analysis is strictly adhered too, changes can always be
avoided and implementation would be easier. This case study shows how object mapping is done and how
changes between two phases are kept to minimum.
The case study for Research Management System also shows that before implementation, a rigorous analysis is
important in order to capture system requirements. What is lacking in ordinary system implementation, people
tend to forget about the importance of requirements analysis phase. This case study shows to students the
important of requirements analysis phase. It also shows the object-oriented approach of implementing the system
using the capability of inheritance in object-oriented programming.
References
Bahrami A. (1999). Object-Oriented Systems Development, Mc-Graw Hill, Singapore.
Dennis A., Wixom B.H., and Tegarden D. (2005). System Analysis and Design with UML Version 2.0 – An
Object-Oriented Approach, 2nd Edition, John Wiley & Sons, New Jersey.
Hoffer J., George J. and Valacich J. (2008). Modern Systems Analysis and Design, 5th Edition, Pearson
International Edition, New Jersey.
Micallef J. (1988). Encapsulation, Reusabality and Extensibility in Object-Oriented Programming Languages.
Journal of Object-Oriented Programming. Vol. 1, No. 1, April/May 1988.
Miller G. (2003). What’s New in UML 2.0, A Borland White Paper, [Online] Available: http://www.borland.com/
(June 21, 2008).
Rosziati I. & Sapiee J. (2006). Object-Oriented Programming Using C++ - AN INTRODUCTION, Malaysia:
McGraw-Hill.
Rosziati I. (2008). An Introduction to Object-Oriented Programming with UML using Borland C++, Malaysia:
UTHM Publication, Batu Pahat.

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 3; August 2010

Published by Canadian Center of Science and Education 153

Figure 1. Example of an Object - MyCar

Diagram 1. Class Car

 Car Name of the class

• Door
• Seat
• Type
• Model

 Attributes/Data

• Drive
• Stop
• Lock
• Unlock

 Services/Methods

Figure 2. Objects Communications

Name of the Entity

Attributes

Services

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 3; August 2010

 ISSN 1913-8989 E-ISSN 1913-8997 154

Figure 3. Example of Object Communication

Figure 4. The association between two objects

Figure 5. An Example of Inheritance

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 3; August 2010

Published by Canadian Center of Science and Education 155

Diagram 2. Use-Case Diagram for Research Management System

Diagram 3. Relationships of Classes (Class Diagram)

 Order
• OrderData
• RecordOrder
• ViewOrder

 System
• Data
• ReadFile
• Login
• Menu

 Research

• Password
• Name
• VoteNo
• Allocation
• Balance
• SetPassword
• GetPassword
• SetName
• GetName
• SetVoteNo
• GetVoteNo
• SetAllocation
• GetAllocation
• SetBalance
• GetBalance

 Activity

• Commit
• CheckBalance
• DisplayDetails
• GetActivityType
• GetAnotherAct

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 3; August 2010

 ISSN 1913-8989 E-ISSN 1913-8997 156

Diagram 4. Mapping of Class System into Implementation
 UML Specification Implementation
 System Class System {

• Data private:
 struct Data { //Data for information details for user
 char password[7];
 char name[20];
 char votenum[8];
 int allocation;
 int balance;
 } dat;

• ReadFile
• Login
• Menu

public:
 void ReadFile();
 void Login();
 void Menu();
}; // class System

Diagram 5. Mapping of Class Activity using inheritance with Implementation

 Analysis Implementation
 Research class Research {

• Password
• Name
• VoteNo
• Allocation
• Balance

Private:
 char Password[7];
 char Name[20];
 char VoteNo[8];
 int Allocation;
protected:

 int Balance;

• SetPassword
• GetPassword
• SetName
• GetName
• SetVoteNo
• GetVoteNo
• SetAllocation
• GetAllocation
• SetBalance
• GetBalance

public:
 Research (); //constructor
 void SetPassword(char ResPassword[7]);
 char *GetPassword();
 void SetName(char ResName[20]);
 char *GetName();
 void SetVoteNo(char ResNum[8]);
 char *GetVoteNo();
 void SetAllocation(int Aloc);
 int GetAllocation ();
 void SetBalance(int bal);
 int GetBalance ();
}; //class Research

 Activity

class Activity : public Research { //inheritance

• Commit
• CheckBalance
• DisplayDetails
• GetActivityType
• GetAnotherAct

public:
 Activity(); //constructor
 void Commit(int Amt);
 void CheckBalance();
 void DisplayDetails();
 int GetActivityType();
 char GetAnotherAct();
}; //class Activity

www.ccsenet.org/cis Computer and Information Science Vol. 3, No. 3; August 2010

Published by Canadian Center of Science and Education 157

Diagram 6. Mapping of Class Order into Implementation

 Analysis Implementation
 Order class Order {

• OrderData private:
 struct OrderData {
 char Name[25];
 char VoteNo[8];
 char OrderDetail[25];
 int Amount;
 } stdata;

• RecordOrder
• ViewOrder

public:
 void RecordOrder();
 void ViewOrder();
}; // class Order

