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Abstract 
Large information cascades over online social networks have attracted a great deal of attention. The life times of 
most cascades are quite short, whereas recent advertising campaigns sometimes generate long-lived ones by 
employing effective dissemination strategies (instant-win, reminders, etc.). This paper reports one such campaign, 
YOGUR STAND, on the Twitter network in Japan. The data analysis shows that the campaign popularity has 
two interesting features. (1) It shows elastic behavior in that the impact of the destructive earthquake on the 
popularity was quite temporary. (2) It exhibits stationary behavior in that the campaign account gained 
approximately 2,000 new followers every day. The analysis also demonstrates that there were communities in the 
campaign participants. The campaign was successful because about 2.4 million Twitter users received the 
campaign retweets every day and 10-15% of them received the retweets for the first time. 
Keywords: viral marketing, advertising campaign, information cascade, Twitter community 
1. Introduction 
Nowadays, large-scale information cascades on information networks, especially over online social networks 
(OSNs), have attracted a great deal of attention in many fields. In the case of content delivery networks (CDNs), 
for example, content virality information is crucial for efficient utilization of cloud resources (Krishnaswamy, 
Krishnan, Lopez, Willis, & Qamar, 2015). Accordingly, numbers of methods that predict the growth of the 
cascades have been intensively devised (Cheng, Adamic, Dow, Kleinberg, & Leskovec, 2014; Galuba, Aberer, 
Chakraborty, Despotovic, & Kellerer, 2010; Zhao, Erdogdu, He, Rajaraman, & Leskovec, 2015; Gao, Ma, & 
Chen, 2015). 
The information diffusion process on the social network is considered more complex than those of infectious 
diseases and computer viruses. The size and the growth rate of an information cascade depend not only on the 
attractiveness inherent in the content and the structure of the underlying social network but also on user 
communities present in the social network because they suppress or accelerate the spread of cascades (Weng, 
Menczer, & Ahn, 2013). In addition, viral marketing (Klopper, 2002), a marketing strategy that focuses on 
spreading product information from person to person through social networks, and various paid services (e.g., 
Twitter promotion services) make the information diffusion processes even more complex. 
Meanwhile, current advertising campaigns adopt various dissemination strategies over OSNs. For example, some 
strategies attempt to draw attention from online users by paying rewards to users who contributed to the 
dissemination or by incorporating games that contributors can enjoy. In this paper, we report the YOGUR 
STAND campaign, which adopts a worked-out strategy for disseminating the campaign web page over the 
Twitter network in Japan. The aim of this paper is (1) to report the details of the campaign so that our work plays 
an important role in creating effective advertising strategies and (2) to discuss the reason why a long-lived 
diffusion phenomenon occurred over the Twitter network. 
The campaign strategy has the reminder and instant-win effects, by which community members were stimulated 
to retweet many times. The campaign was successful because during the campaign period, the YOGUR STAND 
account constantly acquired thousands of new followers every day. Furthermore, destructive earthquakes during 
the campaign could not hamper its success. Our data analysis demonstrates that 2.4 million Twitter users saw the 
campaign retweets every day and 10-15% of them saw the retweets for the first time. Since the life times of most 
information cascades are quite short (Goel, Watts, & Goldstein, 2012), the majority of large cascades in future 
might belong to this advertising campaign type.  
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The paper is organized as follows. Section 2 presents the related work. Section 3 describes the campaign 
strategies. Section 4 analyzes Twitter data to demonstrate that the campaign popularity presents both elastic and 
stationary behaviors. Section 5 provides various statistical results on campaign followers and user communities. 
Section 6 infers the cascade structure, which indicates how the YOGUR STAND web page spread with time, and 
Section 7 concludes the paper. 
2. Related Work 
Large-scale information cascades over online social networks have been intensively studied from a variety of 
viewpoints; e.g., the impact of communities on the growth of cascades (Weng et al., 2013; Forestier, Bergier, 
Bouanan, Ribault, Zacharewicz, Vallespir, & Faucher, 2015; Bakshy, Rosenn, Marlow, Adamic, 2012; Guo, 
Shaabani, Bhatnagar, & Shakarian, 2015), various features that large-scale cascades possess in common (Cheng 
et al., 2014; Myers, & Leskovec, 2014; Dow, Adamic, & Friggeri, 2013; Guille, Hacid, Favre, & Zighed, 2013; 
Cheng, Adamic, Kleinberg, & Leskovec, 2016; Adamic, Lento, Adar, & Ng, 2016), and the cascade models for 
predicting the future growth (Galuba et al., 2010; Zhao et al., 2015; Gao et al., 2015; Cheung, She, Junus, & Cao, 
2016; Mishra, Rizoiu, & Xie, 2016; Elsharkawy, Hassan, Nabhan, & Roushdy, 2016; Rong, Zhu, & Cheng, 
2016; Krishnan, Butler, Tandon, Leskovec, & Ramakrishnan, 2016). 
More recently, many authors attempt to explain information dissemination processes based on human behavioral 
patterns. The authors in (Chen, Chen, & Agarwal, 2017) focus on user reactions after receiving positive feedback 
such as likes and retweets, which the authors call social incentives. In (Hoang & Lim, 2016), the authors point 
out three behavior factors (user virality, user susceptibility, and item virality) and propose new models that 
describe the relationships between them. Note that these approaches might need more sample data for evaluation 
because large information cascades seldom emerge.  
Recent studies on viral marketing, on the other hand, generally formulate optimization problems, which 
maximize influence, revenue, sales campaigns, etc., based on information diffusion conditions, which are mostly 
on user behavior. Compared with previous work, current studies assume more detailed and realistic human 
behavior and incorporate more adoption factors into the campaign strategies. Some studies assume users may not 
have a complete knowledge about the products (Robles, Chica, & Cordn, 2016; Cordasco, Gargano, Rescigno, & 
Vaccaro, 2016), and some assume that inference recommendations from stores may have a non-negligible effect 
on the purchase decision (Hung, Shuai, Yang, Huang, Lee, Pei, & Chen, 2016). Some authors consider even 
more realistic models by introducing the timeliness of the product adoption (Lamba & Pfeffer, 2016; Khan, 
2016). The authors in (Zhu, Peng, Chen, Zheng, & Zhou, 2016) devise a model that promote the sale of products 
and services using the current location. Meanwhile, our work is new in that we introduce a campaign strategy 
that has the reminder and instant-win effects. 
The majority of authors in this research area provide simulation results, while some papers report analytical data 
on real dissemination phenomena. In (Dow et al., 2013), the authors investigate how a former President Barack 
Obama's photo generates cascades of reshares after his election victory. In (Chiu & Hsu, 2017), the authors 
report the information diffusion processes on the Sunflower Student Movement occurred in Taiwan. While, this 
paper deals with a successful advertising strategy using collected Twitter data. These practical reports are 
valuable in that large information cascades are not frequent evens. We think these reports play an important role 
in connecting theoretical work and real phenomena. 
3. Advertising Strategy 
This section explains a sale promotion campaign made by Coca-Cola Japan. The campaign was conducted over 
the Twitter network for about one month. The aim of the campaign is to increase the awareness of new yogurt 
product YOGUR STAND by increasing the number of Twitter users who receive retweet messages about the 
campaign. To do this, the campaign employed an incentive-based marketing strategy; a total of 1,000 users get 
two bottles of yogurt.  
Figure 1 illustrates how to get the incentive. First of all, users who want the incentive must follow the campaign 
account (@YOGURSTAND). If user f in the figure follows the campaign account, the user receives a tweet 
message from the account every day at just after midnight. If user f retweets the tweet, the account quickly 
returns a reply including an 11-second slot machine video, indicating whether user f wins or not. A follower 
receives the lottery result only once a day no matter how many times the follower retweets. According to the 
interview on the YOGUR STAND campaign, about 100,000 people retweeted the campaign and they sent 
retweets five times on average. 
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Figure 1. (1) Participants (followers of campaign account @YOGURSTAND) receives a tweet from the account 
every day. (2) If a participant f makes a retweet, the retweet (including the campaign web page URL) is shared 

among the followers of f and (3) a video notifying the lottery result soon arrives 
 
As shown in Figure 1, a retweet from follower f is also transmitted to all followers of f. As a result, all these 
followers notice the new yogurt product. Accordingly, a key point of the success of this advertising campaign is 
to increase the number of campaign followers f (which we call participants). To get new participants, (re)tweets 
include the URL of the campaign web page that explains how to get the incentive. Generally, a user becomes a 
participant with a higher probability as the user more often receives the retweets. It is important to note that there 
exists a positive feedback mechanism: as the number of participants grows, more users see the retweet, so that 
more users become participants. 
The campaign attempts to raise the number of retweets based on two effects: reminder and instant-win effects. 
Once a user becomes a follower of the account, the user receives a tweet message every day, which "reminds" 
the user of the campaign and stimulates the user to retweet; as a result, the number of retweets increases. After a 
participant makes a retweet, the campaign account always quickly returns a slot machine video notifying the 
lottery result (see Figure 1), and this "instant-win" approach inclines participants to retweet again. 
4. Popularity Dynamics 
4.1 Popular Contents 
We investigated the most shared contents (web pages, photos, etc.) on the Twitter network in Japan by collecting 
Twitter messages written in Japanese using the Streaming APIs, which are provided by Twitter. We then 
calculated the ten most popular URLs per day. The popularity of a URL is evaluated based on the number of 
collected messages that contains the URL. The Streaming APIs allow us to collect a small percentage of all 
Twitter messages and the percentage may depend on time. Therefore, a popularity value is a measurement 
obtained from sample messages. We select the most popular contents through the Streaming APIs and then use 
the REST APIs when more precise quantitative analysis is required. Appendix A details how we obtained Twitter 
data through these APIs. 
Figure 2 illustrates the popularity changes of three popular URLs: the YOGUR STAND campaign web page, the 
YOGUR STAND response video, and a web page on the earthquake. The collected data indicate that long-lived 
URLs are quite rare. We gathered 3,556,290 URLs in two months and only twelve of them were ranked in the 
top ten URLs ten times or more. The campaign web page was one of the twelve URLs. Figure 2 demonstrates a 
stable behavior of the campaign web page popularity. The campaign popularity sharply increased and entered a 
stationary state in two days. Then the popularity suddenly dropped on April 14 due to the occurrence of the 
Kumamoto earthquake. The popularity, however, began to shift to a higher level on April 22 (partly because 
people began to forget about the disaster). After the occurrence of the earthquake, a large number of web pages 
reporting the disaster appeared all at once, but they soon disappeared (see one such report in Figure 2). 
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Figure 2. The popularity changes of the campaign web page (■), the response video from the campaign account 

(▲), and a web page on the earthquake (●). The campaign period is from April 4 to May 8 
 
4.2 Campaign Effects 

To investigate the popularity of the campaign web page from a different viewpoint, we collected "all" retweet 
messages that contain the web page URL using the REST APIs and extracted user IDs from them. Figure 3 
compares the numbers of users who retweeted the campaign URL for the first time (shortly called new adopters) 
and who retweeted the URL more than once (shortly called repeaters). From the figure, the total number of users 
who retweeted the URL per day is roughly 14,000. Thus, the yogurt product information propagated from the 
YOGUR STAND account to the 14,000 Twitter users and their followers every day. 
 

 
Figure 3. The numbers of users who retweeted for the first time (new adopters) and who retweeted more than 

once (repeaters) since April 24 

 
Figure 4. The percentage of users who retweeted for the first time since April 24 

 
The campaign may not be considered successful if nearly all retweets were made by the same persons because 
the web page spreads more widely when new adopters retweet. Figure 3 exhibits that the majority of users who 
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made retweets were repeaters; however, new adopters constantly appeared. It can be seen from the figure that the 
number of new adopters converges to roughly 2,000 with time. This result is noteworthy because successful viral 
marketing over social networks is considered to yield an exponential growth of new adopters instead of the 
constant rate emergence (Klopper, 2002). Figure 4 exhibits the percentage of new adopters, which is obtained 
from Figure 3. The percentage seems to converge to 10-15% even though it somewhat rises on May 8 (the 
campaign expiration date). 
5. Community Analysis 
5.1 Sample Set 
To infer statistical characteristics on users who retweeted the campaign account tweet (participants), we collected 
a sample of participants (called participant set G) by the following procedure: 
1) Select a user u who retweeted the URL on April 24 and initialize the set as G = {u}. 
2) If a follower f of a user in G retweeted the URL on April 24 or later, add f to set G. 
3) Repeat 2) until there is no user to be added to the set. 
Note that all members in G are participants and they are connected based on the followee-follower relationship. 
The number of members in G (denoted by |G|) is 16,747, which is 1/6 of the total participants reported in the 
interview on the YOGUR STAND campaign. Participants in set G were collected using the GET followers/ids 
API. The API did not always correctly respond. Due to the errors described in Appendix B, the API did not 
return follower IDs for 1,599 users. 
5.2 Sample Statistics 
Figure 5 shows two histograms that are derived from sample set G. Figure 5 (Left) exhibits the histogram of the 
number of followers per user. The histogram has a heavy tail because it roughly agrees with a log-normal 
distribution. The mean, maximum, and minimum of the number of followers are 505.8, 167,209, and 0, 
respectively. From a survey performed in 2016, this mean number roughly agrees with the mean number of 
followers per Twitter user in Japan (which is 426).  

 
Figure 5. Left: the histogram of the number of followers per user, excluding users who have no followers (10%) 
and the probability density function of a log-normal distribution. Right: the histogram of the infection rate per 

user 
 
Let us estimate how many Twitter accounts received the campaign URL every day. From Figures 3 and 5, 14,000 
users retweet the URL and the mean number of followers is 505.8. Accordingly, about 2.4 million people receive 
the URL every day because 14,000+14,000×505.8×0.342=2,435,770, where 0.342 represents the 
non-overlapping follower rate. From Figure 3, there are 2,000 new adopters every day. Then, the same 
calculation indicates that about 0.35 million people received the URL for the first time every day. 
The term infection rate is used hereafter to indicate the percentage of the number of followers who are 
participants. Figure 5 (Right) illustrates the histogram of the infection rate per user. It can be seen that the 
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percentage is quite small. The mean of the histogram is 3.017%. On the other hand, the infection rate of all users 
in G is 0.435%, which we call the infection rate of set G. This small percentage implies that infection is a rare 
event (even though followers repeatedly heard retweets from their followees). Note, however, that even this low 
percentage generated thousands of new adopters. 
The box plot in Figure 6(a) demonstrates that the mean infection rate per user monotonically decreases with the 
number of followers per user (we should ignore the rate at 100000-999999 because it is derived from two 
samples). This result is natural because according to the procedure of creating set G, a user in G has at least one 
follower who is a member of G with a high probability; therefore, the mean infection rate rises as the number of 
followers decreases. 
Figures 5 (Left) and 6(a) explain why the infection rate of G (0.435%) is smaller than the mean infection rate per 
user (3.017%). The mean infection rate per user depends on the range of the number of followers that most users 
in G have. From Figure 5 (Left), most users have 100-999 followers, so the mean infection rate per user should 
be close to the mean at 100-999 in Figure 6(a). In other words, if most users had 1000-9999 followers, the two 
infection rates would roughly coincide. 
Another finding from Figure 6(a) is that the mean infection rate does not fall at a constant rate. Figure 6(b) 
illustrates the phenomenon more clearly. In the figure, the amount of decrease in the mean infection rate (shortly 
called decay) between 1-2 and 3-9 is greater than the decay between 31-99 and 100-315. In general, the mean 
infection rate falls more slowly as more users in G follow other users in G. In the case of Figure 6(b), the decay 
is small especially over 31-999. This inhomogeneity of the decay indicates that participants follow other 
participants who have 31-999 followers with a higher probability. We therefore conjecture that there would be 
communities consisting of members who mostly have 31-999 followers.  

 
Figure 6. The box plots of the infection rate per user measured at many ranges of the number of followers per 

user. The range granularities are (a) 10 and (b) 100.5. The mean infection rate (denoted by “+”) decreases with the 
number of followers. The infection rate of G is 0.435% 

 
5.3 Community Detection 
Community detection is the division of the nodes into groups such that nodes in each group are densely 
connected among themselves. Currently, many community detection algorithms have been developed (Yang et 
al., 2016). To demonstrate that the inhomogeneity of the decay in Figure 6(b) is due to the existence of 
communities, we first detect communities in set G by using two state-of-the-art detection algorithms in 
programming language R: Spinglass (Reichardt & Bornholdt, 2006) and Walktrap (Pons & Latapy, 2005). 
 
Table 1. The five largest non-overlapping communities detected by the two detection algorithms. 

 Spinglass Walktrap 
#nodes Mean #followers #nodes Mean #followers 

1 1606   423  1775   445  
2 1561  1319   682  2193  
3 964   580   508   427  
4 825   334   463   239  
5 776   387   217   530  
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Table 1 shows the five largest non-overlapping communities in the followee-follower network of users in G. As 
shown in the table, the largest communities generated by the two algorithms are roughly the same. However, 
they output somewhat different results. Figure 7 exhibits the relationship between the histogram of the number of 
followers and the decay. The figure verifies the above-mentioned conjecture because it shows that the majority 
of community members have 101.5-103.0 followers. It also clarifies the effect of communities: a greater number of 
followers of community members leads to a smaller decay. Note from Figure 7 that this effect is roughly 
independent of the detection algorithms and the number of communities. 
The above result suggests that the decay could sense the “existence” of communities (although it could not 
derive communities from a graph). The community detection algorithms may output community data after 
spending a huge amount of time for a large network graph. (The computation times in our case were short (less 
than 13 minutes) because the size of G is small (|G|=16,747)). Meanwhile, the computation time to calculate the 
decay in Figure 6(b) is negligibly small because the horizontal axis is a log-scale of the number of followers. 
Thus, it provides the information on the existence of communities with a low computational cost. This outcome 
suggests that before directly extracting communities from a large graph, we should calculate the decay 
beforehand to confirm whether communities certainly exist or to search for the area in which communities surely 
exist. 

 
Figure 7. The histograms of the number of followers (a) for the largest community and (b) for the largest 

communities whose total number of nodes are 0.4|G|. A greater number of followers leads to a smaller decay 
 
6. Cascade Structure 

In order to understand the information cascade (the propagation structure of new adopters) of the campaign web 
page, we investigate from whom each participant received the web page URL for the first time. We infer the 
complete campaign cascade (shortly the original cascade) using a sample set (participant set G). Figure 8 
exemplifies users in set G connected based on the followee-follower relationship. This participant network may 
not be an information cascade because a follower of a user may retweet the URL earlier than the user. (Note that 
in a cascade, a user must retweet under the influence of a retweet from another.) This phenomenon often occurs 
mainly due to the following two reasons. (1) The followee-follower relationship on Twitter highly dynamically 
changes (Myers & Leskovec, 2014). (2) The REST APIs sometimes did not answer our questions (see Appendix 
B). 

 

Figure 8. Users in G (not in G) correspond to black (gray) nodes and arrows indicate that (re)tweets flow from 
users to their followers. All black nodes are linked based on the followee-follower relationship 
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We first point out that if a user in G has two or more followees who are participants, we consider that the user is 
influenced by the earliest retweet. If it is difficult to find out by whom a user was influenced, we consider that a 
distinct cascade originates from the user. As a result of this, the participant network produces numbers of 
cascades and these are fractions of the original one. We use these fractions to estimate the structure of the 
original. 
We derived 761 fractional cascades from the participant network. Figure 9(Left) shows the histogram of the 
number of nodes (users) per fraction. It can be seen from the figure that most cascades consist of less than 10 
nodes and that a few cascades consist of more than 100 nodes. Figure 9(Right) exhibits the histogram of the 
Wiener index, which is expressed as the average distance of all node pairs in the cascade (Goel, Anderson, 
Hofman, & Watts, 2016) and the mathematical expression is in Appendix C. From Figure 9(Right), the 
maximum, minimum, and mean of the histogram are 4.8, 1.0, and 1.45, respectively. 
In general, information cascades grow larger via combinations of the two structures: broadcast and viral (Goel et 
al., 2016), where broadcast indicates that a single node infects a large number of other nodes and viral indicates 
cascades grow through multiple generations with any one node infects only a few other nodes. The Wiener index 
can infer whether the cascade structure is more close to viral diffusion or not in such a way that a greater 
(smaller) Wiener index indicates the structure is more close to viral (broadcast) (Goel et al., 2016). Since all 
indexes are less than 4.8, we conjecture that the original cascade is close to the broadcast structure. Let us see 
some of large fractional cascades. As shown in Figure 10, large fractional cascades include broadcast nodes. 

 
Figure 9. Left: the histogram of the number of nodes per fractional cascade. Right: the histogram of the Wiener 

index 
 
7. Conclusions 
The destructive Kumamoto earthquake occurred during the YOGUR STAND campaign period. The campaign 
web page popularity diminished by 60% just after the occurrence of the earthquake. However, after ten days, the 
popularity returned to the original level. The earthquake could not produce a long-lived popular content. In 
contrast, the campaign web page was one of the most popular contents on the Twitter network in Japan during 
the campaign period. 
The campaign strategy is characterized by the reminder effect (i.e., a tweet made by the campaign account once a 
day reminds the account followers of the campaign) and the instant-win effect (i.e., a video notifying the lottery 
result is rapidly returned). Both effects incline a person to retweet many times. The campaign account constantly 
acquired about 14,000 participants and 2,000 new adopters every day. Furthermore, the yogurt product 
information propagated from the campaign account to about 2.4 million Twitter users every day and 0.35 million 
users of them received the information for the first time. According to the analysis made with sample participants, 
there were communities in the participant network and the propagation structure of the campaign information 
belonged to the broadcast type.  
To propose more stable and successful advertising strategies on online social networks, our future work is to 
elucidate the mechanism that yields this long-lived diffusion phenomenon through computer simulations and 
data analysis. We would especially like to focus on how Twitter communities participated in spreading the web 
page over the social network. 
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Figure 10. The largest four fractional cascades. The number in each node indicates the number of hops from the 

original adopter 
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Appendix A  
Twitter APIs 
The Streaming APIs offer several streaming endpoints. We use GET statuses/sample to collect a small random 
sample of all public (re)tweets. Figure A1 shows our PHP program that gathers only (re)tweet messages through 
the APIs. In the figure, $status indicates data obtained through the Streaming APIs. The data is transformed to 
the JSON format to check whether it is a (re)tweet or not. If the data is a (re)tweet, it is appended to 
file ./json/data.json. 
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Figure A1. A PHP program that collects arriving public tweet messages 

 
Meanwhile, the REST APIs provide programmatic access to read and write Twitter data. The Search API in the 
REST APIs returns tweet messages that match our query. The Search API searches against tweets published in 
the past seven days. Figure A2 exemplifies how we make queries. In the figure, 'q' possesses the search 
conditions, which specify that messages should include the URL and should be sent during the specified period. 
Variables 'lang,' 'count,' and 'include_entities' are used to determine language, the number of tweets returned per 
query, and whether the entities are included or not, respectively. The entities provide structured data including 
URLs, media, hashtags, etc. Received data are appended to file ./json/data.json. If there are more than 100 tweets, 
$tweets_arr['search_metadata']['next_results'] points the next results and they are requested at 
parse_str($next_results,$params). The search results are returned at the most 180 times per 15 minutes. 

 
Figure A2. A PHP program that creates queries 
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Appendix B  
Error Responses 
We could not obtain follower IDs for 1,599 users in G because of the two error reasons. They are "Sorry, that 
page does not exist," which appeared 1,035 times, and "Not authorized," which occurred 564 times. 
 
Appendix C 
Wiener Index 
The Wiener index v of a cascade is the average distance of all node pairs in the cascade and can be written as: 
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where n(>1) denotes the number of nodes in the cascade and dij is the shortest hop count from node i to node j. 
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