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Abstract 
Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. 
degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an 
interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, 
CLC) decreases with decrease in δ. We make use of this trend of monotonic decrease in the PCC values (from 
both sides of the δ-search space) and propose a binary search algorithm that (given a threshold value r for the 
PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ-spacer) for a real-world 
network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r. We show the use of the binary search 
algorithm to find the maximum Threshold PCC value rmax (such that δ-spacermax is positive) for a real-world 
network. We observe a very strong correlation between rmax and PCC(DEG, CLC) as well as observe real-world 
networks with a larger variation in node degree to more likely have a lower rmax value and vice-versa.  
Keywords: Correlation Coefficient, Centrality Metrics, Decay Centrality, Binary Search Algorithm, Decay 
Parameter 
1. Introduction 
The Decay Centrality (DEC) metric is a parameter-driven centrality metric that has not been explored much in 
the literature for complex network analysis. Decay centrality is a measure of the closeness of a node to the rest of 
the nodes in the network (Jackson, 2010). However, unlike closeness centrality (CLC; Freeman, 1979), the 
importance given to the distance (typically, in terms of the number of hops if the edges do not have weights) is 
weighted in terms of a parameter called the decay parameter δ (0 < δ < 1). The formulation for computing the 
decay centrality of a vertex vi for a particular value of the decay parameter δ is (Jackson, 2010); see Section 2.3. 
The decay parameter δ essentially controls how important is a node vj to a node vi (vi ≠ vj) that are at a distance 
d(vi, vj) from each other. If δ is smaller, the distance to the nearby nodes is weighted significantly larger than the 
distance to the nodes farther away. If δ is larger, the distance to every node is given almost the same importance. 
As a result, if δ is closer to 0, the decay centrality of the vertices is more likely to exhibit a very strong positive 
correlation with the degree centrality of the vertices; if δ is closer to 1, the decay centrality of the vertices is more 
likely to exhibit a very strong positive correlation with the closeness centrality of the vertices.  
The motivation for our research came from the initial results (see Figures 1 and 16 for sample results) of our 
correlation study (conducted with a precision level of ∈= 0.01) which indicated that the Pearson's correlation 
coefficient PCC(DECδ, DEG) decreases with increase in δ from 0.01 to 0.99 and PCC(DECδ, CLC) decreases 
with decrease in δ from 0.99 to 0.01. Such a trend was observed for all the 48 real-world networks with spectral 
radius ratio for node degree (Meghanathan, 2014) ranging from 1.01 to 5.51 used in the correlation study. In this 
paper, we show that this trend could be exploited by developing an efficient binary search algorithm to determine 
(given a threshold PCC value of r) whether there exists a δ value for which PCC(DECδ, DEG) as well as 
PCC(DECδ, CLC) are both greater than or equal to r. If such a δ value is found to exist, we say that there is a 
positive δ-spacer for the real-world network with respect to the threshold PCC (r) for DEC vs. DEG and CLC. 
We demonstrate the use of the binary search algorithm to determine the maximum value for the threshold PCC 
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(rmax) for a real-world network such that δ-spacermax is positive. Our approach is significantly efficient compared 
to the brute-force approach of computing the DEC values for all possible values of δ (note that the δ-search 
space is a continuous space rather than discrete).  

 

  
        Dolphin Network              US Politics Book Network      Network Science Co-author Net. 
    (Lusseau et al., 2003)                    (Krebs, 2003)                 (Newman, 2006) 

Figure 1. Sample PCC(DECδ, DEG) vs. PCC(DECδ, CLC) Distributions of Real-World Networks 
 
The rest of the paper is organized as follows: In Section 2, we review the centrality metrics (DEG, CLC and 
DEC) and the Pearson's correlation measure as well as explain their computation with an example graph. Section 
3 first introduces the notion of δ-spacer for a threshold PCC (r) for DEC-DEG and DEC-CLC correlation (and its 
computation on the example graph of Section 2). Section 4 describes the proposed binary search algorithm to 
search for a δ-value in δ-spacer and illustrates its execution with the running example graph of Sections 2-3 for a 
successful search and an unsuccessful search. Section 4 also illustrates the use of the proposed binary search 
algorithm to determine the maximum threshold PCC (rmax) for a network. Section 5 introduces the real-world 
networks that are analyzed in this paper. Section 6 presents the δ-spacer values and the rmax values for the 48 
real-world networks obtained as a result of executing the binary search algorithm. Section 6 also compares the 
performance of the binary search algorithm vis-a-vis the brute force approach with respect to the number of 
decay centrality computations needed before deciding whether a real-world network has a positive δ-spacer or 
not. Section 7 discusses related work and highlights the contributions of our paper. Section 8 concludes the 
paper. 
2. Review of Centrality Metrics and Pearson's Correlation Measure 
The centrality metrics that are of interest in this research are degree centrality (DEG), closeness centrality (CLC) 
and decay centrality (DEC). In this section, we briefly review these three metrics and their computation using a 
running example graph as well as review the Pearson's correlation measure and its computation with respect to 
the DEG and CLC metrics for the running example graph. 
2.1 Degree Centrality 
The degree centrality (DEG) of a vertex is the number of neighbors incident on the vertex. Figure 2 illustrates 
the degree centrality of the vertices (listed above the vertices) in the example graph used in Sections 2-3. A key 
weakness of the degree centrality metric is that the metric can take only integer values and ties among vertices 
(with same degree) is quite common and unavoidable in network graphs of any size (in the graph of Figure 2, we 
observe five of the nine vertices to have a degree of 3). It takes Θ(V) time to go through the adjacency list of 
each vertex; hence, it takes Θ(V 2) time to compute the degree centrality for a graph of V vertices.  

 
Figure 2. Degree Centrality of the Vertices in an Example Graph 
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2.2 Closeness Centrality 
The closeness centrality (CLC) of a vertex (Freeman, 1979) is a measure of the closeness of the vertex to the rest 
of the vertices in a graph. The CLC of a vertex is computed as the inverse of the sum of the hop counts of the 
shortest paths from the vertex to the rest of the vertices in the graph. To determine the CLC of a vertex, we could 
use the Θ(V+E)-Breadth First Search (BFS) algorithm (Cormen et. al., 2009) to determine a shortest path tree 
rooted at the vertex and find the sum of the level numbers of the vertices on this shortest path tree. We want to 
maintain the convention that larger the centrality value for a vertex, more important is the vertex. Hence, we find 
the inverse of the final sum of the level numbers of the vertices on the BFS-tree of a vertex and use it as the CLC 
of the vertex (rather than using just the sum of the level numbers as the CLC). Since we need to run the BFS 
algorithm once for each vertex, the overall time complexity to determine the CLC of the vertices is Θ(V(V+E)) = 
Θ(V 2+VE). Figure 3 illustrates the distance matrix (hop counts of the shortest paths between any two vertices) 
for the example graph of Figure 2 and also displays the CLC of the vertices. Vertex 1 is the closest vertex to the 
rest of the vertices (sum of the distances is 12, the minimum) and hence has the largest CLC value of 1/12 = 
0.083.  

 
Figure 3. Closeness Centrality of the Vertices in an Example Graph 

 
2.3 Decay Centrality 
Decay centrality (DEC) is a measure of the closeness of a node to the rest of the nodes in the network (Jackson, 
2010). However, unlike closeness centrality, the importance given to the distance (typically, in terms of the 
number of hops if the edges do not have weights) is weighted in terms of a parameter called the decay parameter 
δ (0 < δ < 1). The formulation for computing the decay centrality of a vertex vi for a particular value of the decay 
parameter δ is (Jackson, 2010):  

DEC(vi) = ∑
≠ ji

ji

vv

vvd ),(d  where d(vi, vj) is the distance from node vi to node vj. 

The decay parameter δ essentially controls how important is a node vj to a node vi (vi ≠ vj) that are at a distance 
d(vi, vj) from each other. Nodes that have a higher decay centrality are more likely to be nodes that have several 
neighbors as well as be much closer to nodes to the rest of the nodes in the network (Tsakas, 2016). Figure 4 
presents the decay centrality of the vertices in the example graph of Section 2 for different values of the decay 
parameter δ. We also illustrate sample calculations of the decay centrality of vertex 1 for three different values of 
δ. 
On a graph of V vertices and E edges, it takes Θ(V 3) time to compute the distance matrix (the shortest path 
weights between any two nodes in the network) using the Floyd-Warshall algorithm (Cormen et. al., 2009) for 
weighted graphs and Θ(V(V+E)) time to compute the distance matrix (the hop count of the shortest paths 
between any two nodes in the network) using the Θ(V+E)-BFS algorithm for graphs with unit edge weights. 
Since E = Θ(V 2), we could say, in general, it takes Θ(V 3) time to compute the distance matrix for any graph. 
Given the distance matrix for a graph, it takes Θ(V) time to compute the decay centrality of a particular vertex vi 
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as we have to find δd(vi, vj) for every vertex vj ≠ vi. Hence, given the distance matrix for a graph, it would take Θ(V 
2) time to compute the decay centrality of the vertices. Overall, given a graph of V vertices, the time-complexity 
to compute decay centrality is Θ(V 3) + Θ(V 2) = Θ(V 3). Thus, the time-complexity to compute the decay 
centrality of the vertices is dominated by the time-complexity to compute the distance matrix. 

 
Figure 4. Decay Centrality of the Vertices in an Example Graph 

 
2.4 Pearson's Correlation Measure 
We use the Pearson's correlation coefficient (PCC; Lay et. al., 2015) as the measure for analyzing the correlation 
between the decay centrality (computed for different values of the decay parameter δ) and the degree centrality 
and closeness centrality. The Pearson's product-moment correlation when applied for centrality metrics is a 
measure of the linear dependence between any two metrics in consideration (Lay et. al., 2015). It is referred to as 
the product-moment based correlation as we calculate the deviation of the data points from their mean value 
('mean' is also referred to as 'first moment' in statistics) and use them in the formulation below to calculate the 
correlation coefficient. If X and Y are the datasets for two centrality metrics: let Xi and Yi indicate the centrality 
values for the individual vertices vi (1 ≤ i ≤ n, where n is the number of vertices) and X and Y are the average 
of the centrality values; PCC(X, Y) is calculated as follows. Figure 5 illustrates the computation of the Pearson's 
correlation coefficient between DEG and CLC. 
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Figure 5. Sample Illustration of the Computation of the Pearson's Correlation Coefficient between Degree 

Centrality and Closeness Centrality 
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3. δ-Space for DEG-DEC-CLC Correlation 
Figure 6 displays the Pearson's correlation coefficient values between each of the two centrality metrics (DEG 
and CLC) and the decay centrality values (DECδ) computed for different values of the decay parameter δ ranging 
from 0.01 to 0.99 for the example graph of Figures 2-5. We see PCC(DECδ, DEG) to monotonically decrease 
with increase in δ and PCC(DECδ, CLC) to monotonically decrease with decrease in δ. A similar trend is also 
noticed for all the 48 real-world network graphs analyzed in Section 6. Using this as the basis, we define the 
δ-spacer for a real-world network with respect to a threshold PCC (r) as the difference between the maximum δ 
value for which we observe PCC(DECδ, DEG) ≥ r and  the minimum δ value for which we observe PCC(DECδ, 
CLC) ≥ r.  

 
Figure 6. Distribution of the Pearson's Correlation Coefficient Values between Decay Centrality and the Two 
Centrality Metrics (Degree Centrality and Closeness Centrality) vs. the Decay Parameter δ for the Example 

Graph of Figures 2-5 
 

δ-spacer for a threshold PCC (r) basically quantifies the range of values in the open interval [ min
),( rCLCDECPCC ≥d ...

max
),( rDEGDECPCC ≥d ] that could be chosen from the closed interval (0...1) to determine decay centrality values that 

exhibit PCC of the threshold value of r or above with both degree and closeness centralities. Note that we did not 
choose the interval (0, 1] for δ, as δ = 1 would correspond to the component size and not quantify the centrality 
of the vertices. On the same lines, we did not choose the interval [0, 1) for δ, as δ = 0 would make the decay 
centrality of the vertices to become zero. Quantitatively, δ-spacer is defined as follows, whereε  corresponds to 
the level of precision used for δ in the range (0...1). Note that δ-spacer could be determined for any threshold 
value of the Pearson's correlation coefficient (r) of interest.  
δ-spacer = max

),( rDEGDECPCC ≥d − min
),( rCLCDECPCC ≥d + ε      if min

),( rCLCDECPCC ≥d ≤ max
),( rDEGDECPCC ≥d   (2) 

δ-spacer = max
),( rDEGDECPCC ≥d − min

),( rCLCDECPCC ≥d      if min
),( rCLCDECPCC ≥d > max

),( rDEGDECPCC ≥d   (3) 
 

Note that if min
),( rCLCDECPCC ≥d = max

),( rDEGDECPCC ≥d , it implies there is one δ value (δ = CLCDEC
r
−

min,d = DEGDEC
r
−

max,d ) for 
which PCC(DECδ, DEG) ≥ r and PCC(DECδ, CLC) ≥ r. If min

),( rCLCDECPCC ≥d < max
),( rDEGDECPCC ≥d , there might be 

more than one δ value that could be chosen from the open interval [ min
),( rCLCDECPCC ≥d ... max

),( rDEGDECPCC ≥d ]; hence, 
we add the precision level ε  in the formulation for δ-spacer when min

),( rCLCDECPCC ≥d ≤ max
),( rDEGDECPCC ≥d . On 

the other hand, if min
),( rCLCDECPCC ≥d  > max

),( rDEGDECPCC ≥d , it implies there is not even one single δ value for 
which DECδ would exhibit the threshold PCC of r or above with both DEG and CLC. Hence, we do not add the 
precision level ε  in the δ-spacer  formulation for min

),( rCLCDECPCC ≥d > max
),( rDEGDECPCC ≥d .  

Among the δ values (precision ε = 0.01) shown in Figure 6, the largest δ value for which PCC(DECδ, DEG) ≥ 
0.80 is max

80.0),( =≥rDEGDECPCCd = 0.80 and the smallest δ value for which PCC(DECδ, CLC) ≥ 0.80 is 
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min
80.0),( =≥rCLCDECPCCd = 0.03. Hence, the δ-spacer=0.8 for the example graph is max

80.0),( =≥rDEGDECPCCd −  
max

80.0),( =≥rDEGDECPCCd + ε = 0.80 - 0.03 + 0.01 = 0.78. Note that 0.78 is also PCC(DEG, CLC) for the example 
graph (computed in Figure 5).  

Table 1 displays the δ-spacer values for different values of the threshold PCC(r), ranging from 0.70 to 0.95 for 
the running example graph of Figures 2-5. Note that δ-spacer decreases as the threshold PCC (r) value increases. 
We say δ-spacer does not exist for a network graph if it is less than zero. For the running example graph, we 
observe δ-spacer to exist (as shown in Figures 6 and 7) for r = 0.70 ... 0.90 (in increments of 0.05); but, 
δ-spacer=0.95 does not exist. Figures 6 and 7 illustrate the shrinking δ-spacer for the example network graph with 
increase in the threshold PCC (r) value. We observe the DEG centrality to be relatively a bottleneck metric 
(vis-a-vis CLC) that primarily contributes to the shrinkage of δ-spacer. A similar trend is also observed for 
real-world networks whose δ-spacer is less than the maximum possible value of 1-ε . Figure 7 also clearly 
illustrates that δ-spacer is the overlap of the intervals [0+ ε ... max

),( rDEGDECPCC ≥d ] and [ min
),( rCLCDECPCC ≥d ... 1- ε ]. 

We make use of this observation as part of the design logic for the binary search algorithm (described in Section 
4) to determine the existence of δ-spacer. 

 
Figure 7. Shrinking δ-Spacer with Increase in Threshold PCC (r) for the Example Graph of Figures 2-5 

 
Table 1. δ-spacer Values for the Example Graph of Figures 2-5 for Different Values of Threshold PCC(r) 

Threshold PCC(r) max
),( rDEGDECPCC ≥d  min

),( rCLCDECPCC ≥d  δ-spacer δ-spacer Exists? 
0.70 0.99 0.01 0.99 YES 
0.75 0.99 0.01 0.99 YES 
0.80 0.80 0.03 0.78 YES 
0.85 0.60 0.09 0.52 YES 
0.90 0.45 0.18 0.28 YES 
0.95 0.28 0.32 − 0.04 NO 
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4. Binary Search Algorithm to Determine the Existence of δ-Spacer and Maximum Threshold PCC for 
DEC-DEG and DEC-CLC Correlation 

We now describe a binary search algorithm (see Figure 8 for the pseudo code) whose objective is (given a 
threshold PCC value of r) to find a particular value of the decay parameter δ (if one exists) such that PCC(DECδ, 
DEG) ≥ r and PCC(DECδ, CLC) ≥ r. If a δ value could be found for a real-world network, it implies there does 
exist a overlap of the intervals [0+ ε ... max

),( rDEGDECPCC ≥d ] and [ min
),( rCLCDECPCC ≥d ... 1-ε ] and we could conclude 

that the δ-spacer for the real-world network exists (i.e., δ-spacer > 0). If a δ value could not be found, it implies 
the intervals [0+ε ... max

),( rDEGDECPCC ≥d ] and [ min
),( rCLCDECPCC ≥d ... 1-ε ] do not overlap ( min

),( rCLCDECPCC ≥d  > 
max

),( rDEGDECPCC ≥d ) and the δ-spacer for the real-world network does not exist. 
 
---------------------------------------------------------------------------------------------------------------------------------------- 
Given: Threshold PCC r, Precision Level ∈ 
Auxiliary Variables: Left Index, Right Index, Middle Index, δ 
Initialization: Left Index = ∈, Right Index = 1 
Output: δ  
Begin Binary Search Algorithm 
 If ( PCC(DECδ = Left Index, CLC) ≥ r ) then 
  return δ = Left Index 
 End If 
 While (Left Index ≤ Right Index) do 
  Middle Index =  2/)( RightIndexLeftIndex +  
  If ( PCC(DECδ = Middle Index, CLC) ≥ r  AND  PCC(DECδ = Middle Index, DEG) ≥ r ) then 
   return δ = Middle Index 
  End If 
  If ( PCC(DECδ = Middle Index, CLC) ≥ r  AND PCC(DECδ = Middle Index, DEG) < r  ) then 
   Left Index = Middle Index 
  End If 
  If ( PCC(DECδ = Middle Index, CLC) < r  AND PCC(DECδ = Middle Index, DEG) ≥ r  ) then 
   Right Index = Middle Index 
  End If 
  If (PCC(DECδ = Middle Index, CLC) < r  AND PCC(DECδ = Middle Index, DEG) < r  ) then 
   return δ = -1 // does not exist 
  End If 
 End While 
End Binary Search Algorithm 
---------------------------------------------------------------------------------------------------------------------------------------- 
Figure 8. Pseudo Code for the Proposed Binary Search Algorithm to Determine the Existence of δ-Spacer and 

Maximum Threshold PCC for DEC-DEG and DEC-CLC Correlation  
 
The binary search algorithm makes use of the observation in this research that PCC(DECδ, DEG) monotonically 
decreases as δ increases from 0 to 1, and PCC(DECδ, CLC) monotonically decreases as δ decreases from 1 to 0. 
Like the standard binary search algorithm, the binary search algorithm described here also maintains two indices: 
a left index and a right index, and the two indices approach towards each other during the course of the algorithm. 
Also, as in the standard binary search algorithm, we exit from the iterations (described below) when the right 
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index becomes larger than the left index. An invariant in the binary search algorithm is that the left index is a δ 
value for which PCC(DECδ, DEG) ≥ threshold r and the right index is a δ value for which PCC(DECδ, CLC) ≥ 
threshold r. As part of optimization, before proceeding to the iterations of the algorithm, one can test whether 
PCC(DECδ=initial left index, CLC) ≥? threshold r. If so, we are done and the δ value of interest could be the value of 
the initial left index itself. This would be especially useful for lower values of the threshold PCC, as we observe 

min
),( rCLCDECPCC ≥d to be closer to 0.01 for lower values for the threshold PCC r. 

 

 
Figure 9. Example to Illustrate the Execution of the Optimization Step (Initial Test with the Left Index) of the 
Binary Search Algorithm to Determine the Existence of δ-spacer (Threshold PCC r = 0.75) 
 
In each iteration of the binary search algorithm, we find a middle index that is the average of the left index and 
right index and test whether PCC(DECδ=middle index, DEG) ≥ threshold r and PCC(DECδ=middle index, CLC) ≥ 
threshold r. If so, we are done and the δ value corresponding to the middle index is the δ value of interest. 
Otherwise, we do the following three tests:  

(i) If PCC(DECδ=middle index, DEG) ≥ r and PCC(DECδ=middle index, CLC) < r, we move the left index to the 
middle index (as the DECδ-CLC correlation coefficient value is less than r for δ = middle index and it can 
only decrease further if the δ-search space is moved to the left of the middle index; hence, we shrink the 
δ-search space to the right of the middle index).  
(ii) If PCC(DECδ=middle index, DEG) < r and PCC(DECδ=middle index, CLC) ≥ r, we move the right index to the 
middle index (as the DECδ-DEG correlation coefficient is less than r for δ = middle index and it can only 
decrease further if we move to the right of the middle index; hence, we shrink the δ-search space to the left of 
the middle index).  
(iii) If PCC(DECδ=middle index, DEG) < r and PCC(DECδ=middle index, CLC) < r, we exit the algorithm and declare 
that there is no single δ value for which DECδ would exhibit the threshold value of correlation coefficient or 
above with both DEG and CLC. This is because: as per the observation DECδ=middle index not exhibiting the 
threshold value of correlation coefficient with DEG, the δ value of interest has to be in the range [left index ... 
middle index); whereas, as per the observation DECδ=middle index not exhibiting the threshold value of 
correlation coefficient with CLC, the δ value of interest has to be in the range (middle index ... right index]. 
The two ranges do not overlap and hence there cannot be a δ value for which DECδ exhibits the threshold 
value of correlation coefficient with both DEG and CLC.  

The binary search algorithm could be executed over a δ-search space of [0+∈...1-∈], wherein the initial values 
for the left index and right index are respectively 0+∈ and 1-∈. The value of ∈used in this paper is 0.01. 
Figure 9 presents a scenario wherein there is no need to proceed to the iterations of the binary search algorithm 
and a simple initial test is sufficient to determine the existence of δ-spacer. The initial test is to check whether 
PCC(DECδ=initial left index = 0.01, CLC) ≥ threshold PCC of r (= 0.75, in Figure 9). Since, PCC(DEC0.01, CLC) ≥ 
0.75 and we already know that PCC(DEC0.01, DEG) ≥ 0.75, we can stop right away and declare that the δ of 
interest is 0.01 and that δ-spacer exists for a threshold PCC r value of 0.75. 
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Figure 10. Example to Illustrate the Iterations of a Successful Search of the Binary Search Algorithm to 

Determine the Existence of δ-spacer (Threshold PCC r = 0.90)  
 
Figure 10 presents a scenario for a successful search (threshold PCC value r = 0.90) wherein we are required 
only two iterations of the algorithm to determine the existence of δ-spacer. During the first iteration, we found 
DECmiddle index = 0.50 not to exhibit a correlation coefficient of 0.90 or above with DEG, but correlated with CLC. 
Hence, we move the right index to the middle index. During the second iteration, we found DECmiddle index = 0.25 to 
exhibit a correlation coefficient of 0.90 or above with both DEG and CLC. Thus, the algorithm stops with δ = 
0.25 as the δ value of interest and we conclude that δ-spacer = 0.90 exists.  
Figure 11 presents a scenario for an unsuccessful search (threshold PCC value r = 0.95) wherein we needed four 
iterations to bring in the middle index to a δ value for which both  PCC(DECδ, DEG) and PCC(DECδ, CLC) are 
less than the threshold PCC r value of 0.95. The [left index ... right index] ranges for the four iterations are 
respectively: Iteration 1 - [0.01 ... 0.99]; Iteration 2 - [0.01 ... 0.50]; Iteration 3 - [0.255 ... 0.50]; Iteration 4 - 
[0.255 ... 0.3775]. The middle index at the end of the fourth iteration is (0.255 + 0.3775)/2 = 0.316 and DEC0.316 
(i.e., DEC values computed for δ = 0.316) does not exhibit a correlation coefficient of 0.95 or above with both 
DEG and CLC. Hence, the range for DEC to exhibit a correlation coefficient of 0.95 or above with DEG has to 
be towards the left of this middle index (i.e., < 0.316) and the range for DEC to exhibit a correlation coefficient 
of 0.95 or above with CLC has to be towards the right of this middle index (i.e., > 0.316). This is not possible 
and hence we stop and declare that δ-spacer=0.95 does not exist for this graph. 
The basic operation (the most time consuming step) of the binary search algorithm is the computation of the 
decay centrality of the vertices in each iteration as well as during the initial test with the left index. Since the 
δ-search space is a continuous search space (i.e., real numbers from 0 to 1), we are not able to theoretically 
quantify the average and worst-case number of times the basic operation would be executed as part of the binary 
search algorithm. Nevertheless, as seen in the experimental results presented in Section 6 for real-world 
networks, we anticipate the number of times the basic operation is executed as part of the binary search 
algorithm (both the average and worst-case) to be significantly smaller than the number of times the basic 
operation is executed as part of a brute-force search. 
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Figure 11. Example to Illustrate the Iterations of an Unsuccessful Search of the Binary Search Algorithm to 
Determine the Existence of δ-spacer (Threshold PCC r = 0.95)  

 
We now explain the use of the binary search algorithm to determine the maximum value of the threshold PCC 
(rmax) for which there exists a positive δ-space. The idea is to start with a tentative rmax value of 1.0 and use the 
binary search algorithm to test if there exists a positive δ-spacetentative rmax. If so, we stop and declare the tentative 
rmax as the final rmax value. Otherwise, we reduce the value of tentative rmax by 0.01 and continue the above test 
until we find a tentative rmax for which there exists a positive δ-space. We also go ahead and determine the δ 
value (referred to as δrmax) that was found to be part of the δ-spacermax. The rmax value for the example graph in 
Figures 2-5 is 0.94 and the corresponding δrmax value is 0.2971. This is evident from Figure 6 in which we show 
the decrease in the PCC(DECδ, DEG) values and the increase in PCC(DECδ, CLC) values with increase in δ 
from 0.01 to 0.99. The values of (δrmax, rmax) = (0.2971, 0.94) correspond to the intersection point between the 
two PCC curves. The δrmax value of 0.2971 could be approximated to the value of 0.30 as it appears in Figure 6.  
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5. Real-World Network Graphs 
In this section, we introduce the 48 real-world networks analyzed in this paper. Table 2 lists the three character 
code acronym, name and the network type, the values for the number of nodes and edges as well as the spectral 
radius ratio for node degree (λsp). All the real- world networks are modeled as undirected graphs. The spectral 
radius ratio for node degree (Meghanathan, 2014) is a measure of the variation in node degree and is calculated 
as the ratio of the principal eigenvalue (Bonacich, 1987) of the adjacency matrix of the graph to that of the 
average node degree. The spectral radius ratio for node degree is independent of the number of vertices and the 
actual degree values for the vertices in the graph. The spectral radius ratio for node degree is always greater than 
or equal to 1.0; the farther is the ratio from the value of 1.0, the larger the variation in node degree. The spectral 
radius ratio for node degree for the real-world network graphs analyzed in this paper ranges from 1.01 to 5.51 
(indicating that the real-world network graphs analyzed range from random networks (Renyi, 1959) with smaller 
variation in node degree to scale-free networks (Barabasi & Albert, 1999) of larger variation in node degree).  
The networks considered cover a broad range of categories (as listed below along with the number of networks 
in each category): I. Acquaintance network (12), II. Friendship network (9), III. Co-appearance network (6), IV. 
Employment network (4), V. Citation network (3), VI. Collaboration network (3), VII. Literature network (3), 
VIII. Political network (2), IX. Biological network (2), X. Game network (2), XI. Transportation network (1) and 
XII. Trade network (1). A brief description about each category of networks is as follows: An acquaintance 
network is a kind of social network in which the participant nodes slightly (not closely) know each other, as 
observed typically during an observation period. 
 
Table 2. Real-World Networks used in the Correlation Analysis 

# Net. Network NameType Reference λsp #nodes #edges 
1 ADJ Word Adjacency Net III Newman, 2006 1.73 112 425 
2 AKN Anna Karnenina Net III Knuth, 1993 2.48 140 494 
3 JBN Jazz Band Net IV Geiser & Danon, 2003 1.45 198 2742 
4 CEN C. Elegans Neural Net IX White et. al., 1986 1.68 297 2148 
5 CLN Centrality Literature Net V Hummon et. al., 1990 2.03 118 613 
6 CGD Citation Graph Draw. Net V Biedl & Franz, 2001 2.24 259 640 
7 CFN Copperfield Net III Knuth, 1993 1.83 89 407 
8 DON Dolphin Net I Lusseau et. al., 2003 1.40 62 159 
9 DRN Drug Net I Lee, 2004 2.76 212 284 
10 DLN Dutch Lit. 1976 Net VII Nooy, 1999 1.49 37 81 
11 ERD Erdos Collaboration Net VI Batagelj & Mrvar, 2006 3.00 433 1314 
12 FMH Faux Mesa High Sch. Net II Resnick et. al., 1997 2.81 147 202 
13 FHT Friendship Hi-Tech Firm II Krackhardt, 1999 1.57 33 91 
14 FTC Flying Teams Cade Net IV Moreno, 1960 1.21 48 170 
15 FON US Football Net X Girvan & Newman, 2002 1.01 115 613 
16 CDF College Dorm Fraternity I Bernard et. al., 1980 1.11 58 967 
17 GD96 Graph Drawing 1996 Net V Batagelj & Mrvar, 2006 2.38 180 228 
18 MUN Marvel Universe Net III Gleiser, 2007 2.54 167 301 
19 GLN Graph Glossary Net VII Batagelj & Mrvar, 2006 2.01 67 118 
20 HTN Hypertext 2009 Net I Isella et. al., 2011 1.21 115 2164 
21 HCN Huckleberry Co. Net III Knuth, 1993 1.66 76 302 
22 ISP Infec. Socio-Patt. Net I Isella et. al., 2011 1.69 309 1924 
22 KCN Karate Club Net I Zachary, 1977 1.47 34 78 
24 KFP Korea Family Plan. Net I Rogers & Kincaid, 1980 1.70 37 85 
25 LMN Les Miserables Net III Knuth, 1993 1.82 77 254 
26 MDN Macaque Dom. Net IX Takahata, 1991 1.04 62 1167 
27 MTB Madrid Train Bomb. Net I Hayes, 2006 1.95 64 295 
28 MCE Manufact. Comp. Empl IV Cross et. al., 2004 1.12 77 1549 
29 MSJ Soc. Net. Journal Net VI McCarty & Freeman, 2008 3.48 475 625 
30 AFB Author Facebook Net II - 2.29 171 940 
31 MPN Mexican Pol. Elite Net VIII Gil-Mendieta & Schmidt, 1996 1.23 35 117 
32 MMN ModMath Net II Batagelj & Mrvar, 2006 1.59 30 61 
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33 NSC Net. Science Co-author VI Newman, 2006 5.51 1,589 2,743 
34 PBN US Politics Books Net VII Krebs, 2003 1.42 105 441 
35 PSN Primary Sch. Contact Net I Gemmetto et. al., 2014 1.22 238 5539 
36 PFN Prison Friendship Net II MacRae, 1960 1.32 67 142 
37 SJN San Juan Sur Family Net I Loomis et al., 1953 1.29 75 155 
38 SDI Scotland Corp. Interlock IV Scott, 1980 1.94 230 359 
39 SPR Senator Press Rel. Net VIII Grimmer, 2010 1.47 92 477 
40 SWC Soccer World Cup Net X Batagelj & Mrvar, 2006 1.45 35 118 
41 SSM Sawmill Strike Comm. Net I Michael et. al., 1997 1.22 24 38 
42 TEN Taro Exchange Net I Schwimmer et al., 1973 1.06 22 39 
43 TWF Teenage Fem. Friend Net II Pearson & Michell, 2000 1.59 47 77 
44 UKF UK Faculty Friend Net II Nepusz et. al., 2008 1.35 83 578 
45 APN US Airports 1997 Net XII Batagelj & Mrvar, 2006 3.22 332 2126 
46 RHF Residence Hall Friend Net II Freeman et. al., 1998 1.27 217 1839 
47 WSB Windsurfers Beach Net II Freeman et. al., 1989 1.22 43 336 
48 WTN World Trade Metal Net XIII Smith & White, 1992 1.38 80 875 

 
A friendship network is a kind of social network in which the participant nodes closely know each other and the 
relationship is not captured over an observation period. A co-appearance network is a network typically 
extracted from novels/books in such a way that two characters or words (modeled as nodes) are connected if they 
appear alongside each other. An employment network is a network in which the interaction/relationship between 
people is primarily due to their employment requirements and not due to any personal liking. A citation network 
is a network in which two papers (nodes) are connected if one paper cites the other paper as reference. A 
collaboration network is a network of researchers/authors who are listed as co-authors in at least one publication. 
A biological network is a network that models the interactions between genes, proteins, animals of a species, etc. 
A political network is a network of entities (typically politicians) involved in politics. A game network is a 
network of teams or players playing for different teams and their associations. A literature network is a network 
of books/papers/terminologies/authors (other than collaboration, citation or co-authorship) involved in a 
particular area of literature. A transportation network is a network of entities (like airports and their flight 
connections) involved in public transportation. A trade network is a network of countries/people involved in 
certain trade. 
6. Results of Correlation Study 
In this section, we present and analyze the results of our correlation study for the 48 real-world networks. Table 3 
lists the δ-spacer values and the number of decay centrality computations (the basic operation) for the binary 
search algorithm. The values for the threshold PCC in Table 3 range from 0.60 to 0.95. As expected, the δ-spacer 
values decrease as the value for the threshold PCC (r) increases. The median of the δ-spacer values for the 
different threshold r values are also given in the bottom of Table 3. From median value 0.99 for r = 0.60, the 
median reduces to 0.515 for r value of 0.80 and to -0.14 for r value of 0.95. Cells with negative δ-spacer values 
are highlighted in light pink color. Though the author Facebook network had negative δ-spacer values for r 
values starting from 0.60, we notice the negative δ-spacer values for the real-world networks are more prominent 
for r values starting from 0.80. More than 40% and 50% of the real-world networks had negative δ-space0.90 and 
δ-space0.95 values. Nevertheless, there are six networks that continue to have a δ-spacer value of 0.99 for all r 
values presented in Table 3. A closer look at these six networks reveals that the λsp (spectral radius ratio for node 
degree) values for all these six networks are less than 1.5. A further analysis of the δ-space0.95 values of the 
real-world networks and the λsp values indicates that out of 25 networks that had a λsp value above 1.5, 22 
networks (close to 90%) incurred negative values for δ-space0.95, whereas out of the remaining 23 networks (that 
had a λsp value below 1.5), only 7 networks (close to 30%) incurred negative values for δ-space0.95. This indicates 
a trend that networks with lower variation in node degree are more likely to have a positive δ-spacer value (even 
for larger values for the threshold PCC r), whereas networks with larger variation in node degree are more likely 
to incur negative values for δ-spacer. In other words, for networks with larger variation in node degree, there is 
more likely not even a single δ value for which we could expect a stronger correlation for DEC with both DEG 
and CLC simultaneously. 
 
 

63 
 



cis.ccsenet.org Computer and Information Science Vol. 10, No. 2; 2017 

Table 3. δ-spacer and the Number of Decay Centrality Computations of Real-World Networks for Different 
Values of the Threshold PCC Values (r) 

# Net. δ-spacer / Number of Decay Centrality Computations 
  r = 0.60 r = 0.70 r = 0.8 r = 0.90 r = 0.95 
1 ADJ 0.99 1 0.99 1 0.64 1 0.25 3 0.04 6 
2 AKN 0.99 1 0.95 1 0.59 1 0.26 3 0.05 6 
3 JBN 0.99 1 0.99 1 0.75 1 0.36 3 0.09 5 
4 CEN 0.99 1 0.57 1 0.28 3 0.05 4 -0.09 4 
5 CLN 0.37 2 0.15 2 -0.11 2 -0.41 2 -0.59 2 
6 CGD 0.65 2 0.36 2 0.04 5 -0.34 2 -0.58 2 
7 CFN 0.99 1 0.99 1 0.89 1 0.55 1 0.22 3 
8 DON 0.99 1 0.96 1 0.53 2 0.09 5 -0.19 3 
9 DRN 0.99 1 0.51 2 0.01 7 -0.43 2 -0.64 2 
10 DLN 0.99 1 0.99 1 0.99 1 0.58 1 0.24 3 
11 ERD 0.23 4 0.00 4 -0.24 2 -0.53 2 -0.70 2 
12 FMH 0.99 1 0.70 2 0.20 2 -0.29 2 -0.54 2 
13 FHT 0.55 2 0.31 2 0.04 6 -0.28 2 -0.50 2 
14 FTC 0.99 1 0.99 1 0.96 1 0.36 3 0.05 3 
15 FON 0.17 4 0.08 4 0.00 9 -0.12 4 -0.23 3 
16 CDF 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 
17 GD96 0.49 2 0.29 3 0.09 3 -0.15 3 -0.33 3 
18 MUN 00.3 2 0.06 4 -0.19 4 -0.47 2 -0.64 2 
19 GLN 0.45 2 0.19 2 -0.09 5 -0.41 2 -0.60 2 
20 HTN 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 
21 HCN 0.30 2 0.09 5 -0.15 2 -0.43 2 -0.61 2 
22 ISP 0.99 1 0.76 1 0.46 2 0.04 6 -0.24 3 
22 KCN 0.99 1 0.99 1 0.63 2 0.19 3 -0.08 3 
24 KFP 0.58 2 0.29 3 -0.01 9 -0.35 2 -0.56 2 
25 LMN 0.99 1 0.99 1 0.62 1 0.21 3 -0.02 6 
26 MDN 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 
27 MTB 0.42 2 0.20 2 -0.04 6 -0.34 2 -0.54 2 
28 MCE 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 
29 MSJ 0.16 2 -0.03 5 -0.24 2 -0.50 2 -0.66 2 
30 AFB -0.03 5 -0.17 2 -0.32 2 -0.52 2 -0.67 2 
31 MPN 0.99 1 0.99 1 0.99 1 0.59 2 0.18 3 
32 MMN 0.99 1 0.99 1 0.66 2 0.11 2 -0.24 2 
33 NSC 0.19 3 0.03 7 -0.16 4 -0.41 2 -0.60 2 
34 PBN 0.88 2 0.54 2 0.23 2 -0.11 4 -0.35 2 
35 PSN 0.99 1 0.99 1 0.99 1 0.99 1 0.60 1 
36 PFN 0.99 1 0.99 1 0.99 1 0.49 2 0.13 3 
37 SJN 0.99 1 0.68 2 0.34 3 0.02 3 -0.19 3 
38 SDI 0.16 2 -0.14 2 -0.39 2 -0.61 2 -0.75 2 
39 SPR 0.99 1 0.99 1 0.99 1 0.62 1 0.29 3 
40 SWC 0.99 1 0.99 1 0.99 1 0.70 1 0.39 3 
41 SSM 0.99 1 0.99 1 0.64 2 0.21 3 -0.05 3 
42 TEN 0.93 1 0.59 2 0.29 3 -0.05 5 -0.28 3 
43 TWF 0.36 2 0.14 3 -0.08 5 -0.38 2 -0.58 2 
44 UKF 0.99 1 0.99 1 0.99 1 0.65 1 0.28 3 
45 APN 0.99 1 0.79 1 0.5 1 0.18 3 -0.02 6 
46 RHF 0.99 1 0.99 1 0.99 1 0.54 1 0.16 4 
47 WSB 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 
48 WTN 0.99 1 0.99 1 0.99 1 0.99 1 0.99 1 
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      Threshold PCC r = 0.60        Threshold PCC r = 0.70           Threshold PCC r = 0.80 

    
      Threshold PCC r = 0.85        Threshold PCC r = 0.90           Threshold PCC r = 0.95 
Figure 12. Binary Search Algorithm: δ-spacer vs. # Decay Centrality Computations for Different Values of the 

Threshold Pearson's Correlation Coefficient (r)  
 
Figure 12 presents the distribution of the number (#) of decay centrality computations vs. the δ-spacer values of 
the real-world networks for different values of the threshold PCC (r). We observe the # decay centrality 
computations to be lower for larger positive values of δ-spacer as well as for larger negative values of δ-spacer. 
On the other hand, the # decay centrality computations is relatively larger for lower positive as well as lower 
negative values of δ-spacer. This is because for larger values of δ-spacer, it is more likely that the middle index 
of the binary search algorithm will soon correspond to a δ value that falls within the range for δ-spacer. If the 
δ-spacer value is smaller, it takes relatively more iterations (and as a result a larger number of decay centrality 
computations) before the algorithm could identify a δ value that falls within the range for δ-spacer. Note that if 
δ-spacer values are negative, it means there does not exist a δ-value for which PCC(DECδ, DEG) ≥ r as well as 
PCC(DECδ, CLC) ≥ r; this also means that there exists one or more δ values for which PCC(DECδ, DEG) < r as 
well as PCC(DECδ, DEG) < r.  
6.1 Binary Search vs. Brute Force Search 
We now present a comparison of the time complexity (for both successful searches and unsuccessful searches 
considered together and separately) on the basis of the number of decay centrality computations incurred with 
the proposed binary search approach vs. brute force search approaches from left as well as from right of the 
δ-search space. Under the brute force approach from left, for each real-world network and a given threshold PCC 
(r), we iterate through the values of δ from 0.01 to 0.99 (in this order), in increments 0f 0.01, and determine the 
smallest δ value (if one exists) for which PCC(DECδ, DEG) ≥ r and PCC(DECδ, CLC) ≥ r. Under the brute force 
approach from right, we iterate through the values of δ from 0.99 to 0.01 (in this order), in decrements of 0.01, 
and determine the largest δ value (if one exists) for which PCC(DECδ, DEG) ≥ r and PCC(DECδ, CLC) ≥ r.  
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Av. Time Complexity (Successful & Unsuccessful searches)   Av. Time Complexity (Successful searches only) 

   
   Av. Time Complexity (Unsuccessful searches only)              Worst-Case Time Complexity 

Figure 13. Comparison of the Time Complexity (# Decay Centrality Computations) of the Binary Search 
Algorithm vs. Brute Force Search for Different Values of Threshold Pearson's Correlation Coefficient (r) 
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Figure 14. Real-World Networks in the Decreasing Order of δ-spacer≡vs+ Values (0 < δ-spacer≡vs+ < 0.99)  

 
To be fair to the brute force approaches, we adopt the same condition (used for the binary search approach) to 
terminate the search a priori (instead of searching through the entire δ-search space) if we encounter a δ value for 
which both PCC(DECδ, DEG) < r and PCC(DECδ, CLC) < r. When such a δ value is encountered for a given 
threshold PCC (r) for a real-world network, it implies the δ-spacer for the real-world network is negative and the 
search for a δ to satisfy the threshold PCC value (r) would be unsuccessful. The number of decay centrality 
iterations incurred until encountering the smallest δ value (if proceeded from the left) or the largest δ value (if 
proceeded from the right) that satisfies the condition for a successful search or the δ value that satisfies the 
condition for an unsuccessful search is recorded. For the binary search and the two variants of brute force search 
algorithms and for each value of the threshold PCC (r: from 0.60 to 0.95, in increments of 0.05), we determine 
the average number of decay centrality iterations (averaged over all the 48 real-world networks) for successful 
search and unsuccessful search considered together and considered separately as well as the worst-case number 
of decay centrality iterations (the maximum of the number of decay centrality iterations incurred among the 48 
real-world networks). 
We observe the binary search algorithm to comprehensively outperform the brute force search methods (from 
left and from right). In Figure 13, the average-case number of decay centrality computations (when the 
successful and unsuccessful searches are considered together and when considered alone) for the binary search 
algorithm are very much comparable (or even lower in most of the cases) to the logarithm of the number of 
decay centrality computations incurred with the brute force search methods. The worst-case number of decay 
centrality computations incurred with the binary search method is appreciably lower than the square root of the 
worst-case number of decay centrality computations incurred with the brute force search methods.  
It is to be noted that the # decay centrality computations incurred with the binary search method (for both 
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average and worst-case) are not plotted in logarithm scale. Hence, even if the bars for the binary search method 
appear to be taller than the bars for the brute force search methods (this happens only in a few cases: r = 0.60 and 
0.65 for average time complexity - unsuccessful searches only, and r = 0.95 for average time complexity - 
successful searches only), the raw values for the average # decay centrality computations incurred with the 
binary search method for all the three scenarios (successful searches only, unsuccessful searches only, and 
successful and unsuccessful searches together) are appreciably smaller than the raw values for the average # 
decay centrality computations incurred with the brute force search methods. 
We observe the brute force approach of proceeding from the left (i.e., starting from δ = 0.01, for which the PCC 
of DEC and DEG is observed to be the largest and is 0.95 or above for all the real-world networks) to be 
relatively better than the brute force approach of proceeding from the right (i.e., starting from δ = 0.99, for which 
the PCC of DEC and CLC is observed to be the largest and is 0.95 or above for all the real-world networks). This 
could be attributed to the degree centrality being a bottleneck metric vis-a-vis the closeness centrality metric 
when evaluated on the basis of the range of δ values for which the PCC of decay centrality with the two metrics 
is above a certain threshold (r). 

We justify this attribution using an example scenario (threshold PCC r value of 0.80). Figure 14 presents the 
real-world networks in the decreasing order of the δ-spacer=0.80 values, wherein 0 < δ-spacer=0.80  < 0.99 (there 
are 22 such real-world networks out of the total of 48). We observe min

80.0),( ≥CLCDECPCCd to be less than 0.20 for 
17 of the 22 real-world networks (implying the closeness centrality metric provided the opportunity for 
δ-spacer=0.80 to be 0.80 or above for 17 of the 22 real-world networks for which δ-spacer=0.80 < 0.99)  whereas 

max
80.0),( ≥DEGDECPCCd is greater than 0.80 for only 3 of the 22 real-world networks that are of interest in this case 

(implying the degree centrality metric provided the opportunity for δ-spacer=0.80  to be 0.80 or above for only 3 
of the 22 real-world networks for which δ-spacer=0.80 < 0.99). Hence, it is obvious that the lower δ-spacer=0.80 

values for the 22 real-world networks is due to the reduced range of δ values for which PCC(DECδ, DEG) ≥ 0.80 
vis-a-vis PCC(DECδ, CLC) ≥ 0.80.   
6.2 Determination of the Maximum Threshold PCC Value (rmax) for a Positive δ-Spacermax 
From Table 3, it is obvious that the δ-spacer values turn negative for one or more real-world networks as the 
value for the threshold PCC (r) increases. However, Table 3 does not show the exact threshold PCC value above 
which δ-space is no longer positive. We now illustrate the use of the binary search algorithm to determine the 
maximum Threshold PCC value (rmax) such that δ-spacermax is positive. The procedure to determine the rmax value 
is described in the last paragraph of Section 4. Since the δ-spacer values turn negative as the threshold PCC 
approaches 1 (rather than 0), we start with a tentative threshold PCC (rmax) value of 1.0 and decrement the value 
by 0.01 until we come across a r value for which the binary search algorithm finds the existence of a positive 
δ-spacer. The corresponding δ value (that belongs to the positive δ-spacer and is referred to as δrmax) determined 
by the binary search algorithm is the δ value at which the distributions for the PCC(DECδ, DEG) and PCC(DECδ, 
CLC) intersect.  

 
Figure 15. Distribution of the rmax and δrmax values for Real-World Networks  
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   #31: Mexican Political Network         #23: Karate Network       #37: San Juan Sur Family Network 
    (δrmax, rmax) = (0.255, 0.96)       (δrmax, rmax) = (0.286, 0.93)      (δrmax, rmax) = (0.255, 0.90) 
 

    
   #42: Taro Exchange Network           #17: GD'96 Network            #15: Football Network 
   (δrmax, rmax) = (0.316, 0.88)        (δrmax, rmax) = (0.226, 0.84)      (δrmax, rmax) = (0.113, 0.79) 
 

    
  #18: Marvel Universe Network   #29: Social Net. Journal Co-authors    #30: Author Facebook Network 
    (δrmax, rmax) = (0.393, 0.72)        (δrmax, rmax) = (0.446, 0.68)          (δrmax, rmax) = (0.446, 0.57) 

Figure 16. Samples of the PCC Distributions for DEC vs. DEG and DEC vs. CLC and their Intersection for 
Real-World Networks in the Decreasing Order of the rmax Values  

 
Table 4 presents the maximum threshold PCC rmax values and the corresponding δrmax values for the 48 
real-world networks. Figure 15 presents a distribution of the rmax and the corresponding the δrmax values; the trend 
one could infer is that real-world networks with a very large rmax value are more likely to have a low δrmax value 
and real-world networks with a moderate rmax value are more likely to have a moderately large δrmax value. The 
median of the rmax and δrmax values are 0.915 and 0.266 respectively. Figure 16 presents the PCC(DECδ, DEG) vs. 
PCC(DECδ, CLC) distributions for some of the real-world networks (in the decreasing order of the rmax values) 
to illustrate the intersection of the two distributions at the δrmax value. Listed below each of the sub figures of 
Figure 16 are the (δrmax, rmax) values observed for the real-world network in consideration.  

 
Table 4. Maximum Threshold PCC (rmax) Values and Corresponding δrmax Values for the Real-World Networks 

# Net. rmax δrmax  # Net. rmax δrmax  # Net. rmax δrmax 
1 ADJ 0.95 0.163  17 GD96 0.72 0.393  33 NSC 0.71 0.332 
2 AKN 0.95 0.163  18 MUN 0.76 0.454  34 PBN 0.87 0.412 
3 JBN 0.96 0.209  19 GLN 0.99 0.010  35 PSN 0.98 0.255 
4 CEN 0.92 0.147  20 HTN 0.73 0.454  36 PFN 0.96 0.224 
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5 CLN 0.75 0.485  21 HCN 0.90 0.286  37 SJN 0.90 0.255 
6 CGD 0.81 0.577  22 ISP 0.93 0.286  38 SDI 0.65 0.501 
7 CFN 0.97 0.270  22 KCN 0.79 0.684  39 SPR 0.98 0.163 
8 DON 0.91 0.316  24 KFP 0.94 0.194  40 SWC 0.98 0.194 
9 DRN 0.80 0.607  25 LMN 0.99 0.010  41 SSM 0.94 0.263 
10 DLN 0.97 0.255  26 MDN 0.78 0.592  42 TEN 0.88 0.316 
11 ERD 0.70 0.623  27 MTB 0.99 0.010  43 TWF 0.76 0.691 
12 FMH 0.84 0.561  28 MCE 0.68 0.446  44 UKF 0.97 0.194 
13 FHT 0.81 0.592  29 MSJ 0.57 0.446  45 APN 0.94 0.163 
14 FTC 0.95 0.255  30 AFB 0.96 0.255  46 RHF 0.97 0.148 
15 FON 0.79 0.113  31 MPN 0.91 0.500  47 WSB 0.99 0.378 
16 CDF 0.99 0.010  32 MMN 0.72 0.393  48 WTN 0.99 0.010 

 

 
Figure 17. Spectral Radius Ratio for Node Degree vs. Maximum Threshold PCC (rmax) for Real-World Networks 
 
The sub figures of Figure 16 also stand as testimony to our earlier statement about the results of our initial 
correlation study that the PCC(DECδ, DEG) monotonically decreases with increase in δ and PCC(DECδ, CLC) 
monotonically increases with increase in δ. It is this phenomenon that forms the backbone of our binary search 
algorithm and enabled us to initially setup the left and right indexes to correspond to the δ values at which we 
observe the max PCC value with DEG and CLC respectively, and later move these indexes towards each other 
by maintaining the invariant that the left index always corresponds to a δ value at which the PCC(DECδ, DEG) is 
greater than or equal to the threshold PCC (r) and likewise the right index always corresponds to a δ value at 
which the PCC(DECδ, CLC) is greater than or equal to the threshold PCC (r). The algorithm seeks to find a 
middle index (if δ-spacer is positive), which corresponds to the average of the δ values represented by the left 
index and right index, such that the PCC(DECmiddle index, DEG) and PCC(DECmiddle index, CLC) are both greater 
than or equal to the threshold PCC (r). If the algorithm comes across a middle index for which both 
PCC(DECmiddle index, DEG) and PCC(DECmiddle index, CLC) are less than the threshold PCC (r), it is guaranteed 
(due to the monotonically non-increasing and non-decreasing trend of the PCC values) that the δ-spacer for the 
real-world network is negative. 
Like in the case of δ-spacer, we also observe networks with larger variation in node degree to incur lower values 
for rmax and networks with low variation in node degree to incur larger rmax values. Of the 27 real-world networks 
that had rmax values of 0.9 or above, 19 of these networks had λsp (spectral radius ratio for node degree) values 
less than 1.5. On the other hand, 12 of the 13 real-world networks with rmax values less than 0.8 had λsp values 
above 1.5. Figure 17 plots the distribution of the rmax vs. λsp values for real-world networks. 
6.3 Correlation between the Maximum Threshold PCC Value (rmax) and the Pearson's Correlation between 
Degree and Closeness Centrality Metrics 
As part of further analysis, we analyzed the correlation between the rmax values observed for the real-world 
networks and the Pearson's correlation coefficient between DEG and CLC. We observe a very strong positive 
correlation between the PCC(DEG, CLC) and the rmax values. The regression equation is shown below (equation 
4); the R2 for this straight line fit (shown in Figure 18) is 0.9485 and the Standard Error of the Residuals (SER) is 
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0.025, a significantly smaller value given that the range for rmax is from   -1 to 1. Figure 19 presents the 
distribution of the actual rmax values vs. the rmax values predicted using the actual values of the PCC(DEG, CLC) 
and the regression equation (4); we observe the data points to lie close to the diagonal line, justifying the smaller 
SER value for the prediction. 

 Predicted rmax = 0.3792 * PCC(DEG, CLC) + 0.626             (4) 

 
Figure 18. PCC (DEG, CLC) vs. the Maximum Threshold PCC (rmax) Value for Real-World Networks  

 
Though there is a very strong linear correlation, we observe (from Figure 17) the rmax value for a real-world 
network to be typically much larger than the PCC(DEG, CLC) value for the network. The median of the PCC 
(DEG, CLC) values is 0.728, while the median of the rmax values is 0.915. Note that, as per the ordinal scale 
proposed by Evans (1995), 0.8 is typically the minimum correlation coefficient value expected for two metrics to 
be considered to exhibit a very strongly positive correlation. We observe 35 of the 48 real-world networks (i.e., 
more than 2/3rds of the networks) to have a rmax value of 0.8 or above. Thus, though the PCC(DEG, CLC) for a 
real-world network might be low, we observe that there exist at least one value of δ (δrmax that could be 
efficiently found by our binary search algorithm) for which we could simultaneously find a relatively stronger 
correlation between DEG and DEC as well as between CLC and DEC.  

 
Figure 19. Distribution of Actual vs. Predicted rmax Values for the Real-World Networks  
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7. Related Work and Our Contributions 
Decay centrality has not been explored much in the literature for complex network analysis. To the best of our 
knowledge, ours is the first work to conduct a correlation study focusing on decay centrality. Most of the work 
(e.g., Li et. al., 2015, Meghanathan, 2015) on correlation studies (involving centrality metrics) were focused on 
the commonly studied centrality metrics such as the neighborhood-based degree centrality and eigenvector 
centrality (Bonacich, 1987) and shortest path-based betweenness centrality (Freeman, 1977) and closeness 
centrality. The objective of such correlation studies has been typically to identify computationally-light 
alternatives (like DEG and its derivatives; Meghanathan, 2017) for computationally-heavy metrics (such as EVC 
and BWC) for both real-world networks and simulated networks of theoretical models (Renyi, 1959; Barabasi & 
Albert, 1999). The focus of our paper is different from such typical correlation studies in the literature. We seek 
to explore the trend of change in the correlation coefficients between a parameter-driven centrality metric (whose 
values for a node change for different values of the decay parameter) and the degree and closeness centrality 
metrics whose values are not parameter-driven and remain the same for a particular network.  
The most related work to our work is a recent study (Tsakas, 2016) on random networks (Renyi, 1959) for which 
a single threshold value of the decay parameter (referred here as δthresh) was observed to exist (for a particular 
operating condition) such that nodes with high degree centrality also had a high decay centrality computed for δ 
values less than δthresh and nodes with high closeness centrality also had a high decay centrality computed for δ 
values above δthresh. It was observed by Tsakas (2016) that for random networks: nodes with the largest values for 
degree centrality and closeness centrality are more likely to be nodes that also incur the largest values for decay 
centrality for almost all values of δ. In addition, nodes that had the largest decay centrality for a certain value of 
δ are more likely to be part of the set of nodes that had the largest degree centrality or the largest closeness 
centrality. The likelihood of all of the above was studied using multinomial logistic regression (Greene, 2011). 
Most of the other works (e.g., Chatterjee & Dutta, 2015; Kang et. al., 2012) on decay centrality metric have 
focused on exploring its suitability for diffusion in socio-economic networks with regards to selecting the seed 
nodes that could effectively propagate information about a product to putative customers. Nodes that are 
themselves central and connected to other central nodes (via direct links or shorter paths) in the network are 
typically preferred for such "agent" roles (Tsakas, 2016; Chatterjee & Dutta, 2015). The use of decay centrality 
vis-a-vis diffusion centrality (Kang et. al., 2012) and eigenvector centrality (Ide et. al., 2014; Banerjee et. al., 
2013) to identify such "agent" nodes for diffusion has been explored in the literature. 
Our paper differs from all of the above work and is innovative on the following lines: We analyze real-world 
networks rather than the simulated random networks. We use the Pearson's correlation measure to study the 
correlation between the actual centrality values rather than multinomial logistic regression (Greene, 2011) to 
study the sets of vertices that had the largest values of centrality. We have unearthed the trend (not known until 
now) that the Pearson's correlation coefficient between decay centrality and degree centrality decreases with 
increase in the value of the decay parameter δ and that the Pearson's correlation coefficient between decay 
centrality and closeness centrality decreases with decrease in δ. We have developed an efficient binary search 
algorithm that makes use of the above phenomenon to determine the existence (or the lack of it) of one or more δ 
values (collectively referred to as δ-spacer) for which PCC(DECδ, DEG) ≥ r and PCC(DECδ, CLC) ≥ r for a 
threshold PCC (r). We also demonstrate the use of the binary search algorithm to determine the maximum 
threshold PCC (rmax) value that could be observed between DEC-DEG as well as between DEC-CLC for a 
real-world network. We observe this rmax value to be appreciably larger than PCC(DEG, CLC) for most of the 
real-world networks, and also show that it could be accurately predicted using the latter. One could thus run the 
binary search algorithm in the vicinity of the predicted rmax value for a real-world networks and determine a δ 
value for which we observe the maximum threshold PCC between DEC and DEG as well as between DEC and 
CLC. 
8. Conclusions 
Our contributions in this paper are as follows: For each of the 48 real-world networks (of diverse degree 
distributions) analyzed in this paper, we observe the Pearson's Correlation Coefficient (PCC) between degree 
centrality (DEG) and decay centrality (DEC) to monotonically decrease with increase in the decay parameter (δ), 
and the PCC between closeness centrality (CLC) and decay centrality to monotonically increase with increase in 
δ. We have explored this phenomenon and proposed a binary search algorithm that could be used (for a given 
threshold PCC r) to determine the existence of a positive δ-spacer (or the absence of the same) comprising of one 
or more δ values for which PCC(DECδ, DEG) ≥ r and PCC(DECδ, CLC) ≥ r. In addition, we show the use of the 
binary search algorithm to determine the maximum threshold PCC (rmax) value for a real-world network and the 
prediction of the same using PCC(DEG, CLC). The rmax value for a real-world network would be a measure of 

72 
 



cis.ccsenet.org Computer and Information Science Vol. 10, No. 2; 2017 

the extent to which the degree centrality or closeness centrality metrics could serve as alternatives to the decay 
centrality metric and vice-versa. If the predicted rmax value for a real-world network is high, then one could run 
the binary search algorithm in the vicinity of the rmax value to determine a value of δ (δrmax) for which 
PCC(DECδ-rmax, DEG) = rmax and PCC(DECδ-rmax, CLC) = rmax. As vertices with large decay centrality are 
preferable for diffusion, our approach of determining the rmax value and the corresponding δrmax value for a 
real-world network using the proposed binary search algorithm could bring significant savings in the process of 
exploring a suitable δ value for which DEC exhibits the largest correlation coefficient value with both DEG and 
CLC. 
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