
Computer and Information Science; Vol. 10, No. 1; 2017
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

34

Exploiting Data-Parallelism on Multicore and SMT Systems for
Implementing the Fractal Image Compressing Problem

Rodrigo da Rosa Righi1, Vinicius F. Rodrigues1, Cristiano A. Costa1 & Roberto Q. Gomes1
1 Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos, Brazil
Correspondence: Rodrigo R. Righi, Applied Computing Graduate Program, Universidade do Vale do Rio dos
Sinos, Unisinos Av. 950, São Leopoldo, Rio Grande do Sul, Brazil. E-mail: rrrighi@unisinos.br
Correspondence: Rodrigo da Rosa Righi, Applied Computing Graduate Program, Universidade do Vale do Rio
dos Sinos, Brazil. E-mail: rrrighi@unisinos.br

Received: November 21, 2015 Accepted: December 8, 2015 Online Published: December 25, 2016
doi:10.5539/cis.v10n1p34 URL: http://dx.doi.org/10.5539/cis.v10n1p34

Abstract
This paper presents a parallel modeling of a lossy image compression method based on the fractal theory and its
evaluation over two versions of dual-core processors: with and without simultaneous multithreading (SMT)
support. The idea is to observe the speedup on both configurations when changing application parameters and
the number of threads at operating system level. Our target application is particularly relevant in the Big Data era.
Huge amounts of data often need to be sent over low/medium bandwidth networks, and/or to be saved on devices
with limited store capacity, motivating efficient image compression. Especially, the fractal compression presents
a CPU-bound coding method known for offering higher indexes of file reduction through highly time-consuming
calculus. The structure of the problem allowed us to explore data-parallelism by implementing an embarrassingly
parallel version of the algorithm. Despite its simplicity, our modeling is useful for fully exploiting and evaluating
the considered architectures. When comparing performance in both processors, the results demonstrated that the
SMT-based one presented gains up to 29%. Moreover, they emphasized that a large number of threads does not
always represent a reduction in application time. In average, the results showed a curve in which a strong time
reduction is achieved when working with 4 and 8 threads when evaluating pure and SMT dual-core processors,
respectively. The trend concerns a slow growing of the execution time when enlarging the number of threads due
to both task granularity and threads management.
Keywords: image compression, fractal compression, simultaneous multithreading, big data.
1. Introduction
Considering the era of Big Data, the thematic of image compression becomes more and more relevant (Chen et
al., 2012; Revathy & Jayamohan, 2012; Sundaresan & Devika, 2012). The main objective consists in reducing
the irrelevance and redundancy of the image data to store or transmit data in an efficient way. For instance,
images obtained by experiments in the fields of astronomy, medicine and geology may present several gigabytes
in memory, emphasizing the use of image compression properly (Pinto & Gawande, 2012). In this context, a
technique called Fractal Image Compression (FIC) appears as one of most efficient solutions for reducing the
size of files (Jeng et al., 2009; Khan & Akhtar, 2013). An expensive encoding phase characterizes the FIC
method, since the search used in the algorithm to find self-similarities is time-consuming. A square image with
1024 pixels as dimension may take more than an hour to be compressed in a single processing system. This
elucidates why this technique is not so widespread among the traditional operating systems. However, at high
compression ratios, fractal compression may offer superior quality than JPEG and Discrete-cosine- transform
(DCT)-based algorithms (George & Al-Hilo, 2009). Unlike the coding phase, the decoding one occurs quickly,
for instance, enabling users to download compressed images or videos from Web servers and visualize them in
their hosts in a reasonable time interval.
Considering a lower encoding phase of FIC method, some alternatives are considered to minimize this process.
Basically, the most alternatives try to reduce the coding time by reducing the search for the best-match block in a
large domain pool (Fu & Zhu, 2009; Jeng et al., 2009; Mitra et al., 1998; Qin et al., 2009; Revathy & Jayamohan,
2012; Rowshanbin et al., 2006; Sun & Wun, 2009; Vahdati et al., 2010). Other possibilities consist in exploring
the power of parallel architectures like nCUBE (Jackson & Blom, 1995), SIMD (Single Instruction Multiple

cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017

35

Data) (Khan & Akhtar, 2013; Wakatani, 2012) processors and clusters (Righi, 2012; Qureshi & Hussain, 2008).
The use of multitasking on recent computing systems is a possibility not deeply explored for solving the FIC
problem (Cao & Gu, 2010; Cao & Gu, 2011). The authors of these last initiatives presented an OpenMP solution
that was tested over a quad-core processor. Besides multicore, we are focusing our attention on SMT
(Simultaneous Multithreading) (Raasch & Reinhardt, 2003) capability, since both technologies are common on
off-the-shelf computers. Some researchers affirm that we will have tens or hundreds of cores, each one with
multiple execution threads (Note 1), inside a processor in the next years (Diamond et al., 2011; Rai et al., 2010).
This emphasizes the significance of modeling applications for such architectures.
The improvement in performance obtained by using multicore and SMT technologies depends on the software
algorithms and their implementations. Task granularity, threads synchronization and scheduling, memory
allocation, conditional variables and mutual exclusion are parameters under user control that must be carefully
analyzed for extracting the power of these technologies in a better way. In this context, the present paper
describes the FIC technique and its threads-based implementation. The FIC problem allows a program
organization without data dependencies among the threads, which is special useful for observing key
performance factors on parallel machines. Therefore, we modeled an embarrassingly parallel application by
exploiting data-parallelism on the aforemesaid problem. Contrary to (Cao & Gu, 2010; Cao & Gu, 2011), we
obtained the results by varying the input image, the application parameters as well as the target machine.
Particularly, we used two dual-core machines, one with and another without SMT capacity. In this case, SMT
doubles the number of execution threads from 1 per core to 2, increasing processor throughput by multiplexing
the execution threads onto a common set of pipeline resources. Our evaluation confirmed gains up to 29% when
enabling SMT. Besides computer architecture information, this paper also discusses the impact of the number of
threads and task granularity on the obtained results.
This paper is organized as follows. Section 2 describes the two traditional approaches for image compression.
The FIC method is presented in Section 3 in details. Section 4 shows the parallel modeling proposed for the FIC
problem, while Section 5 describes its implementation. The tests and the discussion of the results are presented
in Section 6. Section 7 presents some related works. Finally, Section 8 points out the concluding remarks, future
works and emphasizes the main contribution of the work.
2. Image Compression
A Pixel is the minimum unit to define an image. A digital image is a bi-dimensional matrix composed by a set of
pixels whose spatial resolution is I × J, where both I and J ∈ N and corresponding matrix element value
identifies a set of discretized attributes (ex. gray level, color, transparency, and so on). Consequently, the larger
the size of the image, greater will be the number of its pixels and attribute discretization, where each pixel is
represented by a collection of bits, normally 16, 24 or 32 bits. In case, 16 Mbytes of memory are required to
store a single image of 2048 × 2048, with 32 bits/pixel. In addition, some square images obtained by
researchers can present dimensions up to 106, which turns clear the importance of the image compression field.
We could classify the compression process in two subprocesses: (i) lossless compression and; (ii) lossy
compression.
2.1 Lossless Compression
Situations in which the information needs to be kept intact after uncompressing usually employ Lossless
compression. Medical images, technical drawings or texts are examples of using the lossless approach (Chen &
Chuang, 2010). First, this process consists in transforming an input image f(x) in f’(x). According to Fu and Zhu
(2009), this transformation can include differential and predictive mapping, unitary transforms, sub-band
decomposing and color spacing conversion. After that, the data-to-mapping stage converts the f’(x) in symbols,
using the partitioning or run-length coding (RLC).
Lossless symbol coding stage generates a bit-stream by assigning binary codewords to symbols that were already
mapped. Lossless compression is usually achieved by using variable-length codewords. This variable-length
codeword assignment is known as variable-length coding (VLC) and also as entropy coding. Figure 1 depicts the
process for obtaining a compressed image through the lossless method. Such method is used on algorithms for
producing BMP, TGA, TIFF and PNG-typed images.

cis.ccsenet.

2.2 Lossy C
Lossy com
process, th
(Jeng et al
compressio
among pix
for examp
of the ima
Figure 2 d
Predictive

3. Fractal
Mandelbro
by mathem
of ”self-sim
uncovers f
irregulariti
Fractal im
image than
file that ca
Coding ph
blocks thr
does not s
because a
transforma
function sy
size m × m
blocks is R
d = 2 × r a
R1, ..., RM
Contractiv
2009; Shar
repeatedly
and f a fun
function, w
level).

org

Figure 1
Compression

mpression is an
he resultant im
l., 2009; Khan
on: (i) transfo
xels that result
le to transform
ge quality. The
depicts the fun
coding, JPEG

Figur

l Image Comp
ot and Fisher d
matical formal
milarity”, for
finer, previous
ies and fragme

mage compressi
n decompressi
an be decompr
hase of the Frac
ough the trans
store or send b
a fractal repre
ation aspect, a
ystem (IFS) th
m, then F is d
R. Also, F is pa
as shown in Fi
}, with M = (m

ve Mapping Fi
rabayko & Ma

y starting with
nction. If f : X
where s is a co

. Common step

n irreversible
mage will be a

& Akhtar, 20
orm, (ii) quanti
ts in a matrix o

m color images
e stage coding
nctioning of t

G coding, and F

re 2. Common

pression
described the c
isms (Chauras
instance, we c

sly invisible, n
entations in a
ion is an exam
ng it. The idea
essed very qui
ctal Image Com
sformation of
blocks of pixe
sents a shape
as shown Figu
heory. To unde
divided in squ
artitioned in sq
igure 3 (b). In
m ÷ r)2 − 1, and
ixed-Point theo
arkov, 2012). T
any initial po

X → X is contra
ontractive facto

Computer an

ps for compres

method, but y
lmost identica
13). Analogou
ization and; (i
of values. The
s into gray-sca
g process utiliz
the lossy com
Fractal coding.

n steps for imag

concept of frac
sia & Somkuw
could make an

new structure i
large range su

mple of asymm
a is to do most
ickly.
mpression (FIC
coefficients (J

els, but rather
e that contain
ure 3 (a). Th
erstand, consid

uares non-over
quares d × d ca
dark blue it is

d D = {D0, D1,
orem is the ma
The theorem a

oint, we conver
active, then f h
or with 0 < s <

nd Information S

36

ssing an image

yields better c
al to the origin
us to lossless co
iii) coding. Th
e quantizer sta
le ones. This p

zes some metho
mpression meth

ge compressio

ctal, which are
war, 2009; Wak
n analogy to z
in digital imag
uch as clouds,
metrical method
t of the work d

C) method use
Jeng et al., 20
only function

s parts that a
e fractal com
der the follow
rlapped of size
alled Domain B
s a subset of D
, ..., DN } with
ain idea behin
affirms “if a tr
rge to a uniqu

has a unique fi
< 1 and o the o

Science

e when using a

ompact ratio r
nal one, howev
ompression, th

he transformati
age is used to r
process is irrev
ods that avoid
hods. Among

on for a lossy-b

e infinitely sel
katani, 2012).
zooming in wi
ges. Therefore
smokes, moun
ds. They take
during the com

es the self-simi
009; George &
ns that represe
are replicas am

mpression is a
wing formalism
e r × r called
Blocks. The se

D and in light b
N = (m ÷ d)2 −

nd a fractal enc
ransformation
ue fixed point”
xed point |f |.

offset value (in

a lossless enco

results. After
ver never will
here are three s
ion stage redu
reduce quantit
versible and de

more losses in
lossy techniqu

based encoder

lf- similar, iter
To better und

ith a lens or o
, fractals are s
ntains and othe
more time/effo

mpression, thus

ilarity concept
& Al-Hilo, 200
ent their transf
mong them- s
technique bas

m. Let F a gray
Range Blocks

et of domain b
blue a subset o
− 1.
coding (Chaur
is contractive

”. Let X a com
The Eq. (1) de

n this case o rep

Vol. 10, No. 1;

oder

the uncompre
be the same a

stages on any
uces the correl
ty of bits per p
efines the loss
n the entire co
ues often used

rated and desc
derstand the fe
other device, w
structures that
er nature elem

fort compressin
s creating an o

t to represent im
09). This techn
formations. Th
selves under
sed in the ite
y-scale image
s. The set of r
locks is D. Us

of R. Then R =

rasia & Somku
then when ap

mplete metric s
efines a contra
presents brigh

2017

ssing
again
lossy
ation

pixel,
level
ding.
d are

ribed
ature

which
have

ments.
ng an
utput

mage
nique
his is
some
rated
with

range
ually

= {R0,

uwar,
plied
space
active
tness

 (1)

cis.ccsenet.

Figure 3

Besides th
match to R
(usually e
isometric t
factor that
following
regarding t

Considerin
For any in
get the fix
similarity
Eq. (5) sho
Affine tran
used as th
suffer all t
rotation 27
yields the
According
4. Parallel
Commonly
parallel pr
multicomp
systems; (i
a modelin
among the
multithrea
library-ass

org

. (a) Observing

he fixed-point t
Ri. These trans
ight); (ii) scal
transformation
t contracts Dj
works (Cao &
these equation

ng the aforeme
nitial value of D
xed-point near
to Ri ∈ R. In
ows how the M
nsformations.

he average amo
the eight stand
70o; (v) flip H;

minor MSE v
g to Fu and Zhu
l Program Mo
y, we need to
rogram can f
puter environm
iii) GPU (Grap
g approach in

emselves throu
aded program
sisted mechani

g the recurrent
subset R with

theorem, Affin
sformations ar
le and; (iii) c
n, s is a contrac
size to Ri size

& Gu, 2011; S
ns.

entioned conte
Dj(x, y), there
to the original

n this context,
MSE is found.
Before evalua

ong a group o
dard isometric
; (vi) flip V; (v
value. Finally,
u (Fu & Zhu, 2
odelling
rewrite sequen

follow one or
ment; (ii) mu
phical Process

n accordance w
ugh a common
can either de

isms for creati

Computer an

t pattern of fra
 r = 4 and a su

ne Transformat
re performed i
ontrast. An A
ctive scale and
e. The values

Sharabayko &

	 ∑ ∑	 ∑∑, 	 ∑
ext, IFS repres
is a finite valu
l value Dj(x, y
the metric use
 In this equati
ating MSE, ea
f nearest pixel

c transformatio
vii) flip HV an
, for each Ri w
2009), this mat

ntial programs
r a combinatio
ultithreading p
sing Unit) prog
with the secon
n shared-memo
efine the laun
ing them impl

nd Information S

37

actals in the lea
ubset D with d

tions (Sharaba
n the followin

Affine Transfor
d o means a sp
of s and o are
Markov, 2012

∑ ∑∑∑ ∑∑∑ ,,
sents the opera
ue n that will b
y). The main go
ed to discover
on, Ri(x, y) is

ach Dj is contr
ls as the absol
ons: (i) rotatio

nd; (viii) flip H
will be found
tching operatio

s to take the ad
on of the fol
programming
gramming on v
nd paradigm. I
ory space in w
ching of threa
icitly. In the s

Science

aves of a plant;
= 8 in a sampl

ayko & Marko
ng characterist
rmation is giv

pecific brightne
e defined in E
2; Wakatani, 2

,
ations perform
be the amount
oal is to find a
a best matchin
an original pix

racted in facto
lute value of d
on 0o; (ii) rota

HV inverted. Th
a Dj , an iso

on has comple

dvantages of p
llowing parad
by exploring
vectorial-base
In this contex
which they can
ads by using

same way, the

; (b) Analyzing
le image

ov, 2012) are u
tics of the bloc
ven by Eq. (2
ess level. S(Dj

Eq. (3) and (4)
012) provide

med over Affin
of iterative op

a Dj ∈ D wh
ng is a mean sq
xel from F. R

or r ÷ d. This
defined positio
ation 90o; (iii)
he next step is

ometry, a scale
exity of O[N4].

parallel archite
digms: (i) mes

multiprocess
d machines. T
t, the threads
n both read fro
function calls
operating syst

Vol. 10, No. 1;

g the relation o

useful to adapt
ck Dj: (i) isom

2), where T()
j) represents a
), respectively.
detailed discu

ne Transformat
perations need

hich presents a
quare error (M
’i is Dj modifie
contraction ca

on in Dj. S(Dj)
rotation 180o

 to define whic
e and a bright

ectures. Basica
ssage-passing
ors (or multi

This article pre
may commun

om and write
s explicitly or
tem is in charg

2017

of a

Dj to
metric

is an
scale
. The
ssion

 (2)

 (3)

 (4)

 (5)

tions.
ed to
high

MSE).
ed by
an be
) will
; (iv)
ch Dj
tness.

ally, a
in a

core)
sents

nicate
to. A
r use
ge of

cis.ccsenet.

scheduling
operating s
In particul
multiple c
problems m
fit within e
and Choi (
independe
idea is to s
one will b
parallel ap
higher spe
performan
when emp

The first s
details). T
with a who
each threa
the appen
synchroniz
number of
the execut
in the syst

org

g each created
system with sc
lar, gains are

cores. This eff
may realize sp
each core’s cac
(Kim & Choi,
nt. Therefore,
start more than
be responsible
pplications are
eedups if the in
nce level is har
ploying 4 threa

Figur

step of the mo
The value of y
ole set of D an

ad computes th
nding of all
zation point, w
f cores or proc
tion curve pres
tem. A model

d thread to a sp
cheduling instr
limited by th

fect is describ
peedup factors
che(s), avoidin
, 2011), FIC h
we modeled

n one FIC thre
for a subset o
ideal for paral

nterprocess com
rdly matched b
ds.

e 4. Example o

odel consists i
indicates the

nd must test all
he FIC algorith
blocks for ge
which waits fo
cessors on a mu
sents a perform
ing without d

Computer an

pecific process
ructions.

he fraction of
bed by Amdah
near the numb

ng use of much
has a natural pa
an application

eads at the sam
of the original
llel computers
mmunication i

by another app

of the Parallel

in splitting the
number of thr

l elements of t
hm for its own
enerating the

for the ending
ultiprocessing

mance peak wh
ata dependenc

nd Information S

38

sor (or core) w

the software t
hl’s law. In th
ber of cores, or
h slower main
arallelism. Eac

n for exploiting
me time by not

l image. Follo
s. Their basic a
is either lower
lication model

Model for the

e original ima
reads employe
this set against
n block, genera

final compre
of all thread
machine, as w

hen the numbe
cies is useful t

Science

without user in

that can be ru
he best case, s
r even more if
 system memo
ch comparison
g data-parallel
defining data

owing Garcia
argument conc
r or non-existe
l. Thus, Figure

e FIC problem

age in y equal
ed on compres
t each range el
ating both s an
essed image.
s. Naturally, t

well as the gran
er of threads is
to concentrate

ntervention or

un in parallel
so-called emba
the problem is

ory. As already
n between rang
lism upon this
dependencies
and Gao (201

cerns that it is p
ent. These auth
e 4 illustrates t

with 4 threads

subsets of R
ssion coding.
ement receive

nd o sets. The
This task o

the performan
nularity of the
 close to the p

e the discussio

Vol. 10, No. 1;

he/she can ai

simultaneousl
arrassingly pa
s split up enou
y presented by
ges and domai
s feature. The
among them.
3), embarrass
possible to ach

hors affirm tha
the proposed m

s

(see Section
Each thread w
d previously. T
final step conc
nly occur aft

nce depends on
e work. Comm
processing elem
on in the follo

2017

d the

ly on
rallel
gh to
Kim

ins is
main
Each
ingly
hieve
t this

model

3 for
works
Thus,
cerns
ter a
n the

monly,
ments
wing

cis.ccsenet.

issues: (i)
which is t
systems.
5. Applica
Concernin
uses the r
directive g
mutexes m
Figure 5 d
found in th
al., 2009;
this config
of dimensi
larger the
since the
creates one
the image
multiplied

The peak
original im
the origina
the mean
reconstruc
2009; Qin
Although t
with 3 Mb
Cache L2,
core.

Simultaneo
a SMT-ass
it allows
execution
the numbe
instruction
handle mu
instruction
Especially
on differen
non-SMT

org

what is the pe
the impact of

ation Developm
ng the model e
routines from
groups from t

management fo
delineates the
he computing g
Sundaresan &

guration and us
ions (r × r): 2
computational
threads manag
e, two, four, ei

e. We evaluate
d by 8 since eac

signal-to-noise
mage f and a de
al one, pixel-b

error and w
ction of a lossy

et al., 2009). T
they present th

bytes of Cache
, 3 Mbytes Ca

ous Multithrea
sisted dual-cor
for flexible sc
core as busy a

er of dependen
ns operating o
ultiple tasks b
ns to be comp
y applications l
nt sets of dat
solutions (Raa

erformance in
f r (dimension

ment and Eva
explained earli

Pthreads for
this library: (
or creating, de
steps executed
graphics litera

& Devika, 201
sed two 24bpp
2x2, 4x4, 8x8,
l time to solve
gement overhe
ight, sixteen, o
ed each range
ch domain has

Figure 5.

e ratio (PSNR
ecoded one f’.
y-pixel, in ord

was defined in
y compression
The parallel en
he same numb
e L2; (ii) Intel
ache L3. The f

ading is a way
re processor wi
cheduling of a
as possible. Fo
nt instructions
on separate da
y allowing on
pleted simulta
like FIC with
ta, SMT can i
asch & Reinha

Computer an

terms of appl
n of the range

aluation Meth
ier, we develo
enabling the

(i) thread man
estroying, lock
d in the main

ature (Chen &
2) employed

p BMP-typed i
16x16 and 32

e the FIC prob
ead is the sam
or thirty two th
e belonging to
 8 isometries.

The algorithm

R) (Sharabayko
 At the end of

der to compute
n Eq. (5) pre
n method (Sha
nvironment, in
er of cores, the
i5-460M, SM

first configurat

1
 to virtualize o
ill be reported
all available e
or accomplishi
on the pipelin

ata in parallel)
ne task to wor
aneously becau
data-parallelis
improve their

ardt, 2003).

nd Information S

39

lication time w
) and m (dim

hodology
oped an applica

threads facili
nagement for
king, and unlo
program. Con

Chuang, 2010
square-shaped
input files. We
2x32. Basically
lem. This para

me when main
hreads. Each th
o the quadran

m executed by t

o & Markov, 2
f the decompre
e the PSNR va
eviously. Seve
arabayko & M
n its turn, has tw
ey present diff

MT capacity wi
tion presents tw

10	 	
one or more co

d as four logica
execution slot
ing this, the m
e by taking ad
) (Diamond et
rk while the o
use they use
sm, where mul

performance

Science

when employin
mension of the

ation written i
ities. Our imp
creating, deta

ocking mutexe
ncerning the i

0; Garg, 2011;
d gray-scale im
 are testing the
y, the shorter
ameter has an
ntaining the nu
hread has the ta
nt against all

the main progr

2012) measure
ess algorithm, t
alue. The Eq. (
eral works us
arkov, 2012; K
wo nodes, eac
ferent composi
ith 4 execution
wo execution

,

ores on a singl
al processors. T
ts, which incr

main function o
dvantage of a s
t al., 2011). T
other is waitin
non-conflictin

ltiple executio
in approxima

ng different nu
 image) on m

in C programm
plementation u
aching, and jo
es; (iii) synchr
input image, th
George & Al-

mages. We hav
e application w
the dimension
impact on app
umber of them
ask of operatin
domains. In

ram.

es the error or
the gerated im
(6) defines PSN
se PSNR met
Kim & Choi, 2
h one with a d
itions: (i) Intel
n threads, 2.53
threads, one p

le one. At oper
The main stren
eases efficien

of SMT techno
superscalar arc

Thus, SMT en
ng for a result
ng resources (
on threads exec
ately 30% wh

Vol. 10, No. 1;

umber of cores
multicore and

ming language
uses the follo
oining threads
ronization bar
he most refere
Hilo, 2009; Je
ve decided to
with different r
n of the ranges
plication execu
m. Our applic
ng on a quadra
addition, test

distortion betw
mage is compar

NR. MSE indi
tric to qualify
2011; Sun & W

dual- core proc
l E7500, 2.93 G
3 GHz, 512 Kb
per each proce

rating system l
ngth of SMT is
cy by keeping

ology is to dec
chitecture (mu

nables each co
t, or allowing
(Rai et al., 2
cute the same

hen compared

2017

s; (ii)
SMT

e that
wing
; (ii)
riers.
ences
ng et
keep

range
s, the
ution,
ation

ant of
s are

ween
red to
cates

y the
Wun,
essor.
GHz,
bytes
ssing

 (6)

level,
s that
g the
rease
ltiple
re to
both

010).
code
with

cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017

40

6. Experimental Results and Discussion
We have used two input images for performing our evaluation. The first refers to the Lenna (Note 2) picture and
presents 256x256 pixels, while the second is a Coliseum photo with 512x512 pixels. Each experiment was run
30 times and we got the mean value and the standard deviation. Considering all the tests, the highest standard
deviation for the 256x256 image as 2.78% from the average, while 1.51% was the index obtained for the
512x512 input. We started the time counter before launching the first thread and stopped it after finalizing the
execution of all threads. This method discarded sequential code in the measures. Table 1 presents the obtained
PSNR when varying the number of ranges. The number of threads does not matter for evaluating this index since
the output image is always the same. The 2x2-sized range achieved the best results resulting from its better
entropy when compared to larger ranges. Visually, images with PSNR greater than 21 have a good visualization
capacity for human beings (Türkan et al., 2012). We achieved a compression rate of 2:1 in both images when
employing a range with dimensions 2x2. However, 234:1 and 250:1 compression ratios were observed for
32x32-sized ranges when manipulating Lenna and Coliseum images, respectively.

Table 1. Analyzing the obtained PSNR (measured in decibels) for both evaluated images.

Input Image Dimension of ranges
2x2 4x4 8x8 16x16 32x32

Lenna 35 31 26 22 19
Coliseum 38 27 22 19 18

Tables 2 and 3 present the evaluation of both input images when using a dual-core machine without SMT facility.
As expected, the best results appear when testing 2 or 4 threads. For example, when testing only one thread with
a range dimension equal to 4 the result was 6.57 seconds. This configuration does not take profit of the parallel
machine. However, the execution with 32 threads presented the highest execution time when comparing
executions of multiple threads. This behavior is explained by the overhead of mutex, synchronization and thread
management primitives. The larger the number of threads, the higher this overhead. This elucidates a common
behavior on evaluating threads on dual-core processors, where the application time decreases abruptly with 2 and
4 threads and grows up slowly when enlarging the number of threads. Figure 6 illustrates the speedup
(sequential_time ÷ parallel_time) and the parallel efficiency (Speedup ÷ processors) for the tests with 2x2 range.
Our application presents a poor speedup because the number of threads is greater than the number of execution
cores. This statement becomes clear in the efficiency graph. Considering that we have only 2 physical cores, the
execution with two threads presented the highest efficiency (92%). The execution with 4 up to 32 threads
expresses the dilemma of concurrence, since each pair of threads competes for a single processor.
Figure 7 depicts the speedup evaluation results of the Coliseum image over a dual-core machine. This image
presents a larger computation grain if compared with the Lenna one. In other words, the overhead associated
with threads are better amortized when testing the Coliseum image since each thread has more work to compute
in comparison with the other image. In this way, the execution with 2 threads reaches indexes up to 1.97 of
speedup which is considered a good measure since the ideal speedup for this configuration is 2. Besides this
analysis, it is possible to observe other two behaviors in the graph of Figure 7. Firstly, the larger the dimension of
the ranges, the lower the captured speedup. For example, the execution with a range of 32x32 presents a lowest
computation grain per each thread. Secondly, we can observe an execution pattern among the threads.
Independent of the number of threads, the speedup curve presents the same aspect.

Table 2. Evaluating a dual-core processor without SMT support with a 256x256-sized image (Lenna) - Time in
seconds.

Range Sequential Threads
2 4 8 16 32

2x2 45.379 24.899 25.352 25.583 25.490 25.548
4x4 6.576 3.523 3.459 3.520 3.540 3.562
8x8 1.249 0.834 0.779 0.790 0.796 0.825
16x16 0.268 0.219 0.213 0.219 0.226 0.245
32x32 0.058 0.059 0.062 0.069 0.081 0.117

cis.ccsenet.

Table 3. E
in seconds

Figure 6.

F

Both Tabl
Different f
time when
when anal

org

Evaluating a du
s.

Rang

2x2
4x4
8x8
16x1
32x3

(a) Speedup a

Figure 7. Speed

es 4 and 5 pr
from the evalu
n using 4 threa
lyzing the coli

ual-core proces

ge Sequentia

682.097
114.911
21.523

16 4.563
32 1.023

and (b) parallel

dup with a 512

esent the resu
uation on Tabl
ads significant
iseum picture

Computer an

ssor without S

al Threads
2
346.828
59.910
10.948
2.476
0.661

l efficiency wh
machine w

2x512-sized im

ults when chan
les 2 and 3, th
tly. Figure 8 sh
with SMT-ass

nd Information S

41

SMT support w

4 8
343.326 34
58.306 58
11.028 11
2.442 2.4
0.623 0.6

hen using a 25
without SMT su

mage and a dua

nging the infra
he employmen
hows the gain
sisted dual-cor

Science

with a 512x512

16
4.427 347.8
.450 59.04
.076 11.234
492 2.525
637 0.665

6x256-sized im
upport

al-core machin

astructure to th
nt of 4 execut
n measured by
re processor. T

2-sized image

32
49 350.961
2 59.792
4 11.309
 2.593
 0.725

mage, 2x2 rang

ne without SM

he processor w
tion threads fa
 sequential_tim
The performan

Vol. 10, No. 1;

(Coliseum) -

ge and a dual-c

T support

with SMT sup
avors the exec
me ÷ parallel_
nce of two thr

2017

Time

core

pport.
ution
_time
reads

cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017

42

obtained gains up to 1.98, which are considered a good measure for this number of threads. However, we can
observe that the use of 2 threads does not take profit from the entire power of the parallel architecture, since an
execution thread remains allocated per core. The execution with 4 up to 32 cores took profit from the SMT
solution. Particularly, we obtained a gain of 3.05 when testing 4 threads and ranges with dimension 16x16, which
represents more than 75% of usage considering the execution threads inside the cores. The most relevant
verifications concern the execution with 2x2 ranges. As we can see in Figure 8, the performance of this
configuration does not scale well when treating for 4 or more threads. The calculus with this dimension of ranges
is more computationally intensive than others. Furthermore, interactions require more memory since the subset
of ranges belonging to each thread is larger than other range configurations. Clearly, any of the following
observations causes a system bottleneck (Diamond et al., 2011): (i) memory contention; (ii) cache miss; (iii)
concurrent access to components in the superscalar pipeline of the SMT core.

Table 4. Evaluating a SMT dual-core processor with a 256x256-sized image (Lenna) - Time in seconds.

Range Sequential Threads
2 4 8 16 32

2x2 39.872 23.804 20.735 20.493 20.518 20.717
4x4 6.241 3.190 2.700 2.704 2.726 2.763
8x8 1.476 0.768 0.612 0.557 0.562 0.597
16x16 0.345 0.191 0.159 0.157 0.163 0.213
32x32 0.077 0.046 0.045 0.050 0.068 0.112

Figure 9 illustrates a comparison graph considering both configuration of dual-core processors and the Lenna
image. Although the SMT processor operates with 4 execution threads, our evaluation showed that the best
results were obtained with 8 user threads. This combination was the best one for enlarging the efficiency
regarding the cores utilization. Despite a large number of threads rises the operating system time for both
managing and scheduling them efficiently, the threads are useful for exploiting superscalar and preemption
facilities found on SMT processors. Logically, the number of threads must be analyzed with the thread
granularity. In out case, 8 threads and 8x8 ranges compose the set with better performance. Finally, Figure 10
depicts the tests in which a range of 32x32 pixels and the Coliseum image were employed. This configuration
points out the traditional curve when working with threads. We have a perceptible reduction in time when
enabling threads and the time grows up when enlarging the number of threads as well. This is explained by
computational work grain. The larger the number of threads, the lower the grain to be calculated by each thread
(each thread receives a subset of ranges uniformly). In addition, more threads implies in a higher cost on
synchronization and mutex primitives.

Table 5. Evaluating a SMT dual-core processor with a 512x512-sized image (Coliseum) - Time in seconds.

Range Sequential Threads
2 4 8 16 32

2x2 627.877 329.060 281.961 273.816 271.517 272.759
4x4 126.557 64.227 43.187 43.158 43.340 43.657
8x8 24.872 13.404 8.513 8.527 8.604 8.751
16x16 5.869 2.977 1.946 1.967 1.993 2.103
32x32 1.381 0.711 0.523 0.512 0.536 0.613

cis.ccsenet.

Figur

Figu

Fig

org

e 8. Evaluating

ure 9. Evaluatin

gure 10. Evalu

g the Coliseum

ng both dual-c
computed as

uating the comp

Computer an

m figure with th
sequential

core configurat
s (1 - SMT_dua

pression of Co
SMT-assiste

nd Information S

43

he SMT-assist
time ÷ paralle

tion with the L
al-core ÷ Non_

oliseum picture
ed dual-core sy

Science

ted dual-core. T
el time

Lenna image. P
_SMT_dual-co

e with 32 threa
ystems.

The gain in y a

Percentage of G
ore).100

ads on both non

Vol. 10, No. 1;

axis is equal to

Gain (PoG) is

n-SMT and

2017

o

cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017

44

7. Related Work
FIC technique has grabbed much attention in recent years because of manifold advantages, very high
compression ratio, high decompression speed, high bit-rate and resolution independence. There have been many
techniques, and improvements published in this field since 1990. Most of them are focused on some algorithm
improvements for a smart search, which both reduce the size of search pool for range-domain matching and yield
a significant speedup in execution time (Fu & Zhu, 2009; Jeng et al., 2009; Mitra et al., 1998; Qin et al., 2009;
Revathy & Jayamohan, 2012; Rowshanbin et al., 2006; Sun & Wun, 2009; Vahdati et al., 2010). In particular,
Revathy and Jayamohan (2012) proposed a dynamic preparation of a domain pool for each range block, instead
of working with a set of static domains from the beginning of the execution (Revathy & Jayamohan, 2012).
Vahdati et al. (2010) presented a Chaotic particle swarm optimization (CPSO) based on the characteristics of
fractal and partitioned iterated function system. In addition, Ant Colony (Li et al., 2008), Neural Networks (Sun
et al., 2001) and Genetic Algorithm (Mitra et al., 2000; Mitra et al., 1998; Wu & Lin, 2010) techniques were
proposed to greatly decreases the search space for finding the self similarities in the given image. Contrary of
exploring a reduction in the application time, Selim et al. focused on procuring a high compression index by
maintaining a peak signal to noise ratio (PSNR) larger than 30 (Selim et al., 2008).
Regarding the exploration of parallel architectures, for the best of our knowledge there are the following
initiatives for solving the FIC problem. Jackson and Blom (1995), based in a nCUBE multiprocessor, showed a
parallel solution implementing a “host and nodes” solution, where a single processor was dedicated for
distributing the workload to nodes and gathering results. Another message-passing solution were proposed by
Qureshi and Hussein (2008), who implemented a three static master-worker MPI (Message Passing Interface)
strategies for enabling load balancing on a Beowulf cluster of workstations. The authors measured both the
speedup and the worker idle time of each implementation. Other features used in the context of FIC, considering
a multicomputer environment, were Web Services (Fang et al., 2011) and process migration (Righi, 2012).
Particular, this second work applies process rescheduling in grid environments for dealing with architecture
heterogeneity and application dynamicity. Some works explore SIMD (Single Instruction Multiple Data)
architectures, and more especially GPU (Graphical Processing Unit) (Wakatani, 2012; Khan & Akhtar, 2013).
Kim and Choi (2011) combined both GPU and multithreading in their 2D DCT (discrete cosine transform)
solution for the FIC problem (Kim & Choi, 2011). The article focused on the OpenCL parallel modeling. The
authors just used an Intel core 2 Duo for the tests. Cao and Gu (Cao & Gu, 2010; Cao & Gu, 2011) presented a
multithreading-based FIC implementation with OpenMP library by putting pragma codeword on iterative
constructions simply. Albeit they pointed out a multicore implementation, the authors just presented tests with a
quad-core system. Analyzing the contemplated related works, we observed a lack of studies on comparing the
power of the recent multicore and SMT architectures for calculating the FIC problem. Hence, this opportunity of
work was explored in this article.
8. Conclusion
With the help of recent development on semiconductor design, modern processors can provide a great
opportunity to increase the performance on processing multimedia data by exploiting data-parallelism in
multicore and SMT systems. Aiming to verify this statement, we employed in this article a parallel modeling of
the so-called Fractal Image Compression (FIC) problem. Over the recent decades, FIC is a field of intensive
research, applied not only in image processing but also in database indexing, texture mapping and pattern
recognition problems. We designed a fork-join modeling to explore the fully potential of the parallel architecture,
where each thread has a copy of the entire D (Domain) set and receives from the main program its own subset of
ranges, which represents a subpart of the input image. The threads run without dependencies among themselves
and are synchronized once for collecting the compressed image.
We confirmed the Garcia and Gao’s (2013) affirmation, that says applications with data-parallelism, where
multiple threads execute the same code on different sets of data, can improve their performance dramatically
when taking profit from SMT and multicore technologies. The results showed gains up to 68% (with SMT) and
48% (without SMT) when comparing multiple and single-thread scenarios in both configurations of dual-core
processors. We can explain this rate by: (i) our modeling strategy and; (ii) fact that FIC is a CPU-bound problem.
The benefits of data parallelism exploration were more evident in the SMT configuration. The use of 4 execution
threads in SMT-assisted dual-core provided a performance gain up to 29% if compared to a non-SMT
configuration. Particularly, we obtained this index with 8 user threads, which occupy each execution thread in a
better way. In the best of our knowledge, this article is the first that presents a parallel FIC application focused
on multicore and SMT systems, showing a detailed evaluation on them. Besides this, we can extend our
contribution to operating systems. They can include the parallel FIC implementation proposed here as an

cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017

45

optional for compressing images, since multicore systems have become state-of-the-art in processor architecture
field.
Finally, the tests allow us to conclude that the performance of a multithreading system depends on the
computational grain on each thread, the number of processors in the target machine and the
mutex/synchronization directives in the code. Future work comprises the execution of the FIC problem by
modeling a message-passing application to execute over AMPI (Adaptive MPI) (Rodrigues et al., 2010). In this
way, we intent to evaluate the problem with threads, with MPI solely and by combining both threads and MPI
approaches.
Acknowledgments
The authors would like to thank to the following Brazilian agencies: CNPq, CAPES and FAPERGS.
References
Cao, H., & Gu, X. J. (2010). Openmp parallelization of jacquin fractal image encoding. In E-Product E-Service

and E- Entertainment (ICEEE), 2010 International Conference on, pages 1-4.
http://dx.doi.org/10.1109/ICEEE.2010.5661366

Cao, H., & Gu, X. Q. (2011). Implement research of fractal image encoding based on openmp parallelization
model. In Electric Information and Control Engineering (ICEICE), 2011 International Conference on, 62–
465. http://dx.doi.org/10.1109/ICEICE.2011.5777994

Chaurasia, V., & Somkuwar, A. (2009). Speed up technique for fractal image compression. In Digital Image
Processing, 2009 International Conference on, pages 319–323. http://dx.doi.org/10.1109/ICDIP.2009.66

Chen, S., Cheng, X., & Xu, J. (2012). Research on image compression algorithm based on rectangle
segmentation and storage with sparse matrix. In Fuzzy Systems and Knowledge Discovery (FSKD), 2012
9th International Conference on, pages 1904 –1908. http://dx.doi.org/10.1109/FSKD.2012.6233969

Chen, T. J., & Chuang, K.-S. (2010). A pseudo lossless image compression method. In Image and Signal
Processing (CISP), 2010 3rd International Congress on, volume 2, pages 610 –615.
http://dx.doi.org/10.1109/CISP.2010.5647247

Diamond, J., Burtscher, M., McCalpin, J. D., Kim, B. D., Keckler, S. W., & Browne, J. C. (2011). Evaluation and
optimization of multicore performance bottlenecks in supercomputing applications. In Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS ’11, pages 32–
43, Washington, DC, USA. IEEE Computer Society. http://dx.doi.org/10.1109/ISPASS.2011.5762713

Fang, Y., Cheng, H., & Wang, M. (2011). Parallel implementation of fractal image compression in web service
environment. In Distributed Computing and Applications to Business, Engineering and Science (DCABES),
2011 Tenth International Symposium on, pages 59–63. http://dx.doi.org/10.1109/DCABES.2011.66

Fu, C., & Zhu, Z. L. (2009). A dct-based fractal image compression method. In Chaos-Fractals Theories and
Applications, 2009. IWCFTA ’09. International Workshop on, pages 439–443.
http://dx.doi.org/10.1109/IWCFTA.2009.99

Garcia, E., & Gao, G. (2013). Strategies for improving performance and energy efficiency on a many-core. In
Proceedings of the ACM International Conference on Computing Frontiers, CF ’13, pages 9:1–9:4, New
York, NY, USA. ACM. https://doi.org/10.1145/2482767.2482779

Garg, A. (2011). Article: An improved algorithm of fractal image compression. International Journal of
Computer Applications, 34(2):17–21. Published by Foundation of Computer Science, New York, USA.

George, L., & Al-Hilo, E. (2009). Fractal color image compression by adaptive zero-mean method. In Computer
Technology and Development, 2009. ICCTD ’09. International Conference on, volume 1, pages 525 –529.
http://dx.doi.org/10.1109/ICCTD.2009.150

Jackson, D. J., & Blom, T. (1995). A parallel fractal image compression algorithm for hypercube multiprocessors.
In Proceedings of the 27th Southeastern Symposium on System Theory (SSST’95), SSST ’95, pages 274–,
Washington, DC, USA. IEEE Computer Society. http://dx.doi.org/10.1109/SSST.1995.390570

Jeng, J. H., Tseng, C. C., & Hsieh, J. G. (2009). Study on huber fractal image compression. Image Processing,
IEEE Transactions on, 18(5):995 –1003. http://dx.doi.org/10.1109/TIP.2009.2013080

Khan, S., & Akhtar, N. (2013). Parallelization of fractal image compression over cuda. In Das, V. V., editor,
Proceedings of the Third International Conference on Trends in Information, Telecommunication and

cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017

46

Computing, volume 150 of Lecture Notes in Electrical Engineering, pages 375–382. Springer New York.
http://dx.doi.org/10.1007/978-1-4614-3363-7_42

Kim, C. G., & Choi, Y. S. (2011). Exploiting multi- and many-core parallelism for accelerating image
compression. In Multimedia and Ubiquitous Engineering (MUE), 2011 5th FTRA International Conference
on, pages 12–17. http://dx.doi.org/10.1109/MUE.2011.13

Li, J., Yuan, D., Xie, Q., & Zhang, C. (2008). Fractal image compression by ant colony algorithm. In Young
Computer Scientists, 2008. ICYCS 2008. The 9th International Conference for, pages 1890–1894.
http://dx.doi.org/10.1109/ICYCS.2008.222

Mitra, S., Murthy, C., & Kundu, M. (1998). Technique for fractal image compression using genetic algorithm.
Image Processing, IEEE Transactions on, 7(4):586–593. http://dx.doi.org/10.1109/83.663505

Mitra, S., Murthy, C., & Kundu, M. (2000). Image compression and edge extraction using fractal technique and
genetic algorithm. In Pal, S., Ghosh, A., and Kundu, M., editors, Soft Computing for Image Processing,
volume 42 of Studies in Fuzziness and Soft Computing, pages 79–100. Physica-Verlag HD.
https://doi.org/10.1007/978-3-7908-1858-1_4

Pinto, S., & Gawande, J. (2012). Performance analysis of medical image compression techniques. In Internet
(AH-ICI), 2012 Third Asian Himalayas International Conference on, 1-4.
http://dx.doi.org/10.1109/AHICI.2012.6408455

Qin, F. Q., Min, J., Guo, H. R., & Yin, D. H. (2009). A fractal image compression method based on block
classification and quadtree partition. In Computer Science and Information Engineering, 2009 WRI World
Congress on, 1, 716–719. http://dx.doi.org/10.1109/CSIE.2009.230

Qureshi, K., & Hussain, S. S. (2008). A comparative study of parallelization strategies for fractal image
compression on a cluster of workstations. International Journal of Computational Methods, 5(3), 463–482.
http://dx.doi.org/10.1142/S0219876208001534

Raasch, S. E., & Reinhardt, S. K. (2003). The impact of resource partitioning on smt processors. In Proceedings
of the 12th International Conference on Parallel Architectures and Compilation Techniques, PACT ’03, 15,
Washington, DC, USA. IEEE Computer Society. http://dx.doi.org/10.1109/PACT.2003.1237998

Rai, J. K., Negi, A., Wankar, R., & Nayak, K. D. (2010). Performance prediction on multi-core processors. In
Proceedings of the 2010 International Conference on Computational Intelligence and Communication
Networks, CICN ’10, pages 633–637, Washington, DC, USA. IEEE Computer Society.
http://dx.doi.org/10.1109/CICN.2010.125

Revathy, K., & Jayamohan, M. (2012). Dynamic domain classification for fractal image compression. CoRR,
abs/1206.4880. http://doi.org/10.5121/ijcsit.2012.4208

Righi, R. R. (2012). Process Migration in Grid Computing: Combining Multiple Metrics to Control Process
Rescheduling in Response to Resource and Application Dynamics. Lambert Academic Publishing.

Rodrigues, E. R., Navaux, P. O. A., Panetta, J., Fazenda, A., Mendes, C. L., & Kale, L. V. (2010). A Comparative
Analysis of Load Balancing Algorithms Applied to a Weather Forecast Model. In Proceedings of 22nd
International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD),
Itaipava, Brazil. http://dx.doi.org/10.1109/SBAC-PAD.2010.18

Rowshanbin, N., Samavi, S., & Shirani, S. (2006). Acceleration of fractal image compression using characteristic
vector classification. In Electrical and Computer Engineering, 2006. CCECE ’06. Canadian Conference on,
pages 2057–2060. http://dx.doi.org/10.1109/CCECE.2006.277529

Selim, A., Hadhoud, M., Dessouky, M., & El-Samie, F. (2008). A simplified fractal image compression algorithm.
In Computer Engineering Systems, 2008. ICCES 2008. International Conference on, 53–58.
http://dx.doi.org/10.1109/ICCES.2008.4772965

Sharabayko, M. P., & Markov, N. G. (2012). Fractal compression of grayscale and color images: Tools and
results. In Strategic Technology (IFOST), 2012 7th International Forum on, 1–5.
http://dx.doi.org/10.1109/IFOST.2012.6357622

Sun, K., Lee, S., & Wu, P. (2001). Neural network approaches to fractal image compression and decompression.
Neurocomputing, 41(14), 91-107. http://dx.doi.org/10.1016/S0925-2312(00)00349-0

Sun, Z., & Wun, Y. (2009). Multispectral image compression based on fractal and k-means clustering. In
Proceedings of the 2009 First IEEE International Conference on Information Science and Engineering,

cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017

47

ICISE ’09, pages 1341–1344, Washington, DC, USA. IEEE Computer Society.
http://dx.doi.org/10.1109/ICISE.2009.772

Sundaresan, M., & Devika, E. (2012). Image compression using h.264 and deflate algorithm. In Pattern
Recognition, Informatics and Medical Engineering (PRIME), 2012 International Conference on, 242-245.
http://dx.doi.org/10.1109/ICPRIME.2012.6208351

Türkan, M., Thoreau, D., & Guillotel, P. (2012). Self-content super-resolution for ultra-hd up-sampling. In
Proceedings of the 9th European Conference on Visual Media Production, CVMP ’12, 49-58, New York,
NY, USA. ACM. https://doi.org/10.1145/2414688.2414695

Vahdati, G., Yaghoobi, M., & Akbarzadeh-T, M. (2010). Fractal image compression based on particle swarm
optimization and chaos searching. In Computational Intelligence and Communication Networks (CICN),
2010 International Conference on, 62-67. http://dx.doi.org/10.1109/CICN.2010.23

Wakatani, A. (2012). Implementation of fractal image coding for gpu systems and its power-aware evaluation. In
Systems Conference (SysCon), 2012 IEEE International, 1-5.
http://dx.doi.org/10.1109/SysCon.2012.6189434

Wu, M. S., & Lin, Y. L. (2010). Genetic algorithm with a hybrid select mechanism for fractal image compression.
Digit. Signal Process., 20(4), 1150–1161. http://dx.doi.org/10.1016/j.dsp.2009.12.009

Notes
Note 1. We used the term “execution threads” in the remaining of this document for treating SMT technology,
while we employed just “threads” for denoting multiple execution entities created by a parallel application.
Note 2. Standard test image which has been in use since 1973 in the computer graphics area.
http://www.cs.cmu.edu/~chuck/lennapg/editor.html

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/4.0/).

