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Abstract 
Sequential Pattern Mining is an efficient technique for discovering recurring structures or patterns from very 
large dataset widely addressed by the data mining community, with a very large field of applications, such as 
cross-marketing, DNA analysis, web log analysis, user behavior, sensor data, etc. The sequence pattern mining 
aims at extracting a set of attributes, shared across time among a large number of objects in a given database. 
Previous studies have developed two major classes of sequential pattern mining methods, namely, the candidate 
generation-and-test approach based on either vertical or horizontal data formats represented respectively by GSP 
and SPADE, and the pattern-growth approach represented by FreeSpan and PrefixSpan. In this paper, we are 
interested in the study of the impact of the pattern-growth ordering on the performances of pattern growth-based 
sequential pattern mining algorithms. To this end, we introduce a class of pattern-growth orderings, called linear 
orderings, for which patterns are grown by making grow either the current pattern prefix or the current pattern 
suffix from the same position at each growth-step. We study the problem of pruning and partitioning the search 
space following linear orderings. Experimentations show that the order in which patterns grow has a significant 
influence on the performances.  
Keywords: sequence mining, sequential pattern, pattern-growth direction, pattern-growth ordering, search space, 
pruning, partitioning 
1. Introduction 
A sequence database consists of sequences of ordered elements or events, recorded with or without a concrete 
notion of time. Sequences are common, occurring in any metric space that facilitates either partial or total 
ordering. Customer transactions, codons or nucleotides in an amino acid, website traversal, computer networks, 
DNA sequences and characters in a text string are examples of where the existence of sequences may be 
significant and where the detection of frequent (totally or partially ordered) subsequences might be useful. 
Sequential pattern mining has arisen as a technology to discover such subsequences. A subsequence, such as 
buying first a PC, then a digital camera, and then a memory card, if it occurs frequently in a customer transaction 
database, is a (frequent) sequential pattern. 
Sequential pattern mining (Dam et al., 2016; Mabroukeh & Ezeife, 2010; Lin et al., 2016a; Linet al., 2016b; Lin 
et al., 2016c; Lin et al., 2016d) is an important data mining problem widely addressed by the data mining 
community, with a very large field of applications such as finding network alarm patterns, mining customer 
purchase patterns, identifying outer membrane proteins, automatically detecting erroneous sentences, 
discovering block correlations in storage systems, identifying plan failures, identifying copy-paste and related 
bugs in large-scale software code, API specification mining and API usage mining from open source repositories, 
and Web log data mining. Sequential pattern mining aims at extracting a set of attributes, shared across time 
among a large number of objects in a given database. 
The sequential pattern mining problem was first introduced by Agrawal & Srikant (1995) based on their study of 
customer purchase sequences, as follows: Given a set of sequences, where each sequence consists of a list of 
events (or elements) and each event consists of a set of items, and given a user-specified minimum support 
threshold min_sup, sequential pattern mining finds all frequent subsequences, that is, the subsequences whose 
occurrence frequency in the set of sequences is no less than min_sup. 
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In this paper, we are interested in the study of the impact of the pattern-growth ordering on the performances of 
pattern growth-based sequential pattern mining algorithms. It aims at enhancing understanding of the 
pattern-growth approach. To this end, the important key concepts upon which that approach relies, namely 
pattern-growth direction, pattern-growth ordering, search space pruning and search space partitioning, are 
revisited. We introduce a class of pattern-growth orderings, called linear orderings, for which patterns are grown 
by making grow either the current pattern prefix or the current pattern suffix from the same position at each 
growth-step. This class contains PrefixSpan (Pei et al., 2001; Pei et al., 2004) and involves both unidirectional 
and bidirectional growth. Thus, it is a generalization of PrefixSpan (Pei et al., 2001; Pei et al., 2004). However, it 
does not contain FreeSpan (Han et al., 2000) as it makes grow patterns from any position. We study the problem 
of pruning and partitioning the search space following linear orderings. Experimentations show that the order in 
which patterns grow has a significant influence on the performances.  
The rest of the paper is organized as follows. Section 2 presents the formal definition of the problem of 
sequential pattern mining. Section 3 presents previous results. Section 4 presents the theoretical contribution of 
the paper. Section 5 presents experimental results. Concluding remarks are given in section 6. 
2. Problem statement and Notation 
The problem of mining sequential patterns, and its associated notation, can be given as follows: Let I={i1, i2, . . . , 
in} be a set of literals, termed items, which comprise the alphabet. An itemset is a subset of items. A sequence is 
an ordered list of itemsets. Sequence s is denoted by s1, s2, ... sn, where sj is an itemset. sj is also called an 
element of the sequence, and denoted as (x1, x2,...,xm), where xk is an item. For brevity, the brackets are omitted 
if an element has only one item, i.e. element (x) is written as x. An item can occur at most once in an element of 
a sequence, but can occur multiple times in different elements of a sequence. The number of instances of items in 
a sequence is called the length of the sequence. A Sequence with length l is called an l-sequence. The length of a 
sequence α is denoted |α|. A sequence α= a1 a2 ...an, is called subsequence of another sequence β=b1 b2 ... bm 
and β a supersequence of α, denoted as α ⊆ β, if there exist integers 1 ≤j1< j2< ... < jn≤ jm such that a1 ⊆ bj1, a2 
⊆ bj2, … an ⊆ bjn. Symbol ε denotes the empty sequence. 
We are given a database S of input-sequences. A sequence database is a set of tuples of the form sid, s where 
sid is a sequence_id and s a sequence. A tuple sid, s is said to contain a sequence α if α is a subsequence of s. 
The support of a sequence α in a sequence database S is the number of tuples in the database containing α, i.e. 
support(S, α) = |{sid, s | sid, s ∈ S and α ⊆ s}|. 
It can be denoted as support(α) if the sequence database is clear from the context. Given a user-specified positive 
integer denoted min_support, termed the minimum support or the support threshold, sequence α is called a 
sequential pattern in the sequence database S if support(S,α)≥ min_support. A sequential pattern with length l 
is called an l-pattern. Given a sequence database and the min_support threshold, sequential pattern mining is 
to find the complete set of sequential patterns in the database. 
3. Related work 
Sequential pattern mining is an important data mining problem. Since the first proposal of this data mining task 
and its associated efficient mining algorithms, there has been a growing number of researchers in the field and 
tremendous progress (Mabroukeh & Ezeife, 2010) has been made, evidenced by hundreds of follow-up research 
publications, on various kinds of extensions and applications, ranging from scalable data mining methodologies, 
to handling a wide diversity of data types, various extended mining tasks, and a variety of new applications. 
Improvements in sequential pattern mining algorithms have followed similar trend in the related area of 
association rule mining and have been motivated by the need to process more data at a faster speed with lower 
cost. Previous studies have developed two major classes of sequential pattern mining methods : Apriori-based 
approaches (Agrawal & Srikant, 1995; Ayres et al., 2002; Garofalakis et al., 1999; Gouda et al., 2007; Gouda et 
al., 2010; Masseglia et al., 1998; Savary & Zeitouni, 2005; Yang & Kitsuregawa, 2005; Zaki, 2000; Zaki, 2001) 
and pattern growth algorithms (Han et al., 2000; Pei et al., 2000; Pei et al., 2001; Pei et al., 2004; Hsieh et al., 
2008; Seno & Karypis, 2008 ). 
The Apriori-based approach form the vast majority of algorithms proposed in the literature for sequential pattern 
mining. Apriori-like algorithms depend mainly on the Apriori anti-monotony property, which states the fact that 
any super-pattern of an infrequent pattern cannot be frequent, and are based on a candidate generation-and-test 
paradigm proposed in association rule mining (Agrawal et al., 1993; Agrawal & Srikant, 1994). This candidate 
generation-and-test paradigm is carried out by GSP (Agrawal & Srikant, 1995), SPADE (Zaki, 2001), and SPAM 
(Ayres et al., 2002). Mining algorithms derived from this approach are based on either vertical or horizontal data 
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formats. Algorithms based on the vertical data format involve AprioriAll, AprioriSome and DynamicSome 
(Agrawal & Srikant, 1995), GSP (Agrawal & Srikant, 1995), PSP (Masseglia et al., 1998) and SPIRIT 
(Garofalakis et al., 1999), while those based on the horizontal data format involve SPADE (Zaki, 2001), cSPADE 
(Zaki, 2000), SPAM (Ayres et al., 2002), LAPIN-SPAM (Yang & Kitsuregawa, 2005), IBM (Savary & Zeitouni, 
2005) and PRISM (Gouda et al., 2007; Gouda et al., 2010) . The generation-and-test paradigm has the 
disadvantage of repeatedly generating an explosive number of candidate sequences and scanning the database to 
maintain the support count information for these sequences during each iteration of the algorithm, which makes 
them computationally expensive. To increase the performance of these algorithms constraint driven discovery 
can be carried out. With constraint driven approaches systems should concentrate only on user specific or user 
interested patterns or user specified constraints such as minimum support, minimum gap or time interval etc. 
With regular expressions these constraints are studied in SPIRIT (Garofalakis et al., 1999). 
To alleviate these problems, the pattern-growth approach, represented by FreeSpan (Han et al., 2000), 
PrefixSpan (Pei et al., 2001; Pei et al., 2004) and their further extensions, namely FS-Miner (El-Sayed et al., 
2004), LAPIN (Hsieh et al., 2008 ; Yang et al., 2007), SLPMiner (Seno & Karypis, 2002) and WAP-mine (Pei et 
al., 2000), for efficient sequential pattern mining adopts a divide-and-conquer pattern growth paradigm as 
follows. Sequence databases are recursively projected into a set of smaller projected databases based on the 
current sequential patterns, and sequential patterns are grown in each projected database by exploring only 
locally frequent fragments (Han et al., 2000; Pei et al., 2004). The frequent pattern growth paradigm removes the 
need for the candidate generation and prune steps that occur in the Apriori-based algorithms and repeatedly 
narrows the search space by dividing a sequence database into a set of smaller projected databases, which are 
mined separately. The major advantage of projection-based sequential pattern-growth algorithms is that they 
avoid the candidate generation and prune steps that occur in the Apriori-based algorithms. Unlike Apriori-based 
algorithms, they grow longer sequential patterns from the shorter frequent ones. The major cost of these 
algorithms is the cost of forming projected databases recursively. To alleviate this problem, a pseudo-projection 
method is exploited to reduce this cost. Instead of performing physical projection, one can register the index (or 
identifier) of the corresponding sequence and the starting position of the projected suffix in the sequence. Then, a 
physical projection of a sequence is replaced by registering a sequence identifier and the projected position index 
point. Pseudo-projection reduces the cost of projection substantially when the projected database can fit in main 
memory. 
PrefixSpan (Pei et al., 2001; Pei et al., 2004) and FreeSpan (Han et al., 2000) differ at the criteria of partitioning 
projected databases and at the criteria of growing patterns. FreeSpan (Han et al., 2000) creates projected 
databases based on the current set of frequent patterns without a particular ordering (i.e., pattern-growth 
direction), whereas PrefixSpan projects databases by growing frequent prefixes. Thus, PrefixSpan follows the 
unidirectional growth whereas FreeSpan follows the bidirectional growth. Another difference between FreeSpan 
and PrefixSpan is that the pseudo-projection works efficiently for PrefixSpan but not so for FreeSpan. This is 
because for PrefixSpan, an offset position clearly identifies the suffix and thus the projected subsequence. 
However, for FreeSpan, since the next step pattern-growth can be in both forward and backward directions from 
any position, one needs to register more information on the possible extension positions in order to identify the 
remainder of the projected subsequences.  
4. Proposed Work 
4.1. Pattern-Growth Directions and Orderings 
Definition 1 (Pattern-growth direction). A pattern-growth direction is a direction along which patterns could 
grow. There are two pattern-growth directions, namely left-to-right and right-to-left directions. Do grow a pattern 
along left-to-right (resp. right-to-left) direction is to add one or more item to its right (resp. left) hand side. 
Definition 2 (Pattern-growth ordering). A pattern-growth ordering is a specification of the order in which 
patterns should grow. A pattern-growth ordering is said to be unidirectional iff all the patterns should grow along 
a unique direction. Otherwise it is said to be bidirectional. A pattern-growth ordering is said to be static (resp. 
dynamic) iff it is fully specified before the beginning of the mining process (resp. iff it is constructed during the 
mining process). 
Definition 3 (Basic-static pattern-growth ordering). A basic-static pattern-growth ordering, also called basic 
pattern-growth ordering for sake of simplicity, is an ordering which is based on a unique pattern-growth direction, 
and grow a pattern at the rate of one item per growth-step. 
There are two basic-static pattern-growth orderings, namely left-to-right ordering (also called prefix-growth 
ordering), which consists in growing a prefix of a pattern at the rate of one item per growth-step at its right hand 
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side, and right-to-left ordering (also called suffix-growth ordering), which consists in growing a suffix of a 
pattern at the rate of one item per growth-step at its left hand side. 
Definition 4 (Basic-dynamic pattern-growth ordering). A basic-dynamic pattern-growth ordering is an ordering 
which grow a pattern at the rate of one item per growth-step, and whose pattern-growth direction is determined 
at the beginning of each growth-step during the mining process. It is denoted ∗-growth. 
Definition 5 (Basic-bidirectional pattern-growth ordering). A basic-bidirectional pattern-growth ordering is an 
ordering which is based on the two distinct pattern-growth directions, and grow a pattern in each direction at the 
rate of one item per couple of growth-steps. 
There are two basic-bidirectional pattern-growth orderings, namely prefix-suffix-growth ordering (i.e. 
left-to-right direction followed by right-to-left direction), which consists in growing a pattern at the rate of one 
item per growth-step during a couple of steps by first growing a prefix (i.e. adding of one item at the right-hand 
side) of that pattern followed by the growing of the corresponding suffix (i.e. adding of one item at the left-hand 
side), and suffix-prefix-growth ordering (i.e. right-to-left direction followed by left-to-right direction), which 
consists in growing a pattern at the rate of one item per growth-step during a couple of steps by first growing a 
suffix of that pattern followed by the growing of the corresponding prefix. 
Definition 6 (Linear pattern-growth ordering). A linear pattern-growth ordering is a series of compositions of 
∗-growth, prefix-growth and suffix-growth orderings, and denoted o0-o1-o2 … on-1-growth for some n, where oi ∈ 
{prefix, suffix, *} (0 ≤ i ≤ n-1). It is said to be static iff oi ∈ {prefix, suffix} for all i ∈ {0, 1, 2, …, n-1}. 
Otherwise, it is said to be dynamic. 
The o0-o1-o2 … on-1-growth linear ordering consists in growing a pattern at the rate of one item per growth-step 
during a series of n growth-steps by growing at step i (0 ≤ i ≤ n-1) a prefix (resp. suffix) of that pattern if oi 
denotes prefix (resp. suffix). If oi ∈{∗}, a pattern-growth direction is determined and an item is added to the 
pattern following that direction. For instance, stemming from the prefix-suffix-suffix-prefix-growth static linear 
ordering, one should grow a pattern in the following order:  

• Growth-step 0: Add an item to the right hand side of a prefix of that pattern.  
• Growth-step 1: Add one item to the left hand side of the corresponding suffix of the previous prefix. 
• Growth-step 2: Repeat step 1. 
• Growth-step 3: Repeat step 0. 
• Growth-step k (k ≥4): Repeat step k mod 4. 

The prefix-suffix-∗-prefix-growth dynamic linear ordering grows patterns as prefix-suffix-suffix-prefix-growth 
ordering except for steps k that satisfy (k mod 4) = 3. During such a particular step, a pattern-growth direction is 
determined and an item is added to the pattern following that direction. 
FreeSpan and PrefixSpan differ at the criteria of growing patterns. FreeSpan creates projected databases based on 
the current set of frequent patterns without a particular ordering (i.e., pattern-growth direction). Since a length-k 
pattern may grow at any position, the search for length-(k+1) patterns will need to check every possible 
combination, which is costly. Because of this, FreeSpan do not follow the linear ordering. However PrefixSpan 
follows the prefix-growth static ordering as it projects databases by growing frequent prefixes.  
Given a database of sequences, an open problem is to find a linear ordering that leads to the best mining 
performances over all possible linear orderings. 
4.2 Search Space Pruning and Partitioning 
Definition 7 (Prefix of an itemset). Suppose all the items within an itemset are listed alphabetically. Given an 
itemset x = (x1x2 … xn), another itemset x′= (x′1x′2 … x′m) (m ≤ n) is called a prefix of x if and only if x′I =xi for 
all i ≤ m. If m < n, the prefix is also denoted as x = (x1x2... xm_). 
Definition 8 (The corresponding suffix of a prefix of an itemset). Let x = (x1x2 … xn) be a itemset. Let x′ = 
(x1x2 … xm) (m ≤n) be a prefix of x. Itemset x″= (xm+1xm+2… xn) is called the suffix of x with regards to prefix x′, 
denoted as x″ = x/x′. We also denote x = x′.x″. Note, if x = x′, the suffix of x with regards to x′ is empty. If 1 
≤m< n, the suffix is also denoted as (_xm+1xm+2 … xn). 
For example, for the itemset iset=(abcdefgh),(_efgh) is the suffix with regards to the prefix (abcd_), 
iset=(abcd_).(_efgh), (abcdef_) is the prefix with regards to suffix (_gh) and iset=(abcdef_).(_gh). 
The following definition introduces the dot operator. It permits itemset concatenations and sequence 
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concatenations. 
Definition 9 ("." operator). Let e and e′ be two itemsets that do not contain the underscore symbol (_). Assume 
that all the items in e′ are alphabetically sorted after those in e. Let γ=e1 … en-1a and μ=be′2 … e′m be two 
sequences, where ei and e′i are itemsets that do not contain the underscore symbol, a ∈ {e, (_items in e), (items 
in e_), (_items in e_)} and b ∈{e′, (_items in e′), (items in e′_), (_items in e′_)}. The dot operator is defined as 
follows. 

1. e . e′ = ee′ 
2. e . (_items in e′) = (items in e ∪ e′) 
3. e . (items in e′_) = e (items in e′_) 
4. e . (_items in e′_)= (items in e ∪ e′_) 
5. (items in e_) . e′ = (items in e ∪ e′) 
6. (items in e_) . (_items in e′ ) = (items in e ∪ e′) 
7. (items in e_) . (_items in e′_)= (items in e ∪ e′_) 
8. (items in e_) . (items in e′_)= (items in e ∪ e′_) 
9. (_items in e) . e′ = (_items in e)e′ 
10. (_items in e) . (items in e′_) = (_items in e)(items in e′_) 
11. (_items in e) . (_items in e′_)= (_items in e ∪ e′_) 
12. (_items in e) . (_items in e′)= (_items in e ∪ e′) 
13. (_items in e_) . e′ = (_items in e ∪ e′) 
14. (_items in e_) . (_items in e′_) = (_items in e ∪ e′_) 
15. (_items in e_) . (items in e′_)=(_items in e ∪ e′_) 
16. (_items in e_) . (_items in e′)= (_ items in e ∪ e′) 
17. γ.μ = e1 … en-1a.be′2 … e′m 

For example, s=a(abc)(ac)(efgh)=(a).(a_).(_b_).(_c).(a_).(_c).(e_).(_f_).(_g_).(_h) and s=(a).(a_).(_b_) 
.(_c).(a_).(_c).(e_).(_f_).(_g_).(_h). 
Definition 10 (Prefix of a sequence) (Pei et al., 2004). Suppose all the items within an element are listed 
alphabetically. Given a sequence α=e1e2 ... en, a sequence β= e′1e′2 … e′m (m ≤ n) is called a prefix of α if and 
only if 1) e′I =ei for all i ≤ m-1; 2) e′m ⊆ em; and 3) all the frequent items in em - e′m are alphabetically sorted after 
those in e′m. If e′m≠∅ and e′m ⊆ em the prefix is also denoted as e′1e′2 … e′m-1(items in e′m_). 
Definition 11 (The corresponding suffix of a prefix of a sequence) (Pei et al., 2004). Given a sequence α=e1e2 … 
en. Let β=e1e2 … em-1e′m (m ≤ n) be a prefix of α. Sequence γ=e″mem+1 … en is called the suffix of α with 
regards to prefix β, denoted as γ= α/β, where e″m = em - e′m. We also denote α=β.γ. Note, if β=α, the suffix of α 
with regards to β is empty. If e″m is not empty, the suffix is also denoted as (_items in e″m) em+1 … en. 
For example, for the sequence s=a(abc)(ac)(efgh), (ac)(efgh) is the suffix with regards to the prefix a(abc), 
(_bc)(ac)(efgh) is the suffix with regards to the prefix aa, (_c)(ac)(efgh) is the suffix with regards to the 
prefix a(ab), and a(abc)(a_) is the prefix with regards to the suffix (_c)(efgh). 
Given three sequences, y, α and α′, we denote spc(y,α) (resp. ssc(y,α′)) the shortest prefix (resp. suffix) of y 
containing α (resp. α′). If no prefix (resp. suffix) of y contains α (resp. α′) spc(y,α) (resp. ssc(y,α′)) does not 
exist. If the two sequences spc(y,α) and ssc(y,α′) exist and do not overlap in sequence y, there exists a sequence 
yα,α′ such that y=spc(y,α).yα,α′.ssc(y,α′). Hence, we have the following definition. 
Definition 12 (Canonical sequence decomposition). Given three sequences, y, α and α′ such that spc(y,α) and 
ssc(y,α′) exist and do not overlap in y. Equation y=spc(y,α).yα,α′.ssc(y,α′) is the canonical decomposition of y 
following prefix α and suffix α′. The left, middle and right parts of the decomposition are respectively spc(y,α), 
yα,α′ and ssc(y,α′). 
For example, consider sequence s=a(abc)(ac)(efgh), we have spc(s,a)=a, spc(s,(ab))=a(ab), spc(s,(ac))= 
a(abc), ssc(s,(c)(e))=(c)(efgh), ssc(s, a)=(ac)(efgh),ssc(s,(bc))=(_bc)(ac)(efgh), 
s=spc(s,(ab)).(_c)(a_) .ssc(s,(c)(e) and s=spc(s,(ac)).ε.ssc(s,a). The two sequences spc(s,(ab)) and 
spc(s,(ab) overlap in sequence s as two sets of the index positions of their items in s are not disjoint.  



cis.ccsenet.org Computer and Information Science Vol. 10, No. 1; 2017 

28 
 

Stemming from the canonical decompositions of sequences following prefix α and suffix α′, we define two sets 
of the sequence database S as follows. We denote Sα,α the set of subsequences of S prefixed with α and suffixed 
with α′ which are obtained by replacing the left and right parts of canonical decompositions respectively with α 
and α′. We have Sα,α′ ={sid, α.yα,α′.α′ | sid, y ∈ S and y=spc(y,α).yα,α′.ssc(y,α′)}. We denote Sα,α′ the set of 
subsequences which are obtained by removing the left and right parts of canonical decompositions. We have 
Sα,α′={sid, yα,α′ | sid, y ∈ S and y=spc(y,α).yα,α′.ssc(y,α′)}. We also have S=Sε,ε and S=Sε,ε as ε denotes the 
empty sequence. 
Definition 13 (Extension of the "." operator). Let S be a sequence database and let α be a sequence that may 
contain the underscore symbol (_). The dot operator is extended as follows. We have α.S={sid,α.s | sid,s ∈ S} 
and S.α ={sid,s.α | sid,s ∈ S}. 
Corollary 1 (Associatively of the "." operator). The dot operator is associative, i.e. given a sequence database S 
and three sequences α, α′and α″ that may contain the underscore symbol (_), we have: 

1. (α.α′).α″ = α.(α′.α″) 
2. α.(α′.S)=(α.α′). 
3. (S.α).α′=S.(α.α′) 
4. (α.S).α′ = α.(S.α′) 

Proof. It is straightforward from the dot operation definition. 
We have the following lemmas. 
Lemma 1 (The support of z in Sα,α′ is that of its counterpart in S). Given a sequence database S and two 
sequences α and α′, for any sequence y prefixed with α and suffixed with α′, i.e. y=α.z.α′ for some sequence z, 
we have support(S,y)=support(Sα,α′,z). 
Proof. Consider the function f from dataset Sα,α′ to dataset Sα,α′ which assigns tuple sid, yα,α′ ∈ Sα,α′ to tuple 
sid, spc(y,α).yα,α′.ssc(y,α′) ∈ Sα,α′ where tuple sid,y ∈ S and sequence y admits a canonical decomposition 
following prefix α and suffix α′.  
Let's prove that function f is injective. Consider two tuples of S, sid, y and sid′,y′, each having a canonical 
decomposition following prefix α and suffix α′. 
Assume that f(sid, spc(y,α).yα,α′.ssc(y,α′))=f(sid′, spc(y′,α).y′α,α′. ssc(y′,α′)). This implies that sid,yα,α′= 
sid′,y′α,α′, which in turn implies that sid=sid′. This implies that tuple sid,y is equal to sid′,y′ as the identifier 
of any tuple is unique. It comes that y=y′. Thus sid, spc(y,α).yα,α′.ssc(y,α′)=sid′, spc(y′,α).y′α,α′. ssc(y′,α′). 
Therefore function f is injective. 
Let's prove that function f is surjective. Consider sid, zα,α′ ∈ Sα,α′, where sid,z belongs to S and admits a 
canonical decomposition following prefix α and suffix α′. From the definition of function f, f(sid, spc(z,α).zα,α′. 
ssc(z,α′)=sid,zα,α′. This means that sid,zα,α′ ∈ Sα,α′ admits a pre-image in Sα,α′. Thus function f is surjective. 
Function f is bijective because it is injective and surjective. Let consider a sequence y prefixed with α and 
suffixed with α′, i.e. y=α.z.α′ for some sequence z. Denote S(y)={sid,s | sid,s ∈ S and y ⊆ s}. Recall that 
support(S,y)=|S(y)|. The definition of S(y) means that it is the set of sequences of S having a canonical 
decomposition following prefix α and suffix α′ and containing sequence z in their middle part. It comes that 
S(y)={sid,s | sid,s ∈ Sα,α′ and z ⊆ sα,α′}. This implies that f(S(y))={sid,sα,α′ | sid,s ∈ Sα,α′ and z ⊆ sα,α′}. We 
have |S(y)|=|f(S(y))|, as function f is bijective. Therefore support(S,y)=|S(y)|=|f(S(y))|=support(Sα,α′,z). Hence the 
lemma. 
Lemma 2 (What does set α.patterns(Sα,α′).α′ denote for patterns(S) ?). The complete set of sequential patterns of 
S which are prefixed with α and suffixed with α′ is equal to α.patterns(Sα,α′).α′, where function patterns denotes 
the complete set of sequential patterns of its unique argument. 
Proof. Let x be a sequence. Assume that x ∈ α.patterns(Sα,α′).α′. This means that x=α.z.α′ for some z ∈ 
patterns(Sα,α′). From lemma 1, we have support(Sα,α′,z) = support(S,α.z.α′). It comes that, x is also a sequential 
pattern in S as z is a sequential pattern in Sα,α′. Thus, α.patterns(Sα,α′).α′ is included in the set of sequential 
patterns of S which are prefixed with α and suffixed with α′. 
Now, assume that x is a sequential pattern of S which is prefixed with α and suffixed with α′. We have x=α.z.α′ 
for some sequence z. From lemma 1, we have support(Sα,α′,z)=support(S, α.z.α′). It comes that, z is also a 
sequential pattern in Sα,α′ as x is a sequential pattern in S. This means that z ∈ patterns(Sα,α′). Thus, the complete 
set of sequential patterns of S which are prefixed with α and suffixed with α′is included in α.patterns(Sα,α′). α′. 
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Hence the lemma. 
Lemma 3 (Sequence decomposition lemma). Let β=e′1e′2 … e′m be a sequence such that β=γ.μ for some 
non-empty prefix γ and some non-empty suffix μ. Either γ=e′1 ... e′k and μ=e′k+1 ... e′m for some integer k or 
γ=e′1… e′k-1γk_, μ=_μke′k+1 … e′m, e′k=γk_ ∪_μk, all the items in γk_ are alphabetically before those in _μk 
(this implies that γk_ ∩_μk=∅), γk_ ≠∅ and μk_ ≠∅ for some integer k such that 1≤k ≤ m.  
Proof. Let β=e′1e′2 … e′m = γ.μ, where γ≠ε and μ≠ε. According to definitions 10 and 11, γ=e′1 … e′k-1γk_, 
μ=_μke′k+1 … e′m, e′k= γk_ ∪_μk and all the items in γk_ are alphabetically before those in _μk for some integer 
k (1≤ k ≤ m). We have the following cases: 
Case 1: k = 1. This means that γ=γ1_ and μ=_μ1e′2 … e′m. We have γ1_ ≠∅ as γ≠ε. We also have _μ1≠e′1 as 
the contrary, i.e. _μ1 = e′1, implies that γ= ε. If _μ1 = ∅, γ1_=e′1 and it comes that γ=e′1 and μ=e′2 … e′m, 
which corresponds to the first half of the claim of the lemma. Otherwise, we have γ1_ ≠∅ and μ1_ ≠∅, which 
leads to the second half of the claim of the lemma. 
Case 2: k=m. This means that γ=e′1 … e′m-1γm_ and μ=_μm. We have _μm≠∅ as μ≠ε. We also have γm_ ≠e′m 
as the contrary, i.e. γm_ = e′m, implies that μ= ε. If γm_ = ∅, _μm=e′m and it comes that γ=e′1 … e′m-1 and 
μ=e′m, which corresponds to the first half of the claim of the lemma. Otherwise, we have γm_ ≠∅ and μm≠∅, 
which leads to the second half of the claim of the lemma. 
Case 3: k≠1, k≠m and γk_=∅. This implies that μk_=e′k. It comes that γ=e′1 … e′k-1 and μ=e′k … e′m, which 
corresponds to the first half of the claim of the lemma. 
Case 4: k≠1, k≠m and _μk=∅. This case is similar to case 3. We have γk_=e′k. This implies that γ=e′1 … e′k 
and μ=e′k+1 … e′m, which corresponds to the first half of the claim of the lemma. 
Case 5: k≠1, k ≠ m, γk_ ≠∅ and _μk≠∅. This leads to the second half of the claim of the lemma.  
Definition 14 (Static and dynamic search-space partitioning). A search space partition is said to be static iff it is 
fully specified before the beginning of the mining process. It is said to be dynamic iff it is constructed during the 
mining process. 
Lemma 4 (Search-space partitioning based on prefix and/or suffix). We have the following. 

1. Let {x1, x2, … , xn} be the complete set of length-1 sequential patterns in a sequence database S. The 
complete set of sequential patterns in S can be divided into n disjoint subsets in two different ways: 
a. Prefix-item-based search-space partitioning (Pei et al., 2004): The i-th subset (1≤ i ≤n) is the set 

of sequential patterns with prefix xi. 
b. Suffix-item-based search-space partitioning (Pei et al., 2004): The i-th subset (1≤ i ≤n) is the set of 

sequential patterns with suffix xi. 
2. Let α be a length-l sequential pattern and {β1, β2, … ,βp} be the set of all length-(l+1) sequential 

patterns with prefix α. Let α′ be a length-l′ sequential pattern and {γ1, γ2, … ,γq} be the set of all 
length-(l′+1) sequential patterns with suffix α′. We have: 
a. Prefix-based search-space partitioning (Pei et al., 2004): The complete set of sequential patterns 

with prefix α, except for α itself, can be divided into p disjoint subsets. The i-th subset (1≤i≤p) is 
the set of sequential patterns prefixed with βi.  

b. Suffix-based search-space partitioning (Pei et al., 2004): The complete set of sequential patterns 
with suffix α′, except for α′ itself, can be divided into q disjoint subsets. The j-th subset (1≤j≤q) is 
the set of sequential patterns suffixed with γj. 

c. Prefix-suffix-based search-space partitioning: The complete set of sequential patterns with prefix 
α and suffix α′, and of length greater or equal to l+l′+1, can be divided into p or q disjoint subsets. 
In the first partition, the i-th subset (1≤ i ≤p) is the set of sequential patterns prefixed with βi and 
suffixed with α′. In the second partition, the j-th subset (1≤j≤q) is the set of sequential patterns 
prefixed with α and suffixed with γj. 

Proof. Parts (1.a) and (2.a) of the lemma are proven in (Pei et al., 2004). The proof of parts (1.b) and (2.b) of the 
lemma is similar to the proof of parts (1.a) and (2.a). Thus, we only show the correctness of part (2.c). 
Let μ be a sequential pattern of length greater or equal to l+l′+1, with prefix α and with suffix α′, where α is of 
length l and α′ is of length l′. The length-(l+1) prefix of μ is a sequential pattern according to an Apriori principle 
which states that a subsequence of a sequential pattern is also a sequential pattern. Furthermore, α is a prefix of 
the length-(l+1) prefix of μ, according to the definition of prefix. This implies that there exists some i (1≤i≤p) 
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such that βi is the length-(l+1) prefix of μ. Thus μ is in the i-th subset of the first partition. On the other hand, 
since the length-k prefix of a sequence is unique, the subsets are disjoint and this implies that μ belongs to only 
one determined subset. Thus, we have (2.c) for the first partition. The proof of (2.c) for the second partition is 
similar. Therefore we have the lemma.  
Corollary 2 (Partitioning S with sets xi.patterns(Sxi,ε) and patterns(Sε,xi).xi). Let {x1, x2, … , xn} be the complete 
set of length-1 sequential patterns in a sequence database S. The complete set of sequential patterns in S can be 
divided into n disjoint subsets in two different ways: 

1. Prefix-item-based search-space partitioning: The i-th subset (1≤i ≤n) is xi.patterns(Sxi,ε), where function 
patterns denotes the set of sequential patterns of its unique argument. 

2. Suffix-item-based search-space partitioning: The i-th subset (1≤i≤n) is patterns(Sε,xi).xi. 
Proof. According to part 1.(a) of lemma 4, the i-th subset is the set of sequential patterns which are prefixed with 
xi. From lemma 2, this subset is xi.patterns(Sxi,ε). Similarly, according to part 1.(b) of lemma 4, the i-th subset is 
the set of sequential patterns suffixed with xi. From lemma 2, this subset is patterns(Sε,xi).xi.  
Lemma 5 (A linear ordering induces a recursive pruning and partitioning). A linear ordering induces a recursive 
pruning and partitioning of the search space. The recursive partitioning is static if the linear ordering is static and 
dynamic otherwise.  
Proof. Let us consider the initial sequence database S, two integer numbers l and l′, a length-l sequential pattern 
α, a length-l′ sequential pattern α′, and a linear ordering L0=o0-o1-o2 … on-1-growth. Note that ε.Sε,ε.ε=S is the 
starting database of the recursive pruning and partitioning of the search space. In the following, we show how L0 
induces a recursive pruning and partitioning of α.Sα,α′.α′. 
Case 1: o0 ∈ {prefix}. Let {β1.α′, β2.α′, … , βp.α′} be the set of all length-(l+l′+1) sequential patterns with 
respect to database α.Sα,α′.α′, prefixed with α and suffixed with α′. From lemma 3, either βI =α.(xi) or βI 
=α.(_xi), where xi is an item and 1≤i≤p. This implies that X={x1, x2, … , xp} is the complete set of 
length-1 sequential patterns with respect to database Sα,α′. It comes that any item that does not belong to X is not 
frequent with respect to Sα,α′. Thus, any sequence that contains an item that does not belong to X is not frequent 
with respect to Sα,α′ according to an Apriori principle which states that any supersequence of an infrequent 
sequence is also infrequent. Because of this, all the infrequent items with respect to Sα,α′ are removed from the z 
part (also called the middle part) of all sequence α.z.α′∈α.Sα,α′.α′. This pruning step leads to a new sequence 
database α.S′α,α′.α′ whose middle parts of sequences do not contain infrequent items with respect to Sα,α′. Then, 
α.S′α,α′.α′ is partitioned according to part (2.c) of lemma 4. The i-th sub-database (1≤i≤p) of α.S′α,α′.α′, denoted 
α.xi.S′α.xi,α′.α′, is the set of subsequences of α.S′α,α′.α′ with prefix βi=α.xi and with suffix α′. Each sub-database 
is in turn recursively pruned and partitioned according to L1=o1-o2… on-1-growth linear ordering.  
Case 2: o0 ∈ {suffix}. Let {α.γ1, α.γ2, … , α.γp} be the set of all length-(l+l′+1) sequential patterns with respect 
to database α.Sα,α′.α′, prefixed with α and suffixed with α′. From lemma 3, either γI =(xi).α′ or γI =(xi_).α′ 
(1≤i≤p). As in case 1, α.S′α,α′.α′ is partitioned according to part (2.c) of lemma 4. The i-th sub-database (1≤i≤p) 
of α.S′α,α′.α′, denoted α.S′α,xi.α′.xi.α′ ,is the set of subsequences of α.S′α,α′.α′ with prefix α and with suffix γI 
=xi.α′. As in case 1, each sub-database is in turn recursively pruned and partitioned according to L1=o1-o2 … 
on-1-growth linear ordering.  
Case 3: o0 ∈ {*}. A pattern-growth direction is determined during the mining process. Then, α.Sα,α′.α′ is 
recursively pruned and partitioned as in case 1 if the determined direction is left-to-right and as in case 2 
otherwise. From definitions 6 and 14 it is easy to see that the recursive partitioning is static if the linear ordering 
is static and dynamic otherwise.  
5. Experimental results 
The data set used here is collected from the webpage of SPMF software (Fournier-Viger et al., 2014). This 
webpage (http://www.philippe-fournier-viger.com/spmf/index.php) provides large data sets in SPMF format that 
are often used in the data mining literature for evaluating and comparing algorithm performance.  
Experiments were performed on real-life data sets. The first data set is LEVIATHAN. It contains 5834 sequences 
and 9025 distinct items. The second data set is Kosarak. It is a very large data set containing 990000 sequences 
of click-stream data from an hungarian news portal. The third data set is BIBLE. It is a conversion of the Bible 
into a sequence database (each word is an item). It contains 36 369 sequences and 13905 distinct items. The 
fourth data set is BMSWebView2 (Gazelle). It is called here BMS2. It contains 59601 sequences of clickstream 
data from e-commerce and 3340 distinct items.  
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