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Abstract 
Efficient algorithms have been developed for mining frequent patterns in traditional data where the content of 
each transaction is definitely known. There are many applications that deal with real data sets where the contents 
of the transactions are uncertain. Limited research work has been dedicated for mining frequent patterns from 
uncertain data. This is done by extending the state of art horizontal algorithms proposed for mining precise data 
to be suitable with the uncertainty environment. Vertical mining is a promising approach that is experimentally 
proved to be more efficient than the horizontal mining. In this paper we extend the state-of-art vertical mining 
algorithm Eclat for mining frequent patterns from uncertain data producing the proposed UEclat algorithm. In 
addition, we compared the proposed UEclat algorithm with the UF-growth algorithm. Our experimental results 
show that the proposed algorithm outperforms the UF-growth algorithm by at least one order of magnitude. 
Keywords: Frequent patterns, Uncertain data, Vertical mining, Tidset, Diffset, Association rules, Data mining 
1. Introduction 
Frequent pattern mining has been a focused theme in data mining research for over a decade. It is a core 
technique used in many mining tasks like sequential pattern mining, structured pattern mining, correlation 
mining, associative classification, and frequent pattern-based clustering (C. Zhu, X. Zhang, J. Sun, and B. Huang, 
2009), as well as their broad applications(H. Kriegel, P. Kroger and A. Zimek, 2009) (Y. Koh, N. Rountree, R. 
O’Keefe, 2008) (A.Ceglar and J. Roddick, 2006). So, a great effort has been dedicated to this research and 
tremendous progress has been made to develop efficient and scalable algorithms for frequent pattern mining 
(A.Ceglar and J. Roddick, 2006)(Z. Zheng, R. Kohavi, and L. Mason, 2001) (J. Han, H. Cheng, D. Xin, and X. 
Yan, 2007). All these algorithms deal with precise data sets(J. Han, J. Pei, Y. Yin and R. Mao, 2004) (M. Zaki, 
2000) (P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa and D. Shah, 2000)(M. Zaki and K. Gouda, 
2003)(W. Consue, and W. Kurutach, 2003)(B. Goethals, 2004)(M. Song, S. Rajasekaran, 2006). Such data is 
characterized by known and definite existence of the items or events in the transactions. However, there are 
datasets where the exact existence of items in the transactions cannot be gained. These datasets are called 
uncertain data. The existence of an item in a transaction is best captured by a likelihood measure or a probability 
(Chui, C.-K., Kao, B., Hung, E.). As an example, a medical dataset may contain a table of patients’ records, each 
of which contains a set of diseases that a patient suffers. In such case the physician may highly suspect (but 
cannot guarantee) that a patient suffers from a specific disease. So he expresses his suspection by a probability of 
the existence of such disease (H., Li, H., Yang, Q. 2007). Another example of uncertain dataset is pattern 
recognition applications. Given a satellite picture, image processing techniques can be applied to extract features 
that indicate the presence or absence of certain target objects (such as bunkers). Due to noises and limited 
resolution, the presence of a feature in a spatial area is often uncertain and expressed as a probability (Dai, X., 
Yiu, M.L., et al. 2005). Figure 1 shows an example of precise and uncertain data sets. Few algorithms have been 
dedicated for mining frequent patterns from uncertain data. All these algorithms follow the horizontal data 
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representation. Although vertical data representation is a promising approach no published research work has 
been studied this issue.  
In this paper we study the problem of mining frequent patterns from uncertain data using the vertical data 
representation Tidset. We extend the state-of-art vertical mining algorithm Eclat to be suitable with the uncertain 
environment. During such extension we propose the Utidset structure for vertical representation of uncertain data. 
A comparative study between the proposed UEclat algorithm and the well known UF-growth algorithm is 
conducted and showed that the proposed algorithm outperforms the UF-growth by at least one order of 
magnitude. 
The rest of the paper is organized as follows: In Section two we introduce the preliminaries of mining frequent 
itemsets. Whereas, in Section three we list and discuss the related work. Section four explains in details the 
proposed UElcat algorithm. A performance study is given in Section five. Finally, a conclusion is given in 
Section six. 
2. Background 
The problem of mining frequent itemsets can be formulated as follows. Let I be a set of items and T a database 
of transactions, where each transaction has a unique transaction identifier (Tid) and contains a set of items. A set 
X ⊆ I is called an itemset, and a set Y ⊆ T is called a tidset. An itemset that contains k items is called a k-itemset. 
The support of an itemset X, denoted σ(X), is the number of transactions in which X occurs. An itemset is 
frequent if its support is greater than or equal to a user-specified minimum support (min_ sup) value (M. Zaki 
and K. Gouda, 2003). Figure 2 shows the frequent itemsets for different values of min_sup on a given 
transactional database.  
A key difference between precise and uncertain data is that each transaction of the latter contains items and their 
existential probabilities. The existential probability P(x, ti) of an item x in a transaction ti indicates the likelihood 
of x being present in ti. Using the “possible world” interpretation of uncertain data (Leung, C.K.-S., Carmichael, 
C.L., Hao, B. 2007)(C. Aggarwal, 2009), there are two possible worlds for an item x and a transaction ti: (i) W1 
where x  ti and (ii) W2 where x  ti. Although it is uncertain which of these two worlds be the true world, the 
probability of W1 be the true world is P(x, ti) and that of W2 is 1 − P(x, ti). Figure 3 shows all possible worlds 
for a data set contains only two transactions and two items. To a further extent, there are many items in each of 
many transactions in a transaction database TDB. Hence, the expected support of a pattern (or a set of items) X in 
TDB can be computed by summing the support of X in possible world Wj (while taking in account the probability 
of Wj to be the true world) over all possible worlds (Leung, C.K.-S., Carmichael, C.L., Hao, B. 2007). 
The following formula in rule 1 is used to calculate the expected support of any itemset X. a summarized form of 
rule 1 exists in rule 2. With this setting, a pattern X is considered frequent if its expected support equals or 
exceeds the user-specified support threshold min_sup. 
 
  

 
 

There are two types of data representation; the horizontal and vertical representation as in Figure 4. In the 
horizontal representation approach, the data is organized as a set of rows. Each row has a key identifier that is 
the transaction identifier (TID) and a set of IIDs (Item Identifier). While in the vertical representation approach, 
the data is organized as a set of columns; each column has a key identifier, which is the item identifier (IID) and 
a set of TIDs (M. Zaki and K. Gouda, 2003). There are many variations of vertical and horizontal representations 
presented in (P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa and D. Shah, 2000). 
Most of the previous work on mining frequent patterns is based on the horizontal representation. However, 
recently a number of vertical mining algorithms have been proposed for mining frequent itemsets. Mining 
algorithms using the vertical representation have shown to be effective and usually outperform horizontal 
approaches (M. Song, S. Rajasekaran, 2006). This advantage stems from the fact that frequent patterns can be 
counted via tidset intersections, instead of using complex internal data structures like the hash/search trees that 
the horizontal algorithms require (M. Zaki and K. Gouda, 2003). 
Also in the vertical mining, the candidate generation and counting phases are done in a single step. This is done 
because vertical mining offers natural pruning of irrelevant transactions as a result of an intersection. Another 
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feature of vertical mining is the utilization of the independence of classes, where each frequent item is a class 
that contains a set of frequent k-itemsets (where k > 1) (M. Zaki, 2000).  
3. Related Work 
Limited research work has been dedicated for mining frequent patterns from uncertain data. Several studies show 
that broad classes of algorithms can be extended to the uncertain data setting. To the best of our knowledge no 
research work has been done to study the feasibility of extending vertical mining algorithms for mining uncertain 
data. The following paragraphs describe the horizontal algorithms proposed for mining frequent patterns from 
uncertain data. 
Chui et al. proposed the U-Apriori algorithm, which is a modification of the Apriori algorithm. Specifically, 
instead of incrementing the support counts of candidate patterns by their actual support, U-Apriori increments 
the support counts of candidate patterns by their expected support (using Equation (2)). However, U-Apriori 
suffers from the following problems: (i) Inherited from the Apriori algorithm, U-Apriori does not scale well 
when handling large amounts because it also follows a level-wise generate-and-test framework. (ii) If the 
existential probabilities of most items within a pattern X are small, increments for each transaction can be 
insignificantly small. Consequently, many candidates would not be recognized as infrequent until most (if not all) 
transactions were processed. 
Leung et al. proposed a UF-tree which is a variant of the FP-tree. Each node in the UF-tree stores (i) an item, (ii) 
its expected support, and (iii) the number of occurrence of such expected support for such an item. The proposed 
UF-growth algorithm constructs the UF-tree as follows. It scans the database once and accumulates the expected 
support of each item. Hence, it finds all frequent items (i.e. items having expected support ≥ minsup). It sorts 
these frequent items in descending order of accumulated expected support. The algorithm then scans the 
database the second time and inserts each transaction into the UF-tree in a similar fashion as in the construction 
of an FP-tree except that the new transaction is merged with a child (or descendant) node of the root of the 
UF-tree (at the highest support level) only if the same item and the same expected support exist in both the 
transaction and the child (or descendant) nodes. 
Recently, Aggarwal (C. Aggarwal, 2009) extended several existing classical frequent itemset mining algorithms 
for deterministic datasets, and compared their relative performance in terms of efficiency and memory usage. 
The study focused on candidate generate-and-test algorithms, hyper-structure algorithms and pattern growth 
based algorithms. According to the experiments in the study, the hyper-structure and the candidate 
generate-and-test algorithms are proved to perform much better than tree-based algorithms. 
4. Vertical Mining of Frequent Patterns from Uncertain Data 
In this section we propose the UEclat algorithm for vertical mining of frequent patterns from uncertain data. First 
we introduce the proposed Utidset structure that is used in the mining process. Second, we explain in details the 
UEclat algorithm provided by an illustrative example.  
4.1 Construction of the Utidset mining structure 
According to the special nature of uncertain data, a key challenge in its mining is how to represent and store this 
data. In tidset vertical representation of precise data, each item is associated with a set of transactions identifiers 
(Tids) where this item appears. The case is different in uncertain data as the item’s appearance in the transaction 
is represented by an existential probability ranging from a positive value close to 0 (indicating that the item has 
insignificantly low chance to be present in the transaction) to value of 1 (indicating that the item is definitely 
present).  
To effectively represent uncertain data in vertical representation, we propose the Utidset structure which is a 
variant of the tidset. In the Utidset structure, each node stores (i) an item, (ii) its existential probability in every 
transaction. It scans the database once and accumulates the expected support of each item. Hence, it finds all 
frequent items. The following example illustrates the construction process of the Utidset structure. 
Example 1.Consider the following uncertain transactional data set in Table 1 and construct the Utidset for all 
items respecting to minimum support equals 1. 
Here, each transaction contains items and their corresponding existential probability. For example the existential 
probability of item A is 0.9 in all transactions (T1, T2, and T5). However, the case is different for item E, for 
example, where there are different existential probabilities in different transactions. 
The Utidset can be constructed as follows. First, the UEclat algorithm scans the data only once and accumulates 
the expected support of each item. The expected support is calculating by summing the probabilities of the 
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current processed item in all its transactions. Table 2 shows all the items with their corresponding Utidset and 
expected support.  
A pruning step is done for removing all items with expected support less than the minimum expected support. At 
such step, both items E and F are removed. Table 3 shows the Utidset vertical representation of frequent items. 
4.2 Calculating the support of k-itemsets where (k>1) 
After representing all the frequent items using the Utidset structure, we need to move for mining other frequent 
k-itemsets where k>1. The main issue here is how to calculate the support of k-itemsets. In the main Eclat 
algorithm that is used for mining precise data, the support of any given k-itemset is calculated simply by 
counting the number of transactions result from intersecting the subsets of the k-itemset. So, for any two subsets 
Y, Z  X, such that Y  Z=X the support of X is calculated by intersecting both tidsets of Y and Z. However, 
the case is different in uncertain data because the item Y may have high existential probability in a specific 
transaction and at the same transaction item Z may have low existential probability which will affect the real 
probability of item X. So, in vertical mining of uncertain data it is not enough to count the common transactions 
between any two subsets to calculate the support of their superset, we also need to consider the existential 
probabilities of both subsets in each common transaction. According to rule 2 described in Section two, the 
expected support of any k-itemset is the multiplication of the existential probabilities of its subsets in all 
transactions.  For simplification we can conclude that: For any k-itemset X with subset itemsets Y and Z 
 
  
 
For example the expected support of itemset BC is calculated by ((0.6*o.8) + (0.9*0.7)). The first bracket 
(0.6*o.8) is the  support of BC in transaction T1. Whereas the second bracket (0.9*0.7) is the support of BC in 
transaction T3. Only transactions T1 and T3 are considered because they are the common transactions between 
the two subsets B and C. The total expected support of itemset BC is calculated by summing all the transactional 
supports that will result in value of 1.11. 
4.3 Mining frequent k-itemsets 
Once the Utidsets of all frequent items are constructed, the proposed UEclat algorithm recursively mines 
frequent itemsets from this Utidset structure. At the first step each frequent item is added to the output set. After 
that, for every such frequent itemset i, the i-projected database Di is created. This is done by first finding every 
item j that frequently occurs together with i. the support of this set {i, j} is computed using the previous rule. If 
{i, j} is frequent, then j is inserted into Di. The algorithm is called recursively to find all frequent itemsets in the 
new database Di.  Figure 4 shows the pseudo code of the UEclat algorithm.  
The following example illustrates how the UEclat algorithm mines all frequent k-itemsets from the Utidset 
structure. 
Example 2. Once the Utidset structure is constructed as in Table 2, the proposed UEclat algorithm recursively 
mines frequent itemsets from the structure with minimum expected support equals to 1 as follows. At the 
beginning, the UEclat algorithm starts to mine 2-itemsets. For each 2-itemset the expected support is calculated 
according to the proposed rule. A pruning process is done for all itemsets with expected support less than 1. In 
this example, the itemsets AB and BD are removed. Table 4 shows result of this step. For clarification purpose, 
we associate with each transaction the values of its two existential probabilities. Note that the columns of the 
infrequent itemsets AB and BD are highlighted by a grey color.  
Based on the frequent 2-itemsets in Table 4, the same recursive process is done for mining frequent 3-itemsets. 
Table 5 shows the Utidset of frequent 3-itemsets. Here there is only frequent 3-itemset which is ACD with 
expected support 1.13 and as a result there is no further processing. 
5. Performance Study 
In this section we measure the performance of the proposed UEclat algorithm and also compare its performance 
of with the most recent algorithm UF-growth. Datasets used in the experiments are downloaded from 
http://kdd09.crowdvine.com/talks/show/4894. Two data sets are used in the experiments, T40I10D100K and 
T25I15D320k, are generated using the IBM synthetic data set generator. These data sets contain 100k records 
with an average transaction length of 10 items and a domain of 1,000 items. These data sets are used in the 
performance study of the UF-growth algorithm. All programs are implemented and compiled with Microsoft 
Visual C# Net 2005. All experiments are performed on an Intel processor 2GHz Core 2 Due with 2G of memory, 

i=n 
Exp_sup(X) = ∑ ((p(Y,ti) * p(Z,ti)) 

i 1
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running Windows Vista. The accumulated time is measured from the beginning of reading the data set and 
converting it to its structure to the end of the frequent pattern mining process. 
In Figure 6 and Figure 7, a comparison between the UEclat algorithm and the UF-growth algorithm is conducted 
for the T40I10D100K data set for varying minimal support thresholds. Whereas the performance regarding the 
T25I15D320k data set is shown in Figure 8 and Figure 9. All expermiental results confirmed that, when minsup 
increased, fewer patterns had expected support ≥ min_sup, and thus shorter runtimes were required. One can see 
that the execution time of UEclat algorithm is better than UF-growth in general. However, when the minimum 
support is lower, the performance of our method gets better than UF-growth. The utilization of the simple data 
representation used in the UTidset structure and fast counting mechanism accelerate the process of mining large 
number of frequent patterns and thus result in less processing time rather than the one required by the UF-growth 
algorithm. These experiments show that vertical mining of uncertain data is a promising approach that can 
achieve efficient performance regarding its features as been proved in traditional precise data. 
6. Conclusion 
Most existing algorithms mine frequent patterns from traditional transaction databases that contain precise data. 
In these databases, users definitely know whether an item (or an event) is present in, or is absent from, a 
transaction in the databases. However, there are many real-life situations in which one needs to deal with 
uncertain data. In such data users are uncertain about the presence or absence of some items or events. For 
example, a physician may highly suspect (but cannot guarantee) that a patient suffers from a specific disease. 
The uncertainty of such suspicion can be expressed in terms of existential probability. Since there are many 
real-life situations in which data are uncertain, efficient algorithms for mining uncertain data are in demand. Two 
algorithms have been proposed for mining frequent patterns from uncertain data. The previous two algorithms 
follow the horizontal data representation. In this paper we studied the problem of mining frequent itemsets from 
existential uncertain data using the Tidset vertical data representation. We introduced the U-Eclat algorithm, 
which is a modified version of the Eclat algorithm, to work on such datasets. A performance study is conducted 
to highlight the efficiency of the proposed algorithm also a comparative study between the proposed algorithm 
and the well known algorithm UF-growth is conducted and showed that the proposed algorithm outperforms the 
UF-growth. 
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Table 1. Uncertain transactional data 

 

 

 

 

Table 2. Utidset vertical representation of the all items 

 

 
Table 3. Tidset vertical representation of frequent items 
 
 
 
 
 
 
 
 
 

TID Items 

T1 A (0.9), B(0.8), C(0.7), D(0.6), F(0.8) 
T2 A(0.9), C(0.7), D(0.6), F(0.1) 
T3 B(0.9), C(O.5), E(0.4) 
T4 B(0.9), E(0.2) 
T5 A(0.9), C(0.7), D(0.6), E(0.3) 

ITEM A B C D E F 

TIDSET 

T1(0.9) T1(0.8) T1(0.7) T1(0.6) T3(0.4) T1(0.8) 
T2(0.9) T3(0.9) T2(0.7) T2(0.6) T4(0.2) 

T2(0.1) 
T5(0.9) T4(0.9) 

T3(0.5) 
T5(0.6) T5(0.2) 

T5(0.7) 

Exp_sup 2.7 2.6 2.6 1.8 0.9 0.9 

ITEM A B C D 

TIDSET 

T1(0.9) T1(0.8) T1(0.7) T1(0.6) 

T2(0.9) T3(0.9) T2(0.7) T2(0.6) 

T5(0.9) T4(0.9) 
T3(0.5) 

T5(0.6) 
T5(0.7) 

Exp_sup 2.7 2.6 2.6 1.8 
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Table 4. Utidset vertical representation of 2-itemsets 
 
 
 
 
 
 
 
Table 5. Tidset vertical representation of frequent 3-itemsets 
 

 
 
 
 
 
 

 

 

 

Figure 1. Example of precise and uncertain data sets 

  

 

 

 

 

 

 

Figure 2. Illustrative example for mining vfrequent itemsets 

ITEM ACD 

TIDSET 
T1(0.9 * 0.7 * 0.6) 
T2(0.9 * 0.7 * 0.6) 
T5(0.9 * 0.7 * 0.6) 

Exp_sup 1.13 

ITEM AB AC AD BC BD CD 

TIDSET T1(0.9 * 0.8) 

T1(0.9 * 0.7) T1(0.9 * 0.6) T1(0.6 * 0.8)

T1 (0.8 * 
0.6) 

T1(0.7 * 0.6)

T2(0.9 * 0.7) T2(0.9 * 0.6)
T3(0.9 * 0.7)

T2 (0.7 * 
0.6) 

T5(0.9 * 0.7) T5(0.9 * 0.6)
T5 (0.7 * 

0.6) 
Exp_sup 0.72 1.89 1.62 1.11 0.48 1.26 

Uncertain data set 

Precise data set 

TID Items 

1 

2 

3 

4 

B, C 

A, D, E 

B, C, D 

A, D 
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Figure 3. Possible worlds from dataset with two transactions and two items 

 

 

 

 

Figure 4. Horizontal and vertical representation of data 

 

 

  

 

 

 

Figure 5. UEclat algoirthm 

 

Figure 6. Run time for T40I10D100K  
Data set for support from 70% to 95% 

 

UEclat([P]): 
For all Xi ∈  [P] do 

For all Xj∈ [P], with j > i  
R = Xi ∪ Xj  
t(R) = t(Xi ) ∩ t(Xj) 
 σ(R) = ∑ (∏ p (R, ti)) 
if σ(R) >= min sup then 
Di = Di ∪ {R}     //Di initially empty 
Next j 
if Di≠ ∅ ; then UEclat(Di) 
Next i
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Figure 7. Run time for T40I10D100K  
Data set for support from 45% to 70% 

 

Figure 8. Run time for T25I15D320k 
Data set for support from 80% to 95% 

 

Figure 9. Run time for T25I15D320k 
Data set for support from 65% to 80% 

 

 
 
 
 


