
Computer and Information Science; Vol. 9, No. 2; 2016 
ISSN 1913-8989   E-ISSN 1913-8997 

Published by Canadian Center of Science and Education 

82 
 

Empirical Study on How to Set Prices for Cruise Cabins Based on 
Improved Quantum Particle Swarm Optimization 

Xi Xie1, Wei-zhong Jiang1, He Nie2 & Jun-hao Chi1 
1 Electrical and Information School, Jinan University, Zhuhai 519070, China 
2 College of Economics, Jinan University, Guangzhou 510632, China 

Correspondence: Xiao-xiang Liu, College of Electrical Engineering and Information, Jinan University, Zhuhai, 
China. E-mail: tlxx@jnu.edu.cn 

 

Received: March 18, 2016            Accepted: March 27, 2015         Online Published: April 19, 2016 

doi:10.5539/cis.v9n2p82             URL: http://dx.doi.org/10.5539/cis.v9n2p82 

 

Abstract 
This essay puts forward a cruise pricing model based on improved quantum particle swarm optimization, aiming 
at optimizing the pricing strategy and realizing the maximum sales income expected. Firstly, we combine the two 
factors – actual booking records and expected booking records in the process of cruises pricing – and improve 
the dynamic price-setting model based on demand learning put forward earlier. Then we improve the 
Dynamically Changing Weight’s Quantum-behaved Particle Swarm Optimization (DCWQPSO) based on 
multistage punish function, in order to faster the converging speed and avoid the problem of local optimum. 
Lastly, we use the improved DCWQPSO to find the best expected sales income in the improved pricing model. 
The instance analysis of cruise pricing shows that the process of constructing this model is reliable and logical. 
Also this model could better higher the maximum expected sales inc ome and better perform in future 
application. 

Keyswords: cruise pricing, improved pricing model, multistage punish function, improved DCWQPSO, 
maximum expected sales income 

1. Introduction  
Regarded as the gold industry floating on the gold waterway, the cruise industry has now become one of the 
fastest developing industries in modern tourism business, and has reached 8% increment in recent years (Sun, 
2011). With new cruises’ being put in operation and new ports’ being constructed, the cruise business is 
developing rapidly, showing tremendous life power and development potential (Liu, 2011). However, the 
China’s cruise business is just setting off and immature, also lacking any theoretical studies of the cruise’ profit 
management. In recent years, the China’s cruise tourism business is in a strong developing trend and become the 
new form and new field of China’s economy development, due to the influence of international cruise industry 
markets. Therefore, it has become an important issue that worth studying how to rationally increases the cruise 
industries’ profit. 

In the process of cruise business operation, the companies emphasize on three aspects mostly: demand precast, 
storage distribution and cabin pricing, so the pricing of the cruise directly influence the business’ sales income, 
which could be a key problem of the study. As for the pricing of the cruise, many experts and scholars had made 
a great amount of studies on it. For example, Sun et al. (2015) made a comparison analysis on the cabin 
distribution of cruise profit management based on the EMS R-a and EMS R-b. Sun et al. (2013) put forward a 
dynamic pricing adjustment strategy especially for the north-American market based on demand learning, and 
further discusses the implementing process of this new strategy using actually statistics of American cruise 
companies. The study results shows that this strategy could higher cruise companies’ total profit in some extent. 
Shen (2015) made a study on cruises’ dynamic stock control and dynamic pricing of different types of cabins in 
different periods based mostly on profit management theory. However, he did not make transformation on the 
extant model, also he put in his essay that it was a difficult problem to restrictedly optimize the pricing of cruise 
to achieve maximum expected income. 

When dealing with the optimizing problem, the Particle Swarm Optimization, PS (Kennedy J, 1995) algorithm 
stands out with easy understandability and access among other global optimization algorithms, which attracted 
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scholars’ attention, generated many applications (Kuok K K, 2010). But there are some aspects that remain to be 
improved as shown in the actual practice. For example, the easily resulted premature convergence, lack of global 
optimization abilities and slow convergence speed, etc.(Zhou, 2011). Sun (2004) came up with a new particle 
evolution model from the quantum mechanics point of view, which is based on the delta (δ) potential and the 
hypothesis that the particles would feature quantal behaviors. He later put forward the algorithm- Quantum 
Particle Swarm Optimization, QPSO based on the model. Because of the differences appeared in the particles’ 
agglomeration state in the quantum space, the algorithm could manage to do search within the whole feasible 
region, since its ability at global searching is far better than the standard particle swarm algorithm. However in 
the actual application, the QPSO still needs to be improved to better suit the specific circumstances. At present, 
there are plenty of studies about improving the quantum particle swarm optimization in order to better solve the 
multi-object optimization problem. For example: Zhang et al.(2008) improved the particle swarm optimization 
based on multi-stage punish function; Wen et al.(2015) dynamically reconfigured the distribution network based 
on integer coded quantum particles warm optimization algorithm; Huang et al.(2012) studied about the 
quantum-behaved particle swarm algorithm with self-adapting adjustment of inertia weight; Cao et al.(2012) 
applied the Improved quantum particle swarm optimization into power network planning considering geography 
factor; Li et al.(2014) applied the adaptive parameter into adjusting the research on quantum-behaved particle 
swarm optimization. 

This essay puts forward a cruise pricing model based on improved quantum particle swarm optimization, with 
improvement made in the dynamic pricing theory according to the actual circumstances, also using the 
multistage punish function to optimize the DCWQPSO algorithm and lastly improving the problem of 
optimization with the improved algorithm’s restriction. We use the eighth electrical and mathematical modeling 
contest type B’s statistics to prove the pricing model put forward in this essay, and the results show that this 
model works well with excellent precision and applicability. 

2. Cruise Pricing Model 
Focusing on the cruise pricing problem, this essay firstly puts the idea of improving the previously made 
dynamic pricing model based on demand learning by studying the actual booking records and expected booking 
records in cruise pricing, which would make the model more realistic. Secondly, the improving of DCWQPSO 
using the multistage punish function, which would help avoid local optimum and faster the convergence speed. 
Lastly, find the global optimized sales profit expectation, using the improved quantum particle swarm 
optimization. 

2.1 Improved Dynamic Pricing Model 

Sun et al. (2013) put forward a dynamic pricing model based on demand learning, which could not only set 
dynamic prices, but also dynamically dig out the information of customers’ maximum reserved prices. 

However, the model did not take the relations between the actual booking records and expected booking records 
into consideration. In reality, the expected records are in some kind of relation with the prices, which we could 
fit by comparing the hash maps. Also the actual records are in some kind of relation with the expected records. 
According to this, in this section the improvement of this dynamic pricing model based on demand learning will 
be discussed. With the new voyage statistics imported, the demand function will be re-evaluated, and the best 
prices of different future voyage could be set by using the following non-linear model. 

Actual booking records (demand function) and the expected booking records function: 

 

Where,  stands for the actual booking records in the n-th circle, stands for the expected booking records 

in the n-th circle. 

The weekly prices (t=1,2…,n) obey the uniform distribution between the interval of . 

Thus, in the demand function  

Then,  

Where, 
 

stands for the total profit during the n-th circle of every cruise voyage. 
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Subject function:  

Restriction requirement: 

 
Where, R stands for the total profit of each cruise voyage, M stands for the maximum capacity of each level’s 

cruise cabins,  stands for the cabin price of the t-th circle in the same level. 

By using the data of different voyages, layout the demand function , substitute the data to calculate the 

specific function of R, and lastly calculate the value of R then we have the profit expectation of the cruise 

company.  

2.2 Improved QPSO Based on Multistage Punish Function 

2.2.1 Dynamically Changing Weight’s Quantum-Behaved Particle Swarm Optimization (DCWQPSO) 

Choosing the inertia weight β  of the QPSO is crucial, because it’s related to the whole algorithm’s 
convergence ability. The bigger the value of  is, the better it is the quality of global searching and the faster 
the convergence speed is but the less precise result is; the smaller the value of  is, the more precise result is 
and the slower the convergence speed is. In order to improve the convergence ability of the QPSO, Huang et 
al.(2012) came up with an algorithm DCWQPSO. 

During the iterative process of the QPSO, the global optimal position value in the current iterative always excels 
or at least equals to that of last iterative as a result of the calculating of the particle swarm’s position.  

 

If the optimization object is to search for the minimal value, the define 

 

Another factor that affect the QPSO’s performance is the particle aggregation. Particle swarm’s global optimal 

position value’s fitness value always excels that of every particle’s current optimal position value. If 

every particle’s current optimal position value’s fitness value’s average is 
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During the process of optimizing the maximal value, , defines: 

 

This improved algorithm could dynamically adjust according to the evolution speed factor and the 

aggregation degree factor  during operation, which is 

 

Where,  is  initial value, commonly ;  is the weight influenced by ;  is the weight 

influenced by . Since , , the . Commonly in the initial 

state, make . 

2.2.2 The Punish Function 

The punish function is commonly defined as (Zhang et al., 2008):: 

 

Where,   f (x)  is the initial object function for the constrained optimization problem,   h(x)  is the punish 

function’s factor, k is the iterations of the particle swarm algorithm, which means that the constrained 

optimization method’s punish function value increases with the increase of the iteration.   H (x) is the multistage 

punish function, and is defined as: 

 

 

Where, m is the number of the constraint conditions, is the corresponding constraint violation function, 
is the constraint function,  is the multistage distribution function, is the series of the 

punish function. ,  and is based on the constrained optimization problem, and the value 

is set based on the following rules. 
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function. 

In this section, an improved algorithm DCWQPSO based on multistage punish function will be put forward, in 
order to further improved the DCWQPSO, and add the restrictions as a punish function form into the object 
function to make it a single object optimization problem. Here are the calculation steps of the DCWQPSO using 
the multistage punish function: 

Step 1: Find the initial position of all the particles in the object space and at the same time initialize the inertial 

factor initial value , the evolution speed factor weight and the aggregation degree factor weight ; 

Step 2: Update the average optimal position of the particle swarm according to the particles’ average optimal 
position; 

Step 3: Calculate each particle’s current adaptive value and compare it to that of the previous iteration. If the 
current value is smaller, then set that particles’ position as the current position; 

Step 4: Calculate the swarm’s current global optimal position; 

Step 5: Compare the current and previous global optimal position adaptive value. If the current value is smaller, 
then set the particle swarm’s global optimal position as the current position; 

Step 6: Update all the particles’ position according to the position update formula; 

Step 7: Update the evolution speed factor and the aggregation degree factor ; 

Step 8: Update the inertial factor value β ; 

Step 9: Repeat Step 2 to 8 till the end loop condition is met. 

This improved algorithm could find the global optimal solution in the fastest way and would not easily fall into 
local optimum. 

Lastly, we use this improved DCWQPSO algorithm to calculate the solution of the improved dynamic pricing 
model in order to find the global optimal expected ticket sales income. 

3. Instance Analysis 
In this section, the cruise pricing model based on the improved particle swarm algorithm will be proved by using 
the eighth electrical and mathematical modeling contest type B’s statistics (website :http://shumo.nedu.edu.cn/). 

3.1 Demand Function Solving 

The statistics of the first seven voyage’s first class cabin picked out form the type B could be seen in the Tab.1 
and 2. In the Tab.1, 4 of the first 7 circles’ historic pricing data including the expected booking records, the 
actual booking records and the pre-set prices are shown, while in the Tab.2 different circle’s pre-set prices’ 
restriction intervals are shown. In order to make the fit result better, logic regression forecasting method was 
used to complete all the seven voyage’s statistics. Due to the limited length of this article, we would just 
calculate the solution of the model using the data of the first class cabin. 

 

Table 1. Statistics of the first 8 voyages 

Expected booking records 
Circle Voyage 1 Voyage 2 Voyage 3 Voyage 4 Voyage 5 Voyage 6 Voyage 7 
12 31 136 49 96 148 39 54 
13 10 40 32 35 83 24 10 
14 2 9 36 25 11 7 6 
15 1 0 5 4 10 5 3 
Pre-set prices 
Circle  Voyage 1 Voyage 2 Voyage 3 Voyage 4 Voyage 5 Voyage 6 Voyage 7 
12 1770 1900 1800 1860 1900 1760 1760 
13 1730 1820 1720 1760 1810 1710 1831 
14 1660 1720 1800 1810 1720 1846 1831 
15 1610 1650 1680 1690 1750 1766 1720 
Actual booking records 
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Circle Voyage 1 Voyage 2 Voyage 3 Voyage 4 Voyage 5 Voyage 6 Voyage 7 
12 28 34 37 43 37 37 51 
13 8 8 28 21 22 22 12 
14 2 6 9 5 7 8 6 
15 1 0 3 2 5 4 4 

 

Table 2. Pre-set prices intervals 

Circle Prices intervals
12 1750 1950 
13 1700 1850 
14 1650 1850 
15 1600 1800 

 

By observing the booking records and pricing’s scatter diagram’s trend, this article would talk about the 
exponential fitting of the 12-th circle’s expected booking records and pricing, you could see the fitting graph in 
Figure 1. Meanwhile, and by observing the 12-th circle actual booking records and expected booking records’ 
scatter diagram’s trend, this article would talk about the linear fitting of the actual booking and expected booking 
records, you could see the fitting graph in Figure 2. 

 

Figure 1. The fitting diagram of the expected and pricing(12th) 

 

 
Figure 2. The fitting diagram of the actual and expected booking records(12th) 

The 12th circle’s expected booking records and pricing’s fitting equation  

The 12th circle’s actual and expected booking records and actual booking records’ fitting equation 

W
n

= e0.0092 pt −12.5
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Then the 12th circle’s demand function is  

Thus, the 13th to 15th circles’ demand function could also be calculated: 

Then the 13th circle’s demand function is  

Then the 14th circle’s demand function is  

Then the 15th circle’s demand function is  

3.2 Optimization Model Solving 

By substituting the demand function from the 3.1 section into the maximal expected profit’s optimization model 
then using the Matlab, we could find the solution of the improved DCWQPSO. In order to better represent the 
advantages of the improved algorithm, we would respectively using the DCWQPSO and the QPSO to solve the 
improved model, you could see the convergence comparison in Figure 3 (the red line describes the improved 
DCWQPSO’s convergence, while the blue line describe that of the ordinary QPSO) and the solution in Tab.3. 

 
Figure 3. Convergence Comparison 

 
Table 3. Improved model’s solving result 

DCWQPSO solution QPSO solution 
Circle Price Booking records forecast Circle Price Booking records forecast 

12 1860.18 84.3 12 1799.27 48.31 
13 1761.56 28.72 13 1777.49 33.55 
14 1718.42 5.85 14 1650.62 2.14 
15 1607.66 0.96 15 1799.41 35.98 

Maximal expected income:  216599.43 Maximal expected income: 212168.02 
 

3.3 Discussion  

As shown in the Figure 3, compared with the ordinary QPSO, the improved DCWQPSO has faster convergence 
speed and bigger expected profit, which further proves that the improved DCWQPSO would not easily fall into 
local optimal problem and has better optimization and application. As for the result of the Tab.3, DCWQPSO’s 
maximal expected profit is 216,599.43, which is a 2.09% increment compared to that of 212,168.02 of the 
ordinary QPSO. Also calculating the average voyage profit, which is 105,795, proves that the improved 
algorithm has much bigger maximal expected income than previous. Thus, the cruise-pricing model put forward 
in this essay is of significance and bound to make more profit to the actual cruise business. 
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4. Conclusion 
This essay puts forward a cruise pricing model based on the improved quantum particle swarm optimization, 
basing on the dynamic pricing theory and the improved particle swarm algorithm, with the aim at optimizing the 
pricing strategy and achieving maximal sales income. 

The innovation of this essay lies at two points. First, we improved Sun et al.(2013)’s dynamic pricing model by 
combining the actual situation of cruise pricing’s actual and expected booking records, which proves the 
practicality of the improved model. Second, we put forward a improved algorithm by combining the multistage 
punish function and the DCWQPSO, in order to faster the finding of the global optimal solution and avoid local 
optimal. The examples show that, the improved algorithm has better application advantages. All in all, the model 
in this essay is countable and logical, and the pricing model would work well in improving the maximal expected 
sales income. 

As for the model’s application, this essay’s case analysis takes relatively less statistics types, which need to be 
more in real cruise pricing. However, as long as there are better parameters and index for this improved model, it 
could work just fine. 

This particle swam algorithm has a wide academic use, other than the pricing model put forward in this essay, 
other fields of science or business also uses this algorithm, such as the distribution network’s dynamic 
reconstitution (Wen et al., 2015) and the red wine’s quality classification(Qiu et al., 2015). 
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