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Abstract 

Use case analysis is a common technique used to ascertain the functional requirements of a software system. A 
use case diagram is a kind of Unified Modeling Language (UML) diagram created for use case analysis. 
Creating effective use cases can be a determining factor in building a system that meets users' needs. However, 
writing use cases is a difficult and time-consuming process, requiring the user to manually fill out a form or 
write text in a specific, pre-stipulated format. Many students lack the technical knowhow to do this. Our research 
offers a software solution that resolves this issue. By combining natural language algorithms, such as Part Of 
Speech (POS) and Name Entity recognition (NE), with a set of grammatical rules created and implemented as a 
Finite State Machine (FSM), our system extracts the relevant items from the text and automatically translates the 
plain or unstructured text into a structured one.  The paper has been tested on standard examples with excellent 
results.  
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1. Introduction 

The use case model is composed of two parts: The use case diagrams and the use case specifications. The use 
case model comprises actors, use cases, and associations, all of which are depicted in a use case diagram. 
According to (A. Cockburn, 2000), each use case represents a major piece of functionality that is complete from 
beginning to end, and is described within a use case specification. The specification includes the following 
processes: the basic flow of the use case, the alternative flows, involved actors and stakeholders, conditions, and 
references to other related use cases. The business rules associated with use case interactions must be specified 
or at least indicated by these rules (F. Dias, A. Schmitz, M. Campos, A. Correa, A. Alencar, 2008). 

Even experienced analysts find it very challenging to generate use case models based on analysis of the 
functional requirements of a natural language. There are numerous issues that give rise to this difficulty: 
complexity, imprecision, and ambiguity of natural language; combined with a lack of domain knowledge, object 
oriented experiences, and effective object-oriented methods. More research is needed in the area of 
methodologies and CASE tools. 

Because use case specifications remain largely textual, ambiguities are predictable (B. Dano, H.Briand, and 
F.Barbier, 1997). According to (R. Denney, 2005) and (D. Jagielska, P. Wernick, M. Wood, and S. Bennett, 2006), 
the resulting descriptions usually suffer from problems such as redundancies, ambiguities, inconsistencies, 
conflicts with domain terminology, and implementation details (terminology contaminated use cases). These 
issues make it difficult for customers to understand and maintain the specifications.( El-Attar, Miller, 2006 ; 
El-Attar, 2009; El-Attar, Miller, 2012) state that these issues result in low quality information systems.  

One of the causes of imprecision and ambiguity in use case specifications is the unrestricted textual nature of the 
specifications. The elicitation process is a major determinant in the quality of the use case models. ( J. Kim, P. 
Sooyong, and S. Vijayan, 2004) state that the lack of support for a systematic requirements elicitation process is 
probably one of the main drawbacks of use-case-driven analysis. This lack of elicitation guidance sometimes 
results in an ad-hoc set of use cases without a consistent underlying rationale.  
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Several existing approaches use natural-language parsing techniques to retrieve the use case elements from 
pre-existing documents. This method is based on either a predefined SRS template or a use case template. 
However, this process suffers from ambiguities, redundancies and inconsistencies present in such documents, 
and is therefore unreliable. 

Because of the above-mentioned limitations, the analyst must be an expert to obtain the use case elements 
correctly and completely from existing documents. Irrespective of the analyst’s ability, this procedure is 
extremely time consuming. One approach involves developing use case models from scratch, by using the 
classical methodology of open-ended questions that lack specificity and formality (V. Gervasi and D. Zowghi, 
2005). The result of this method is a document with ill-defined requirements that needs to be reorganized and 
readjusted, in order for the analyst to efficiently derive the use case elements. Other approaches, such as natural 
language parsing and open questions, are generally applied in re-engineering to derive textual requirements. 
These approaches also result in ill-defined requirements, as they have the same weaknesses mentioned above.  

Informality is the principal difficulty with the use of automated tools for use case modeling. Informal natural 
language is inherently complex, fuzzy and ambiguous. As a result, use case elements are difficult to identify 
completely and correctly. In sum, there is a scarcity of approaches that automatically generate use case models.  

Use case model schemas are sometimes used to normalize the use case specifications. A use case processing 
method is introduced for use case realization. The association relationships between formalized action statements 
and behavior types are identified and applied, in order to automate the use-case analysis. 

(Hasan Al-Shalabi and colleges Hasan Al Shalabi, Rafeeq Al-Hashemi and Tahseen A. Al-Ramadin, 2013) 
proposed an Automatic Cover Letter Generator System from CVs (ACLGS) that solved the problem of writing a 
C.V. Cover letters require some linguistic skills and some experience in this domain. By building a template as a 
frame of slots, with each slot containing a required skill for the job, the ACLGS extracts the required information 
from the user C.V and fills the slots automatically.  

ACLGS then applies information retrieval methodologies to extract information with intelligence trends. Using 
this information, it mines the user C.V. in terms of parts-of-speech tags and some indicator words that the system 
uses to recognize the proper data and required information. In addition, the system specifies a set of features for 
each slot in the form. 

2. Methodology 

Our paper examines a new field of information extraction, one that utilizes the power of the computer to perform 
one of the most critical tools of use cases for system analysis. The proposed method allows the computer to 
automatically generate accurate and complete use cases, thereby eliminating the need to do it manually. This 
research was implemented on plain text documents, using standard examples of this field, both from the Internet 
and from books, such as Summerfield’s. The proposed system uses the Rapid Miner application, which helps 
complete the research with fewer resources and in less time than the classical method. Our new method also 
works well with the most challenging aspect of the problem, unstructured data.  

The proposed Algorithm is illustrated in figure (1). In the beginning, the algorithm converts the unstructured text 
into structured tables that extract the meaningful terms and objects. This is achieved through the following 
sequence of steps: preprocessing to filter the entered text; tokenizing the text; stop-word removal, and word 
stemming. The next step is to identify the Part-of-Speech tag for each word, in order to discriminate the hot 
keywords.  

The Porter stemming algorithm (or ‘Porter stemmer’) is the term used in linguistic morphology, it is a process 
for removing the commoner morphological , suffix and prefix from the word, then by changing some part of the 
words (phase to phase) to get the root (word stem) of the words. In literature, many stemming algorithm are used. 
However, we employ Porter stemmer, because it works well with our algorithm and offers excellent results. 
About 500 documents and examples were selected from the database and analyzed manually to identify the 
keywords and sentences that play the primary role in building use cases. We then initiated a set of grammar rules 
that covers all of these sentences and keywords. Figure 2 illustrates the block diagram of the proposed method. 
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Figure 1. Use-Cases Production Algorithm 

 

 
Figure 2. Finite state machine for the extracting rules 

 
In this paper we used Name Entity Recognition, which significantly improved the accuracy of the algorithm by 
helping to identify the relationship between entities. Name Entity and Relation Entity Recognition are new 
features added to the grammar rules set (Carreras, X., Marquez, L., & Padro, L., 2003; Nadeau, D., Sekine, S., 
2007). These two features extract items such as Names, Actors, Processes, and Relations between the Actors and 
the system. The use of these extracted objects enables the computer to produce the use case diagram 
automatically. This additional step yielded excellent results and added significant value to the algorithm.  

Finally, a Preprocessing step added to this method also produces improved results. This step is achieved by 
employing a lookup dictionary that we created using a set of the most closely related keywords frequently 
employed in the use case diagram. This is an additional feature that we use to identify related keywords, Actors, 
Relations and the System Name. 

3. Results and Discussion 

The algorithm was implemented on standard scenarios, and it yielded more accurate results when compared to 
manually extracted sentences used in the use cases. The following is an example of the results that were achieved 
when testing the method.  

Case Study: 

Seats can be reserved by customers on the website of a bus company. The customer has the option to directly pay 
for the seat through the website. In that case, the seat cannot be canceled (neither by the customer nor by the bus 
company). If the customer has not paid for the seat, the bus company can cancel the seat, in the event that the 
customer does not show up one hour before the trip. When the reservation is canceled, the seat will become free 
and can then be sold to another customer. Both the customer and the company staff must authenticate themselves 
before performing operations within the system. 

The algorithm implemented in this paper analyzes the entered unstructured text and extracts the most important 
sentences matching the set of features established by the algorithm.   

i) Seats can be reserved by customers.  

1. (by part of speech) Seats/NNS can/MD be/VB reserved/VBN by/IN customers/NNS 

2. ( Delete stop words) delete  " can/MD" and" by/IN" 

3.  (follow state chart) S0(NN)S1(VB*)S3(NN)S4. 
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4. NN Actor1" Seats", VB*  use case(1)" be reserved" , NN Actor2 " customers". 

ii) The customer has the option to directly pay for the seat. 

1. (by part of speech) The/DT customer/NN has/VBZ the/DT option/NN to/TO directly/RB pay/VB 

for/IN the/DT seat/NN./. 

2. ( Delete stop words) delete  "The/DT", "to/TO", "for/IN",  the/DT", " through/IN" and "the/DT". 

3.  (follow state chart) S0(NN) S0(VBZ) S0(NN) S1(TO) S1(RB) S2(VB*)S3(NN)S4. 

4. NN Actor1" Customer", VB*  use case(2)" pay" , NN Actor2 " seat". 

iii) the reservation is cancelled, 

1. (by part of speech) the/DT reservation/NN is/VBZ cancelled/VBN 

2. ( Delete stop words) delete  "The/DT". 

3. (follow state chart) S0(NN) S0(VBZ) S1(VB*)  S3. 

4. NN Actor1" reservation", VB*  use case(3)" Cancelled". 

iv) Both the customer and the company staff must authenticate themselves. 

1. (by part of speech) Both/PDT the/DT customer/NN and/CC the/DT company/NN staff/NN must/MD 

authenticate/VBP themselves/PRP. 

2. ( Delete stop words) delete  "Both/PDT",  "the/DT"  must/MD and themselves/PRP. 

3. (follow state chart) S0(NN) S0(CC) S0(NN) S0(NN) S1(VB*) S3. 

4. NN Actor1" Customer", company staff, VB*  use case(3)" Cancel". 

The output will be as follows : 

1. NN Actor1" Seats", VB*  use case(1)" be reserved" , NN Actor2 " customers". 

2. NN Actor1" Customer", VB*  use case(2)" pay" , NN Actor2 " seat". 

3. NN Actor1" reservation", VB*  use case(3)" Cancelled". 

4. NN Actor1" Customer", company staff, VB*  use case(3)" Cancel". 

 

 
Figure 3. A bus company Use case  

 

4. Conclusion 

One important step in system analysis is building the use cases. This is a difficult process requiring considerable 
time and cost, as the user must manually fill out a form or write the text in a specific format with pre-stipulated 
constrains and limitations. Many students lack the technical capability to design use cases for their projects. In 
this paper, we produced an algorithm that helps both students and systems designers to overcome this problem, 
by constructing the use cases automatically. The algorithm builds the use cases by converting plain unstructured 
text into structured text, through swift and accurate extraction of the most meaningful items in the text.  
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