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Abstract 
In the last years, uncertainty management became an important aspect as the presence of uncertain data increased 
rapidly. Due to the several advanced technologies that have been developed to record large quantity of data 
continuously, resulting is a data that contain errors or may be partially complete. Instead of dealing with data 
uncertainty by removing it, we must deal with it as a source of information. To deal with this data, database 
management system should have special features to handle uncertain data. The aim of this paper is twofold: on 
one hand, to introduce some main concepts of uncertainty in database by focusing on different data management 
issues in uncertain databases such as join and query processing, database integration, indexing uncertain data, 
security and information leakage and representation formalisms. On the other hand, to provide a survey of the 
current database management systems dealing with uncertain data, presenting their features and comparing them.  

Keywords: data uncertainty, database management systems, imperfect data, probabilistic data 

1. Introduction 
We live in an uncertain world, surrounded by data which is completely uncertain. Uncertainty exists when 
knowledge of the real world cannot be indicated with absolute confidence. Uncertainty might result from using 
unreliable information source, as faulty reading instrument or input forms that have been filled out incorrectly, or 
it can be a result of system errors, such as transmission errors and noise, delay in processing update transactions, 
and imperfections of software. Therefore uncertainty is considered an unavoidable result of information 
gathering methods that requires estimation or judgment. An increasingly large amount of uncertain data can be 
found in a variety of domains such as: data integration, experimental data, information extracted automatically 
from text, data from the physical world (Aggrawal, 2009; Rowe, 1994). Since most conventional databases, 
including relational databases are deterministic, and the ignorance of uncertainty is not an option in reliable 
applications, dealing with uncertain data becomes a must. 

The broader taxonomy of the current research in managing uncertain data can be classified into two main areas: 
The first is modeling uncertain data. The main challenge in this area is handling the data while keeping it useful 
for data management or mining applications. The second area is managing and mining uncertain data where 
traditional data management techniques are adopted to deal with uncertain data, such as join processing, query 
processing, indexing, and data integration (Aggrwal, 2009). To apply traditional data mining techniques, 
uncertain data has to be summarized into atomic values (Dhandore & Ragha, 2014).  

The aim of this paper is twofold: the first is an introduction to the main concepts of handling uncertainty in 
database. The second is surveying different data management issues in uncertain databases such as join and 
query processing, database integration, indexing uncertain data, security and information leakage and 
representation formalisms. As a matter of fact most of these issues; were discussed and surveyed by Aggrawal et 
al in (Aggrwal, 2009). In this paper we added two other issues which are: security and information leakage and 
representation formalisms and updated the others issues. To complete the study, we surveyed current uncertain 
database management systems such as Orion (Cheng, Singh, & Prabhakar, 2005), MystiQ (Boulos, Dalvi, 
Mandhani, Mathur, Chris, & Suciu, 2005), Trio (Benjelloun, Sarma, Halevy, & Widom, 2006; Widom, 2005), 
MayBMS (Huang, Antova, Koch, & Olteanu, 2009), MCDB (Jampani, Xu, Wu, Perez, Jermaine, & Haas, 2008), 
Bayes-Store (Wang, Michelakis, Garofalakis, & Hellerstein, 2008) and compared them according to the 
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operations handled.  

This paper is organized as follows: Section two briefly describes some key concept in uncertainty in databases. 
Section three surveys various techniques of dealing with different data management issues on uncertain data. 
Section four discusses the differences between existing uncertain DBMSs. Section five contains the conclusion 
and summary. 

2. Uncertainty in Database 
Although uncertainty, vagueness, ambiguity, imprecision, and inconsistency are five terms that are sometimes 
used interchangeably, each term has its own meaning. In the database context, uncertainty refers to the data 
objects that cannot be assured with an obsolete confidence (Motro, 1994). Vagueness refers to a data item that 
belongs to a range of values without a clear determination of its exact value. For example when saying that a fish 
tail is long without specifying its exact length. Ambiguity means the incomplete description of a data item. For 
example, it may not be specified whether the fish tail is measured in cm or mm. Imprecision means not precise 
and it refers to the level of exactness. For example, the fish color is red or orange. Finally, Inconsistency happens 
when having conflicting items. For example, the fish tail is greater than 10 cm and the fish tail is greater than or 
equal 12 cm.  

The common sources of uncertainty are unreliable information source such as faulty reading instrument or input 
forms filled incorrectly, and system errors that includes transmission noise, imperfection of system software and 
delay in processing update transaction (Motro, 1994).  

In uncertain database systems, uncertainty is handled in two main dimensions, the uncertainty of data and the 
uncertainty of operations. Uncertainty of data has two levels: the first level is the attribute level where tuples 
exist for certain in the database but the attribute value is however uncertain. The second level is the tuple 
uncertainty where all attribute in the tuple are known precisely but the existence of the tuple itself in a relation is 
uncertain.  

The degree of uncertainty differs according to the information form and the number of alternatives when 
uncertain data exists. The highest degree of uncertainty is found when there is a doubt about the existence of true 
value in the existing data, and it decreases when there is a range of values for an uncertain object. The 
uncertainty degree decreases when the uncertain value comes from a few set of alternatives. Uncertainty degree 
is further decreased when there is a probability attached with each alternative indicating their correctness (Motro, 
1994; Motro, 1995). 

The uncertainty of operations includes transformation and modification. Transformation is defined as the 
operation that gets new data from the stored one. Queries are considered the frequent transformation type used. 
Uncertain request from the user can occur due to several reasons; such as lacking the information already present, 
being not sure about what they need. After the answer is delivered to the user, the uncertainty level decreases 
when the user is more familiar with the answer he has got (Motro, 1994; Motro, 1995). Modification operation 
includes any operation that cause change in the data already present. The user is the one who defines the 
modification needed. The uncertainty here can be caused from several reasons such as; lacking system 
information, lacking database information or the uncertainty can be in the data to be modified. Few tools are 
present for solving the uncertainty in the modification process (Motro, 1994; Motro, 1995). 

Processing uncertainty main reasons is the uncertainty about the tools used by the system in processing the 
request. So in case the description and transformation process are free of uncertainty still we need to check the 
processing uncertainty (Motro, 1994; Motro, 1995). 

Finally, a probabilistic database is an uncertain database in which the possible worlds have 
associated probabilities. Each data item, tuple and value that an attribute can take is associated with a probability 
∈ (0, 1), with 0 representing that the data is certainly incorrect, and 1 representing that it is certainly correct 
(Motro, 1995). There is also the research area of fuzziness in database systems, which has resulted in a number 
of models aimed at the representation of imperfect information in DB. Fuzzy relational database is an extension 
of the relational database in order to treat, store, and interrogate imprecise data. This extension introduce fuzzy 
predicates under shapes of linguistic expressions that, at the time of flexible querying, permits to have a range of 
answers in order to offer the user all intermediate variations between completely satisfactory answers and those 
completely dissatisfactory (Touzi & Hassine, 2009). 

3. Handling Uncertainty in Databases 
The survey done by Aggrawal et al. in (Aggrwal, 2009) is considered to be a corner stone for researchers in the 
area of managing uncertain data. Hence, we took it as a starting point for this paper. In this section, we discuss a 
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number of data management applications on uncertain data. Aggrawal et al. in (Aggrwal, 2009) have included 
most of the applications and techniques that are handling the management issues on uncertain data such as join 
processing, query processing, data integration, and indexing. We have added in this paper other recent techniques 
that handle the same issues. Moreover, we have included two other important management issues to our paper 
which are security and information leakage, and Representation Formalisms. This survey covers almost all the 
management issues on uncertain data and shows how techniques can handle it. 

3.1 Indexing 

Indexing uncertain data is the key technique for efficient query evaluation over uncertain data. The problem of 
indexing uncertain data is challenging because the diffuse probabilistic nature of the data can reduce the 
effectiveness of index structure and makes the cost of queries execution a concern. Index structures for 
deterministic data are not appropriate for uncertain data determining the suitable index structure for uncertain 
data depends on two main factors: the nature of uncertainty in data that depends mainly on the application 
domain and the type of required queries (Aggarwal, 2009).  

In index structures and their associated algorithms are developed to effectively answer Probabilistic Threshold 
Queries (PTQs). The Index scheme called probability threshold indexing (PTI), is based on the idea of 
augmenting uncertain information to an R-tree. The one-dimensional intervals are mapped to a two-dimensional 
space to show that the problem of interval indexing with probabilities is significantly harder than interval 
indexing (indexing on interval queries which is a complex query). A technique called variance-based clustering 
is used to overcome the limitation of this problem. The index structure can answer the queries for various kinds 
of uncertain information, in an almost optimal sense. 

The problem of range searching was introduced by (Tao, Cheng & Xiao, 2007), solved by considering a small 
histogram consisting of one piece. In (Tao, Cheng, Xiao, Ngai, Kao & Prabhakar , 2005; Tao, Cheng & Xiao, 
2007) this problem is considered in two higher dimensions and presented some index structures based on space 
partitioning heuristics. In indexing categorical uncertain data is handled, using a heuristic solution, namely, each 
random object take a value from a discrete, unordered domain.  

(Agarwal, Cheng, Tao, & Yi, 2009)Presents linear or near linear size indexing schemes for both the fixed and 
variable threshold version of the problem, with logarithmic or poly-logarithmic query times. An optimal index is 
presented for answering queries on uncertain data where the probability threshold is fixed. In (Qi, Singh, Shah, 
& Prabhakar, 2008) the Probabilistic Nearest Neighbor (PPN) query is studied with probability threshold (PPNT) 
which returns all uncertain objects with NN probability greater than the threshold. An augmented R-tree index is 
proposed with additional probabilistic information to facilitate pruning as well as global data structures for 
maintaining the current pruning status.  

The indexing algorithms proposed in (Singh, Mayfield, Prabhakar, Shah, & Hambrusch, 2007; Qi, Singh, Shah, 
& Prabhakar, 2008), are not considered a general indexing algorithm. As in (Singh, Mayfield, Prabhakar, Shah, 
& Hambrusch, 2007) only categorical uncertain data is considered. In (Qi, Singh, Shah, & Prabhakar, 2008) they 
only focused on indexing the nearest neighbor queries. The indexing algorithm used in (Tao, Cheng, & Xiao, 
2007) is the most effective way to solve index challenge when dealing with probabilistic queries, as it can 
provide correct query answers for different uncertain data. 

3.2 Security and Information Leakage 

When dealing with the problem of security and information leakage challenge, solving this problem is based on 
appropriate data modeling usage. For better understanding of the models used, considered the two main security 
properties in Table 1, the quantitative and qualitative security properties (Ngo & Huisman, 2013). The 
quantitative security property is based on Shannon Entropy H(X) to measure the information content of a 
random variable. Where Information Leaked = initial uncertainty - remaining uncertainty (McCamant & Ernst, 
2008). Shannon entropy proves superior to guessing entropy that only guarantees the non-negative property of 
leakage for deterministic programs. (Ngo & Huisman, 2013) Propose a novel model of quantitative analysis for 
multi-threaded program that also take into account the effect of observables in intermediates states along the 
trace.  

Mainly a probabilistic data model has been used to deal with the information leakage in views and in data 
exchanges. Usually in this case the data is private and only a certain view is published by the owner. This view 
usually has shortage of private information in its data. Many approaches have been working on this problem. 
From these approaches is modeling the attacker’s background knowledge as a probability space, to be able to 
check whether the posteriori probability of the secret is in fact different from the priori probability: if the two are 
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the same then it’s a perfect security case, otherwise practical security is satisfied if they are only close to each 
other (Re & Suciu, 2007). This process appears to be extremely difficult when the input probabilities are not 
known.  

Designing security policies in the case of data uncertainty represent another big challenge. Nowadays a common 
practice is to define access control rules by specify them in terms of certain credentials offered by a user (Re & 
Suciu, 2007). The process of defining the right semantics for such access control policies when credential is 
probabilistic is still an open problem for researchers till now. In (Chothia, Kawamoto, Novakovic, & Parker, 
2013) they develop an information leakage model that can measure the leakage between arbitrary points in a 
probabilistic program. There model does not detect information leakage that occur between variables that have 
not been annotated. They believe that detecting leakage at selected points is more practical than one that attempt 
to detect all possible leaks. They base their framework on a simple probabilistic, imperative language that they 
call CH-IMP. 

Table 1. Security Property 

 Qualitative Security Property Quantitative Security Property 
Features Used for applications where private data need 

strict protection. 
Based on the idea; that private data shouldn’t 
have access from public data. 
It prevents any flow from high security level 
to low level. 

Used in application where we want to get 
information that depends on private data.  
Determine how much secrete information is 
leaked. 
This leaked amount is expressed in quantitative 
term. 
Offer a method to compute bounds on how much 
information is leaked. 

Applications Internet backing, e-commerce, and medical 
information systems. 

 Password checker program.  

Drawback Reject s any program that contain leakage, 
even if this leakage is unavoidable. 

Not suitable for some application, as for the 
multi-threaded program. 

 

3.3 Query Processing 

The existence of data uncertainty in many real-worlds made the importance of the uncertain query processing 
increases. The incorporation of probabilistic information affects the correctness and computability of the query 
plan. Having a query over an uncertain database requires computation or aggregation over a large number of 
possibilities. The answer to a standard SQL query over probabilistic database is a set of probabilistic tuple, each 
tuple returned by the system has a probability of being in the query’s answer set. Computing these probabilities 
is difficult and is an open research area. To process large scale probabilistic data we need to develop specific 
probabilistic inference techniques that can be integrated well with SQL query processors and optimizers, and that 
scale to large volumes of data.  

There are two broad semantic approaches used: Intentional semantics approach that is based on modeling the 
uncertain database in event models or possible worlds then use tree-like structures of inferences on these event 
combinations. Using the tree-like structure make it possible to get all the possibilities enumerated over which the 
query may be evaluated and subsequently aggregated. This semantics results are complex in term of the 
evaluation time which represent its drawback, but usually lead to correct results (Dalvi & Suci , 2007). The other 
approach is the Extensional semantics approach, instead of performing the whole enumeration process to the tree 
of inferences, this semantics attempts to design a plan which can approximate these queries. When dealing with 
simple expression, extensional semantics will be the best choice. But it’s not preferred when dealing with 
complex expression as the dependencies in the underlying query results cannot be evaluated easily that why 
dealing with complex expression appears to be this semantic drawback (Dalvi & Suciu, 2007). 

Query evaluation is one of the important factors that should be taken into consideration when dealing with 
queries. This issue became more complicated in the case of uncertain data or probabilistic data. One of the 
techniques for adding probabilistic information into query evaluation is a generalization of the standard 
relational model which was discussed in (Fuhr & Rolleke, 1997). The probabilistic relations are treated as 
generalizations of deterministic relations. Then a modification is made to the operators of relational algebra in 
order to take the tuple weights into account during query processing. In (Dalvi & Suciu, 2007) the presence of a 
correct extensional plan was the focus. But for queries which don’t admit correct extensional plan, two 
techniques are proposed to construct results which yield approximately correct answers. A fast heuristic is 
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designed which can avoid large errors, and a sampling-based Monte-Carlo algorithm is designed which is more 
expensive, but can guarantee arbitrarily small errors. In (Dalvi & Suciu, 2007) a solution to the case of uncertain 
predicates on deterministic data is extended. We note that the work in this technique assumes tuple independence 
which is often not the case for a probabilistic database. In (Dalvi & Suciu, 2005) the data statistics and explicit 
probabilities at the data sources are used. Probabilistic database with complex tuples correlation is used to deal 
with the imprecision.  

Tuple correlation is also one of the important issues that should be taken into consideration in query processing on 
uncertain data. As it’s the case in most of recent applications. Such as sensor data which is highly correlated in 
space and time (Deshpande, Guestrin, Madden, Hellerstein, & Hong, 2004). Even in the cases that assume that 
tuples are independent; many intermediate query results may contain correlations. Statistical modeling technique 
where used in (Sen & Deshpande, 2007) on querying correlated tuples. Then this method built a framework 
which presents uncertainties and correlations through the use of joint probability distribution.  

Ranked queries are very useful in decision making applications, and data mining tasks (Dhandore & Ragha, 
2014). In particular, in database D a ranking query retrieves k objects in the database that have the highest scores. 
Ranked queries on uncertain database were discussed in (Lian & Chen , 2008) introducing two effective pruning 
methods, spatial and probabilistic, to help reduce the ranked query search space. Inverse ranking query was 
proposed in (Lian & Chen, 2011) by introducing a query named the probabilistic inverse ranking queries (PIR) 
which retrieves the possible rank of a given query object in an uncertain database with confidence above the 
probability threshold and they also include effective pruning methods to reduce the search space. In additional to 
that a study of three interesting aggregate PIR queries which are (max, top-m, avg.), was made but unfortunately 
they did not cover wider scale of aggregates.  

The use of possible worlds semantics present another challenge as it allows complex correlations among tuples 
in the database. In (Soliman, Ilyas, & Chang, 2007) the generalization rules are used to deal with this issue, 
which are logical formulas that determine valid worlds. The interaction between both the possible world’s 
semantics and top-k queries need careful redefinition of the query semantics.  

The work in (Re, Dalvi, & Suciu, 2007), (Yi, Li, Kollios, & Srivastava, 2008), (Hua, Pei, Zhang, & Lin, 2008) 
studied the top-k queries in the probabilistic databases. In (Re, Dalvi, & Suciu, 2007) the main focus was on 
reducing the difficulty of getting the k uncertain objects that satisfy the query predicates in all possible worlds 
with the highest probabilities.AVG aggregate function is not supported in (Re, Dalvi, & Suciu, 2007) .The 
U-Topk query was proposed in (Yi, Li, Kollios, & Srivastava, 2008) which get set of k uncertain objects such 
that this set is also the top-k answer set appearing in some possible worlds with the highest probability, and the 
U-kRanks, which finds k objects such that the i-th object (1 ≤ i ≤ k) has the i-th highest rank in some possible 
worlds with the highest probability. (Yi, Li, Kollios, & Srivastava, 2008) Improved the U-Topk and U-kRanks 
queries efficiency by including early stopping conditions.  

A probabilistic threshold top-k (PT-k) query was proposed in (Hua, Pei, Zhang, & Lin, 2008) which gets the k 
objects so that there is a top-k query answer in some possible worlds with the highest probabilities. In (Peng, 
Diao, & Liu, 2011) the threshold query processing for uncertain data was optimized. Cormode et al. (Cormode, 
Li, & Yi, 2009) used the expected ranks as a way to rank objects in a probabilistic database. In (Lian & Chen, 
2009) the probabilistic top-k dominating (PTD) query was discussed which was then improved in (Lian & Chen, 
2013). In (Lian & Chen, 2011) the probabilistic top-k star (PTkS) query was proposed, which gets k objects in an 
uncertain database that are near to a static/ dynamic query point, taking both distance and probability aspects into 
consideration.   

In addition to ranked queries, other types of uncertain database queries are handled such as nearest neighbor 
query (Kriegel, Kunath, & Renz, 2007), group nearest neighbor (Lian & Chen, 2008), reverse nearest neighbor 
(Lian & Chen, 2009), Top-k nearest neighbor (Dallachiesa, 2014) and range query (Li, 2014). 

3.4 Representation Formalisms 

In most cases the probabilistic database is a probability space over all possible instances of the database, called 
possible worlds. We cannot numerate these possible instances; instead a concise representation formalism that 
describes all possible worlds and their probabilities is needed. The most common technique used, use conditional 
independence between variables and represent a probability space in term of a graphical model (Pearl, 1988). For 
an efficient query evaluation a trade-off is required between the succinctness of representation formalism and the 
complexity of evaluating interesting queries (Antova, Jansen, Koch, & Olteanu, 2008). 

In the case of a probabilistic database, the lineage as well needs to be represented to know the reason of 
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uncertainty. The trio project has discussed the problem of representing both the uncertainty and the lineage in 
(Benjelloun, Sarma, Halevy, & Widom, 2006). Lineage is usually expressed in some form of boolean 
expressions (Afrati & Vasilakopoulos, 2010).  

In (Parsons & Saffiotti, 1993) a method that enables systems that use different uncertainty handling formalisms 
to qualitatively integrate their uncertain information, and argues that this makes it possible for distributed 
intelligent systems to achieve tasks that would otherwise be beyond them. This paper approach is grounded on 
the notion of degrading, given a representation of uncertainty, they degrade its information content to a level that 
can be shared between all the different formalism; this degraded information is then communicated between 
agents. 

3.5 Join Processing 

This section aims at surveying the currently followed research directions concerning joins on uncertain data. It 
presents the most prominent representatives of the join categories. The problem of join processing is challenging 
in the context of uncertain data, because the join-attribute is probabilistic in nature. The approaches mainly differ 
in the representation of the uncertain data, the distance measure or other type of object comparison, the types of 
queries and query predicates and the representation of the result. Join methods can be classified into: 

3.5.1 Confidence-Based Join Methods 

Most confidence-based join methods depend on reducing the search space based on the confidence values of the 
input data. For the candidate selection neither the join-relevant attribute of the object nor the join predicates are 
taken into account. (Agrawal & Widom, 2007) Propose efficient confidence- based join approach for all query 
types (as the stored, stored-threshold). Assume that the stored relations provide efficient sorted access by 
confidence and that neither joins relation fit into main memory. Assume also the uncertainty of the objects and 
their independence. This approach can be applied regardless of the join-predicate and the type of score function. 
The probabilistic top-k join queries are also handled. The same way is used to handle the sorted and 
sorted-threshold join queries.  

3.5.2 Probabilistic Similarity Join Methods 

A recognized short come in the confidence based join methods is that the knowledge about the relevant attributes 
for the join predicate was not incorporated. The previous confidence-based join methods return the pairs of 
objects regardless of their distance, as long as their combined confidence is sufficient. Similarity join are very 
selective queries, where only very few candidates satisfy the query predicate. That is why an effective pruning 
technique is needed for an efficient similarity join processing. Similarity join applications benefit from pruning 
those candidate whose attributes do not likely satisfy the join predicate. This way guarantees that the candidates 
having a very low probability are avoided.  

In (Cheng, Singh, Prabhakar, Shah, Vitter, & Xia, 2006) the similarity joins over uncertain data are studied based 
on the continuous uncertainty model. An uncertainty interval is accomplished for each uncertain object attribute 
by an assigned uncertainty probability distribution function (pdf). For two uncertain objects, each represented by 
a continuous pdf, their score in turn lead to a continuous pdf representing the similarity probability distribution 
of both objects. The probabilistic similarity join consists of an uncertainty interval and an uncertainty pdf.  The 
probabilistic join queries are defined through the probabilistic predicate defined on the uncertain pairs. Also two 
join queries are proposed, the probabilistic join query (PJQ), and the probabilistic Threshold Join Query (PTJQ). 

3.5.3 Probabilistic Spatial Join Methods 

Spatial joins are applied on spatial objects, which are objects that have a certain position is space and a spatial 
extension. This spatial joins depend mainly on spatial predicates that refers to spatial topological predicates. The 
probabilistic spatial join is evaluated in two steps: filtering and refinement. In (Ni, Ravishankar, & Bhanu, 2003) 
evaluating probabilistic spatial joins was the focus, dealing with the object pairs, and the intersection probability 
between them. The probabilistic R-tree (PrR-tree) index was proposed, which supports a probabilistic filter step. 
An efficient algorithm was proposed to obtain the intersection probability between two candidate polygons for 
the refinement step. 

In (Burdick, Deshpande, Jayram, Ramakrishnan, & Vaithyanthan, 2005) a probabilistic spatial join approach was 
proposed based on uncertainty model. Where the uncertain spatial objects are composed of primitive volume 
elements with confidence values assigned to each of them. Then the score function is used to evaluate the join 
predicate for each pair. Based on this score function, a Probabilistic Threshold Join Query (PTJQ) and a 
Probabilistic Top-k Join Query (PTopkJQ) were proposed. (Ljosa & Singh, 2008) Presents algorithm for two 
kinds of probabilistic spatial join queries, the first is the (PSJ) threshold PSJ queries, which return all pairs that 
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score above a given threshold. The second kind is called top-k PSJ queries, which return the k top-scoring pairs. 
This algorithm mainly focuses on speeding up the queries. 

3.6 Data Integration 

Data integration is an important application in the context of uncertain data. It is the general process of providing 
single information source out of some local information sources. The term data integration is often used to refer 
to information integration applied to structure data (both schema and instances). From the basic data integration 
tasks is a comparing local data source to identify matching entities, e.g., two columns with telephone and 
home-telephone from two company databases both containing customer telephone. The information about 
matching entities, usually called mapping, is then used to merge the input data sources by including, for example, 
all of the customers’ telephone into a single column. Unfortunately, automated tools may still fail in identifying 
all the correct mappings, e.g., because of variations in columns. 

Data integration systems need to handle uncertainty at three levels (Aggarwal, 2009): 

- Uncertain mediated schema: mediated schema is defined as a set of schema terms in which queried are 
posed. Mediated schema doesn’t include all the attributes present in the sources, but rather the aspects of 
the domain that the application builder wishes to expose to the users. There are several reasons for 
uncertainty arising in the schema mapping. First is the mediated schema is known directly from sources that 
will cause uncertainty in the results. Second, when domains get broad, there will be some uncertainty about 
how to model the domain.  

- Uncertain schema mapping: data integration systems depend on schema mapping to define the semantic 
relationships between the data in the source and terms used in the mediated schema. Taking into 
consideration that schema mapping can be inaccurate. In practice, schema mapping are often generated by 
semi-automatic tools and not necessarily verified by domain experts. 

- Uncertain data: reasons for uncertain data are various, such as the extraction from unstructured or 
semi-structured sources by automatic methods. Other reason is that data may come from sources that are 
unreliable or not up to date. 

- Uncertain queries: In some cases queries are given as keywords rather than structured query over well 
defined schema. In this case the system need to transform this query into structured one with respect to the 
data sources. 

One of the ways to handle the integration is to explicitly represent the uncertainty produced by the data 
integration system and to consider it an important result of the integration process. In a survey made on 2003 
about data integration, the problem of uncertain data management was not mentioned; it was stated that the main 
difficulty was the discovery of correct semantic relationships between schema objects (Halevy, 2003). After that, 
the problem of dealing with imprecise mappings was mentioned in another survey paper (Doan & Halevy, 2005). 
However, it was noticed that we will never be able to find all correct matches and that we should therefore be 
aware of possible errors and find ways to use partially incorrect results. 

As for uncertainty management within the data integration process. Uncertain data integration goal is using the 
uncertainty available in the data sources and/or generated during the matching phase, to create an uncertain 
integrated view of the data. There are several methods to represent uncertainty. One of these ways is by using the 
quantitative methods, e.g., specifying the probability that a mapping is correct, or qualitative methods, e.g., using 
fuzzy sets and possibility theory to represent preferences about the correctness of a mapping. Quantitative 
models are the most frequently used in recent data integration methods. Qualitative approach is used to reduce 
the complexity of the manipulation of uncertainty. 

In particular, as many mediated databases consistent with the sources are possible, there can also be many 
alternative query answers. Thus they define two categories (correct answer and strongest correct answer) to 
characterize good and best query answers. An answer is good if it is contained in the answers of all mediated 
databases consistent with the sources. Many approached worked on reducing the number of mappings thus 
increasing the efficiency of the process.  

In (Nottelmann & Straccia, 2007) several methods were used like the ad hoc threshold, top-k to remove some 
discovered rules. In (Gal, 2006) it’s showed that the analysis of the top-k mappings can be used as a selection 
criterion (keeping the relationships that are more stable in high-likelihood mappings). Both (Nottelmann & 
Straccia, 2005) and (Keulen, Keijzer, & Alink, 2005) remove some possibilities using thresholds and constraints; 
however checking these constraints may become an additional source of complexity. In (Keijzer & Keulen, 2007) 
the authors suggest user feedback can be used to reduce the number of possible worlds. In (Sarma, Dong, & 
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Halevy, 2008) some uncertainty was removed by categorizing all the mapping with a probability greater than a 
predefined threshold as certain and those with probability less than the predefined threshold as wrong.  

(Keijzer & Keulen, 2008) Use consistency rules that make part of the possible worlds to be removed. As this way 
reduces the number of possible worlds, the number of all alternative mappings is exponential on the number of 
pairs of schema objects; therefore even reducing it by a fixed percentage may not scale to real-world integration 
a task which is considered its drawback.  

4. Uncertain Database Management Systems 
During the past years, different releases of DBMSs for dealing with uncertain data have been emerged. In this 
section, we review most of these systems by highlighting their strategy, strength, and weakness.  

4.1 MayBMS 

MayBMS is a probabilistic Database Management system developed by Oxford and Cornell universities. The 
MayBMS system is considered to be a complete probabilistic database management system that leverages robust 
relational database technology. It was developed in 2005 as an extension of the open-source PostgreSQL server 
backend and has undergone several transformations. Its backend is easily accessible through multiple APIs 
(inherited from PostgreSQL), and has efficient internal operators for processing probabilistic data (Huang, 
Antova, Koch, & Olteanu, 2009). 

MayBMS main features are (Huang, Antova, Koch, & Olteanu, 2009): 

• A powerful query language for processing and transforming uncertain data 

• Space-efficient representation and storage 

• Efficient query evaluation based on mature relational technology 

• Support for conditioning and data cleaning 

MayBMS is known with its U-relational database where it stores its probabilistic data. Queries are represented in 
an extension of SQL with specialized constructs for probability computation and what-if analysis. The 
U-relations in the U-relational database are standard relations extended with condition and probability columns 
to encode correlations between the uncertain values and probability distribution for the set of possible worlds. 
Where the variables from finite set of independent random variables are stored in the conditional columns and 
the probabilities of the variables assignments occurring in the same tuple are stored in the probability columns. 
TheMayBMS query language extends SQL with uncertainty-aware constructs.  

Extensions of relational algebra or SQL with limited constructs, such as certain or top-k, are not expressive 
enough. It is not allow for the convenient construction of new worlds or for the use of data correlations across 
worlds. MayBMS does not support several aspects such as the lineage; standard SQL aggregates such as sum or 
count on the uncertain relations only support expectation of the aggregation which is considered as its drawback.  

4.2 Trio 

Trio is developed at Stanford University in 2010 (Agrawal, Benjelloun, Das, Hayworth, Nabar, Sugihara, & 
Widom, 2006) for managing uncertain data and data lineage using an extended relational model and a 
SQL-based query language. Through this project, a new schema named ULDBs is introduced.  The ULDBs 
adds uncertainty and lineage of the data as first-class concepts. In addition, a SQL-based query language for 
ULDBs called TriQL is developed where the semantics of the SQL are modified to take uncertainty and lineage 
into account, and some new constructs are added to query uncertainty and lineage directly. The first working 
prototype of Trio model and language was built on top of a conventional DBMS (Agrawal, Benjelloun, Das, 
Hayworth, Nabar, Sugihara, & Widom, 2006). 

Trio data model semantics is based on the possible worlds which is a set of possible instances for the database. In 
a discrete uncertainty the uncertain database represent a finite set of possible instances with continuous 
uncertainty. The uncertain attribute value may be an arbitrary probability distribution function (pdf) over a 
continuous domain, describing the possible values for an attribute. In Trio they the semantic of standard query is 
defined naturally. When dealing with queries in the trio the query result on uncertain database must include the 
result of applying the query Q to each possible instance of U (Agrawal & Widom, 2009). 

The Trio includes the lineage in query processing to define the data from which each result value was derived. 
Lineage is needed to properly represent uncertainty, and to compute result confidence values lazily. The lineage 
is generated at query time and for the results that involve pdfs, the lineage is extended to include relevant 
predicates and mappings. The Trio deals with expensive queries by using approximate answers, either using 
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sample function, or a histogram based on the weight function. When it come to integration, Trio data model 
include a confidence value for each tuple that represent the probability of the tuple existence. This confidence 
feature is very useful for pdf integration. 

Trio main features are (Widom, 2005): 

• Data values are uncertain, approximate, or incomplete. A record may include confidence that it actually 
belong in the database. 

• Queries operate over uncertain data, may return uncertain results. 

• Lineage is an internal part of the data model. 

• Lineage and accuracy may be queried. 

• Lineage can be used to enhance the data modifications. 

Trio database management system is considered the most powerful database management system on uncertain 
data, which plenty of researches building their techniques based on its model.  

4.3 MystiQ 

MystiQ is a probabilistic database system developed at University of Washington. It uses a probabilistic data 
model to find answers in large numbers of data sources exhibiting various kinds of imprecision (Boulos, Dalvi, 
Mandhani, Mathur, Chris, & Suciu, 2005).  

MystiQ main features are (Boulos, Dalvi, Mandhani, Mathur, Chris, & Suciu, 2005): 

• Support for complex SQL queries with approximate match predicates, and their ranked result. 

• Ability to return best matches when no tuples satisfies all the predicates. 

• Support complex SQL queries over inconsistent data, global constraint definition, and the definition of a 
soft view in queries. 

What makes MystiQ different from any other system is that it provides probabilistic semantics that makes it a 
middleware where data is normally stored in a relational database system. Being a middleware enable it to 
escalate the infrastructure of an existing database engine ex: query evaluation, query optimization, and indexes.    

MystiQ focuses on efficient processing of SQL queries. It combines two query evaluation techniques: 

First pushes the computation of the output probability in the DB engine using a technique called “safe plans”. 
Second runs a Monte Carlo simulation in the middle ware guiding the simulation steps to quickly identify and 
rank the top-k most probable answers. MystiQ can do the select-from –where-group by queries over large 
probabilistic databases. MystiQ allows users to define and materialize views over events which are an important 
feature when managing probabilistic data. MystiQ also handles sufficient lineage with minimum errors (Re & 
Suciu, 2008). However, MystiQ do not handle queries with a having clause and queries with self joins. It treats 
these queries as unsafe queries. As it also do not support the polynomial lineage. These unsupported features are 
considered to be shortage in the MystiQ that need to be covered in other work. 

4.4 Orion 

Orion database system (previously known as U-DBMS), is a state-of-the-art uncertain database management 
system with built-in support for probabilistic data as first class data type. In contrast to other uncertain database, 
Orion supports both attribute and tuple uncertainty with arbitrary correlations. This enables the database to 
handle both continuous and discrete uncertain values. It also provides various indexes for efficient query 
evaluation. It is implemented in C and PL/PGSQ (Cheng, Singh, & Prabhakar, 2005). It is built on top of 
PostgreSQL, an object-oriented relational open-source database system.  

Orion main features include (Cheng, Singh, & Prabhakar, 2005):  

• An integrated implementation of the "PDF Attributes" data model, which is consistent with Possible Worlds 
Semantics and supports both continuous and discrete uncertainty.  

• Efficient access methods for querying uncertain data, including three index structures based on R-trees, 
signature trees, and inverted indexes.  

• Improved query optimization, join algorithms, and selectivity estimation by gathering and exploiting 
additional statistics over probabilistic data types. 

• Integration with PL/R for graphical visualization of and statistical inference over uncertain data. 
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4.5 MCDB: Monte Carlo Database System 

This is a prototype system that proposes a new approach for handling enterprise-data uncertainty (Jampani, Xu, 
Wu, Perez, Jermaine, & Haas, 2008). Within the MCDB the uncertainty is not included in the data model, and 
the query processing is performed on the classical relational data model. MCDB enable the user to declare 
arbitrary variable generation (VG) function that embodies the database uncertainty. This is then used by the 
MCDB to generate random values for the uncertain attributes, and to run queries. 

MCDB main features are (Jampani, Xu, Wu, Perez, Jermaine, & Haas, 2008): 

• Representing uncertainty via “VG functions”. This is used to randomly generate realized values for uncertain 
attributes. 

• Handle arbitrary joint probability distributions over discrete or continuous attribute. 

• Use novel query processing techniques, executing a query plan exactly once, over tuple bundles instead of 
ordinary tuples. 

However MCDB has several points that need improvement as the query optimization, error control, risk 
assessment and lineage.  

4.6 BayesStore: Probabilistic Data Management Architecture 

Most recent approach that develops a probabilistic data base management system depends on simplistic model of 
uncertainty which can be easily mapped onto existing relational architectures: Probabilistic information is 
associated with individual data tuples. But unfortunately that introduce a gap between the statistical model which 
is used by the analysts and the model in the probabilistic DB, this is the case in the Trio and MayBMS. 

BayesStore project solve this “model-mismatch” by supporting statistical models, evidence data and inference 
algorithms as first-class in the probabilistic data base management system (Wang, Michelakis, Garofalakis, & 
Hellerstein, 2008). BayesStore ia a probabilistic data management architecture built on the principle of handling 
statistical models and probabilistic inference tool. 

BayesStore main features (Wang, Michelakis, Garofalakis & Hellerstein, 2008): 

• Encode the correlation patterns between uncertain data. 

• Enhance probabilistic inference and statistical model manipulation as part of the standard DBMS. 

•  Represents model and evidence data as relational tables. 

• Implement inference algorithm efficiently in SQL. 

• Add probabilistic relational operators to the query engine. 

• Optimizes query with both relational and inference operators. 

The BayesStore goals can be summed up as; supporting query processing efficiently, supporting extensible API 
for plugging in new models and inference algorithms, and scaling up to large datasets. 

4.7 PrDB: Probabilistic Data Base  

PrDB goal is to design a probabilistic database model that can capture the uncertainties and complex correlations 
that appear in real world application. And also capture the probabilistic regularities. PrDB unifies ideas from 
large-scale structures graphical model like relational model (PRMs), and probabilistic query processing. (Sen & 
Deshpande, 2007) 

Its framework is based on the notion of “shared factors”, which not only allow the expression and manipulation 
of uncertainties at various levels of abstractions, but also support capturing rich correlations among uncertain 
data. PrDB support declarative SQL-like language for specifying uncertain data and correlations among them.  

PrDB main features are(Sen & Deshpande, 2007): 

• Support capturing rich correlations among uncertain data. 

• Support exact and approximate evaluation of wide range of queries, including references, SQL queries, and 
decision queries. 

Finally, these systems can be summed up as follows: Trio project (Benjelloun, Sarma, Halevy, & Widom, 2006) 
focused on the study of uncertainty and lineage in incomplete database. MystiQ (Boulos, Dalvi, Mandhani, 
Mathur, Chris, & Suciu, 2005) supports various constructs for handling uncertainty that include tuples associated 
with probabilities. MystiQ is mainly a middle ware that leverage infrastructure of existing DB engines. The 
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MayBMS project (Huang, Antova, Koch, & Olteanu, 2009) focused on representation problems, query language 
design, and query evaluation on uncertain data. A fundamental design choice that set MayBMS apart from Trio 
and MystiQ is that it’s an extension of the open-source PostgresSQL server backend, and not a front-end 
application of PostgreSQL .MCDB (Jampani, Xu, Wu, Perez, Jermaine, & Haas, 2008) focused on complex 
probabilistic model with native Monte Carlo simulation. Orion project (Cheng, Singh, & Prabhakar,2005) 
focused on tuple and attribute uncertainty with attribute correlation given by continuous value probably 
distribution. BayesStore (Wang, Michelakis, Garofalakis, & Hellerstein, 2008) efficiently express and reason 
about correlation among uncertain data items, in a concise and statistical way. PrDB (Sen & Deshpande, 2007) 
focus on managing and exploiting rich correlations in probabilistic databases .Other group has also studied 
correlation in probabilistic database (Sen & Deshpande, 2007). Table 2 presents a comparison between these 
uncertain management systems. 

5. Conclusion 
The field of uncertain data management has become one of the most vital topics in recent years. That caused a 
lot of techniques to be introduced to handle the different management issues of uncertainty. This paper surveys 
broad areas of work in uncertainty management issues. We presented the important management techniques 
along with the key representational issues in uncertain data management. The field of the uncertainty 
management will expand over time, so we hope that this survey will be a good starting point to researchers 
focusing on the important and emerging issues in this field. In this paper we also gave an overview of the DBMS 
that handle uncertain data, shown its features and weakness. 

Uncertain DBMS can be enhanced by taking the probability of all instances into account in data management. 
For example, taking the instances probability in the aggregate queries and events can have a great effect on the 
accuracy of the DBMS. As considering probabilities is indispensable when dealing with uncertain data, this 
probability usage need to be improved. Enhancing the aggregate queries on uncertain data is the main scope for 
our future work.  

 

Table 2. Uncertain Database Systems Comparison 

Uncertain 
Systems 

Developed 
at 
(University) 

Representation 
System 

Operations (supported or not supported) Lineage 
Select Join View Agg.Q 

Trio Stanford ULDB Model TriQL Yes Yes Yes Yes 

MystiQ Washington Probabilistic Data 

Model 

Extend SQL. 

Queries with 

having not 

supported 

Self Join 

not 

support  

Yes (Sum ,Count) 

only 

Sufficient lineage 

but, no 

polynomial 

lineage 

Orion Purdue PDF attributes Data 

Model 

Yes Yes Yes Yes No 

MayBMS Cornell U-Relation I-SQL (Extend 

SQL with 

uncertain 

constructs) 

Yes No Expectation of 

aggregates 

No 

MCDB Wisconsin Probabilistic Data 

Model with VG 

functions. 

Yes Yes Yes Yes Need to Improve. 

BayesStore California First-order statistical 

Model 

Yes Yes Yes No No 

PrDB Maryland Graphical, state of art 

probabilistic Model 

Yes Yes No No No 

 

References 
Afrati, F. N., & Vasilakopoulos, A. (2010). Managing Lineage and Uncertainty under a data exchange setting. In 

Proceedings of the 4th international conference on Scalable uncertainty management (pp. 28-41). 
http://dx.doi.org/10.1007/978-3-642-15951-0_9 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 3; 2015 

130 
 

Agarwal, P. K., Cheng, S., Tao, Y., & Yi, K. (2009). Indexing uncertain data. In proc.Association for computing 
machinery ,(pp.137-146). http://dx.doi.org/10.1145/1559795.1559816 

Aggarwal, C. C. (2009). Managing and Mining Uncertain Data. 

Aggrwal, C. C. (2009). A survey of uncertain data algorithms and applications. IEEE Transactions on 
Knowledge and Data Engineering (pp.609-623). http://dx.doi.org/10.1109/TKDE.2008.190 

Agrawal, P., & Widom, J. (2007). Confidence-aware join in large uncertain database. Retrieved from In 
http://dbpuds.stanford.edu/pub/2007-14 

Agrawal, P., & Widom, J. (2009). Continuous uncertainty in trio. In Metropolitan underwriting discussion . 

Agrawal, P., Benjelloun, O., Das, A., Hayworth, C., Nabar, S., & Sugihara, T., et al. (2006). Trio: a system for 
data, uncertainty, and lineage. Proceedings of the 32nd international conference on Very large data base, 
(pp. 1151-1154). http://dx.doi.org/10.1.1.108.9426 

Antova, L., Jansen, T., Koch, C., & Olteanu, D. (2008). Fast and simple relational processing of uncertain data. 
Proceedings of the 2008 IEEE 24th International Conference on Data Engineering (pp. 983-992). 
http://dx.doi.org/10.1109/ICDE.2008.4497507. 

Benjelloun, O., Sarma, A. D., Halevy, A., & Widom, J. (2006). ULDBs: Databases with uncertainty and lineage. 
Proceedings of the 32nd international conference on Very large data bases (pp. 953-964). 
http://dx.doi.org/10.1.1.119.3771 

Boulos, J., Dalvi, N., Mandhani, B., Mathur, S., Chris, R., & Suciu, D. (2005). Mystiq: a system for finding more 
answers by using probabilities. Proceedings of the International Conference on Management of Data, (pp. 
891-893). http://dx.doi.org/10.1145/1066157.1066277 

Burdick, D., Deshpande, P., Jayram, T. S., Ramakrishnan, R., & Vaithyanthan, S. (2005). OLAP over uncertain 
and imprecise data. Proceedings.31st int’l Conf. Very Large Data Bases (pp.123-144). 
http://dx.doi.org/10.1007/s00778-006-0033-y 

Cheng, R., Singh, S., & Prabhakar, S. (2005). U-DBMS: a database system for managing constantly-evolving 
data. Proceedings of the 31st International Conference on Very Large Data Bases (pp.1271-1274). 
http://dx.doi.org/10.1.1.153.4956 

Cheng, R., Singh, S., Prabhakar, S., Shah, R., Vitter, J. S., & Xia, Y. (2006). Efficient join processing over 
uncertain data. Proceedings of the 15th international conference on Information and Knowledge 
management, (pp. 738-747). http://dx.doi.org/10.1145/1183614.1183719 

Cheng, R., Xia, Y., Prabhakar, S., Shah, R., & Scott, J. (2004). Efficient indexing methods for probabilistic 
threshold queries on uncertain data. Proceedings of International conference on Very large data (pp. 
876-887). http://dx.doi.org/10.1.1.147.1107 

Chothia, T., Kawamoto, Y., Novakovic, C., & Parker, D. (2013). Probabilistic Point-to-Point Information 
Leakage. In Computer Security Foundations Symposium (pp.193-205). 
http://dx.doi.org/10.1109/CSF.2013.20 

Cormode, G., Li, F., & Yi, K. (2009). Semantics of ranking queries for probabilistic data and expected ranks. 
Proceedings of the 25th International Conference on Data Engineering (pp. 305 - 316). 
http://dx.doi.org/10.1109/ICDE.2009.75 

Dallachiesa, M. I. (2014). Top-k Nearest Neighbor Search In Uncertain Data Series. Proceedings of the 
(international conference on Very large data ) Endowment, 8(1), (pp. 13-24).  

Dalvi, N., & Suciu, D. (2005). Query Answering Using Statistics and Probabilistic Views. Proceedings 31st Int’l 
Conf. Very Large Data Bases . 

Dalvi, N., & Suciu, D. (2007). Efficient Query Evaluation on Probabilistic Databases. The International Journal 
on Very Large Data Bases,16, (pp.523-544). http://dx.doi.org/10.1007/s00778-006-0004-3 

Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., & Hong, W. (2004). Model-Driven Data Acquisition in 
Sensor Networks. Proceedings of the Thirtieth international conference on Very large data bases (pp. 
588-599). 

Dhandore, K., & Ragha, L. (2014). Performance Evaluation of Decision Trees for Uncertain Data Mining. 
International Journal of Emerging Trend and Technology in computer science, 3(6). 

Doan, A., & Halevy, A. (2005). Semantic integration research in the database community: A brief survey. AI 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 3; 2015 

131 
 

Magazine , (pp.83–94). http://dx.doi.org/10.1609/aimag.v26i1.1801 

Fuhr, N., & Rolleke, T. (1997). A Probabilistic Relational Algebra for the Integration of Information Retrieval 
and Database Systems. Association for Computing Machinery. Trans. Information Systems (pp.32-66). 
http://dx.doi.org/10.1145/239041.239045 

Gal, A. (2006). Managing uncertainty in schema matching with top-k schema mappings. Journal on Data 
Semantics VI 4090 (pp. 90–114). http://dx.doi.org/10.1007/11803034_5 

Halevy, A. (2003). Data integration: A status report. In BTW. LNI, 26, 24-29. 

Hua, M., Pei, J., Zhang, W., & Lin, X. (2008). Ranking queries on uncertain data: a probabilistic threshold 
approach. Proceedings of International Conference on Management of Data (pp. 673-686). 
http://dx.doi.org/10.1.1.144.8130 

Huang, J., Antova, L., Koch, C., & Olteanu, D. (2009). MayBMS: A Probabilistic Database Management System. 
Proceedings of the 2009 SIGMOD International Conference on Management of Data (pp. 1071-1074). 
http://dx.doi.org/10.1145/1559845.1559984 

Jampani, R., Xu, F., Wu, M., Perez, L. L., Jermaine, C., & Haas, P. J. (2008). MCDB: a monte carlo approach to 
managing uncertain data. Proceedings of the SIGMOD International Conference on Management of Data, 
(pp. 687-700). http://dx.doi.org/10.1145/1376616.1376686 

Keijzer, A. D., & Keulen, M. V. (2007). User feedback in probabilistic integration. Proceedings of the 18th 
International Conference on Database and Expert Systems Applications (pp.377 - 381). http://dx.doi.org/ 
10.1109/DEXA.2007.97 

Keijzer, A. D., & Keulen, M. V. (2008). Imprecise: Good-is-good-enough data integration,. Proceedings of the 
24th International Conference on Data Engineering (pp. 1548-1551). 
http://dx.doi.org/10.1109/ICDE.2008.4497618 

Keulen, M. V., Keijzer, A. D., & Alink, W. (2005). A probabilistic XML approach to data integration. 
Proceedings of 21st International Conference on Data Engineering (pp. 459–470). 
http://dx.doi.org/10.1109/ICDE.2005.11 

Kriegel, H. P., Kunath, P., & Renz, M. (2007). Probabilistic nearest neighbor query on uncertain objects. 
Proceedings of the 12th International Conference on Database Systems for Advanced Applications (pp. 
337-348). http://dx.doi.org/10.1007/978-3-540-71703-4_30 

Li, J. W. (2014). Range Queries on Uncertain Data. Springer (pp.326-337). 
http://dx.doi.org/10.1007/978-3-319-13075-0_26 

Lian, X., & Chen, L. (2008). Probabilistic group nearest neighbor queries in uncertain databases. Knowledge and 
Data Engineering, IEEE, 20(6), 809 – 824. http://dx.doi.org/10.1109/TKDE.2008.41 

Lian, X., & Chen, L. (2008). Probabilistic Ranked Queries in Uncertain Database. Proceedings of the 11th 
international conference on Extending database technology: Advances in database technology (pp. 
511-522). http://dx.doi.org/10.1145/1353343.1353406 

Lian, X., & Chen, L. (2009). Efficient processing of probabilistic reverse nearest neighbor queries over uncertain 
data. Proceedings of International Conference on Very Large Data (pp.787-808). 
http://dx.doi.org/10.1007/s00778-008-0123-0 

Lian, X., & Chen, L. (2009). Top-k Dominating Queries in Uncertain Databases. Proceedings of the 12th 
International Conference on Extending Database Technology: Advances in Database Technology (pp. 
660-671). http://dx.doi.org/10.1145/1516360.1516437 

Lian, X., & Chen, L. (2011). Probabilistic Inverse Ranking Queries in Uncertain Databases. Proceedings of 
International Conference on Very Large Data (pp.107-127). http://dx.doi.org/10.1007/s00778-010-0195-5 

Lian, X., & Chen, L. (2011). Shooting top-k stars in uncertain databases. The International Journal on Very 
Large Data Bases (pp.819-840). http://dx.doi.org/10.1007/s00778-011-0225-y 

Lian, X., & Chen, L. (2013). Probabilistic Top-k Queries in Uncertain Database. Information Sciences . 

Ljosa, V., & Singh, A. K. (2008). Top-k spatial joins of probabilistic objects. Proceedings of the 24th 
International Conference on Data Engineering (pp. 566 - 575). 
http://dx.doi.org/10.1109/ICDE.2008.4497465 

McCamant, S., & Ernst, M. D. (2008). Quantitative Information Flow as network flow capacity. Proceedings of 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 3; 2015 

132 
 

the 2008 ACM SIGPLAN conference on Programming language design and implementation (pp. 193-205). 
http://dx.doi.org/10.1145/1375581.1375606 

Motro, A. (1994). Managing of Uncertainty in Database Systems. In Modern Database Systems, 
Addison-Wesley/ACM Press (pp.457-476) 

Motro, A. (1995). Imprecision and Uncertainty in database systems. In Fuzziness in Database Management 
Systems, Physica-Verlag (pp 3-22). http://dx.doi.org/10.1007/978-3-7908-1897-0_1 

Ngo, T. M., & Huisman, M. (2013). Quantitative Security analysis for multi-threaded programs. QALP 
(pp.34-48). http://dx.doi.org/10.4204/EPTCS.117.3 

Ni, J., Ravishankar, C. V., & Bhanu, B. (2003). Probabilistic Spatial Database Operations. Springer (pp.140-158). 
http://dx.doi.org/ 10.1007/978-3-540-45072-6_9 

Nottelmann, H., & Straccia, U. (2005). splmap: A probabilistic approach to schema matching. In European 
Conference on Information Retrieval (pp.81–95). 

Nottelmann, H., & Straccia, U. (2007). Information retrieval and machine learning for probabilistic schema 
matching. Information Processing and Management: an International Journal , 3(43), 552–576). 
http://dx.doi.org/10.1016/j.ipm.2006.10.014 

Parsons, S., & Saffiotti, A. (1993). Integrating uncertainties handling formalisms in distributed artificial 
intelligence. Proceedings of 2nd European Conference on symbolic and quantitative approach to reasoning 
and uncertainty (pp.304-309). http://dx.doi.org/10.1007/BFb0028214 

Pearl, J. (1988). Probabilistic reasoning in intelligent systems.  

Peng, L., Diao, Y., & Liu, A. (2011). Optimizing Probabilistic Query Processing on Continuous Uncertain Data. 
Proceedings of International conference on Very large data. http://dx.doi.org/10.1.1.220.7685 

Qi, Y., Singh, S., Shah, R., & Prabhakar, S. (2008). Indexing probabilistic nearest neighbor threshold query. 
QDB/MUD (pp.87-102). http://dx.doi.org/10.1.1.147.4957 

Re, C., & Suciu, D. (2007). Management of Data with Uncertainties. CIKM’07. 

Re, C., & Suciu, D. (2008). Managing Probabilistic data with MystiQ: The can-do, the could-do, and the 
can’t-do. Proceedings of the 2nd international conference on Scalable Uncertainty Management (pp. 5 - 18). 
http://dx.doi.org/10.1007/978-3-540-87993-0_3 

Re, C., Dalvi, N., & Suciu, D. (2007). Efficient top-k query evaluation on probabilistic data. Proceedings of the 
23th International Conference on Data Engineering (pp. 886 - 895). 
http://dx.doi.org/10.1109/ICDE.2007.367934 

Rowe, W. D. (1994). Managing Uncertainty.  
Sarma, A. D., Dong, X., & Halevy, A. (2008). Bootstrapping pay-as-you-go data integration Systems. 

Proceedings of the ACM SIGMOD international conference on Management of Data (pp. 861-874). 
http://dx.doi.org/10.1145/1376616.1376702 

Sen, P., & Deshpande, A. (2007). Representing and Querying Correlated Tuples in Probabilistic Databases. 
Proceedings of 23rd IEEE Int’l Conf. Data Eng. International Conference on Data Engineering (pp. 596 - 
605). http://dx.doi.org/10.1109/ICDE.2007.367905 

Singh, S., Mayfield, C., Prabhakar, S., Shah, R., & Hambrusch, S. (2007). Indexing uncertain categorical data. 
International Conference on Data Engineering (pp.616-625). http://dx.doi.org/10.1109/ICDE.2007.367907 

Soliman, M., Ilyas, I., & Chang, K. C. (2007). Top k-Query Processing in Uncertain Databases. International 
Conference on Data Engineering, (pp. 896 - 905). http://dx.doi.org/10.1109/ICDE.2007.367935 

Tao, Y., Cheng, R., & Xiao, X. (2007). Range search on multidimensional uncertain data. Association for 
Computing Machinery, Transactions on Database Systems. http://dx.doi.org/10.1145/1272743.1272745 

Tao, Y., Cheng, R., Xiao, X., Ngai, W. K., Kao, B., & Prabhakar, S. (2005). Indexing multi-dimensional 
uncertain data with arbitrary probability density function. Proceedings of the 31st International Conference 
on Very Large Data Bases (pp. 922 - 933). http://dx.doi.org/10.1.1.113.3540 

Touzi, A. G., & Hassine, M. A. (2009). New Architecture of Fuzzy Database Management Systems. 
International Arab Journal of information technology , 6(3). http://dx.doi.org/10.1.1.182.5811 

Wang, D. Z., Michelakis, E., Garofalakis, M., & Hellerstein, J. M. (2008). Bayesstore: managing large, uncertain 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 3; 2015 

133 
 

data repositories with probabilistic graphical models. Very Large Database (pp.340-351). 
http://dx.doi.org/10.1.1.140.6348 

Widom, J. (2005). Trio A System for integrated management data, accuracy and lineage. Conference on 
Innovative Data Systems Research. http://dx.doi.org/10.1.1.153.9613 

Yi, K., Li, F., Kollios, G., & Srivastava, D. (2008). Efficient processing of top-k queries in uncertain databases. 
Proceedings of the 24th International Conference on Data Engineering (pp. 1669 - 1682). 
http://dx.doi.org/s 10.1109/TKDE.2008.90 

 

Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 

license (http://creativecommons.org/licenses/by/3.0/). 


