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Abstract 

Sequential pattern mining in data streams environment is an interesting data mining problem. The problem of 
finding sequential patterns in static databases had been studied extensively in the past years, however mining 
sequential patterns in the data streams still an active field for researches. In this research a new greedy sequence 
pattern mining algorithm for the data streams is introduced, it will be used to find the strongly supported 
sequences. The proposed algorithm is built based on the sequence tree which is used to find the sequential 
patterns in static databases. The proposed algorithm divides the streams into patches or windows and each patch 
will update the sequence tree which built from the previous windows. An example is introduced to explain how 
this algorithm works. We also show the efficiency and the effectiveness of the proposed algorithm on a synthetic 
dataset and prove how it is suited for data streams environment. We showed experimentally that the proposed 
algorithm is more efficient than the PrefixSpan algorithm for patterns with any support less than 30% for CPU 
time and with any support less than 60% for memory usage.  
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1. Introduction 

In recent years new applications have been emerged such as network traffic analysis, wireless sensor networks 
and user web clicks, this introduced a new kind of data called data streams (Marascu and Masseglia, 2005). A 
data stream is an ordered sequence of items which in many applications can be read once without storing them in 
the database due to the huge size and amount of data. Sequential pattern mining in data streams concerns about 
finding the sequence patterns in data without the need of multi scan of data, however the data is huge and 
generated continuously (Muthukrishnan, 2005). In this research we focus on the problem of mining sequence 
patterns in data streams such as web clicks and wireless sensor networks, and we propose a new algorithm for 
mining sequential patterns in the data streams. 

In recent years many contributions have been published to solve the problem of mining frequent patterns (Tiwari 
et al., 2010), mining sequential patterns in transaction databases (Agrawal & Ramakishnan, 1998), and web 
frequent multi-dimensional sequential patterns (Hwang et al., 2011). A recent survey (Rao et al., 2013) provides 
an overview about mostly used sequence pattern mining algorithms and provides a comparative study between 
them. Another survey (Vijayarani & Sathya, 2012) presents the various applications of data streams and provides 
the analysis of frequent pattern mining papers in data streams. Incremental mining algorithm of sequential 
patterns based on sequence tree was introduced in (Liu et al., 2012), however this algorithm is not used in data 
streams environments because it stores all patterns even they are not frequent and this causes a lot of problems in 
data streams environments where there is a limitation in memory usage. Even more, the memory allocation of 
sequence tree will be larger than the size of sequence data base. 
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Figure 1. The sequence tree of the sequence data base in Table 1 

From sequence tree we can traverse the tree and get all frequent sequences with the requested minimum support. 
The following are the frequent sequence patterns with Min_sup = 2, for Figure 1. 

{<a>, <b>, <c>, <d>, <ad>, <ac>, <ab>, <da>, <dab>, <db>} 

To make the sequence tree suitable for data streams where the traffic always active. The windows of sequences 
will be considered for each specific period of time, for example the size of the window will be 20 sequences. So 
the sequence tree will be updated for each window. Due to the limitation of memory in data streams environment 
such in sensor networks, the tree will be pruned after each specific number of windows. However the branches 
with support less than minimum support will be removed. 

 

2. Problem Definition 

Suppose that in the stream environment the monitored items set is I = {i1, i2... in} where n is the total number 
items. A sequence of items S is an ordered list from I denoted by <s1s2 …sm>. A sequence <a1a2 …an> is a 
subsequence from < b1b2 …bm> if there exist integers 1 ≤  i1 < i2 < … < ik ≤ m such that a1 ⊆ bi1, a2 ⊆ bi2… an ⊆ bin. 

Given a sequence data base table T (Sid, Sequence), the support of sequence S donated by support(S) is the 
measure for how many times the sequence S appears in the sequence table. Min_sup is a user defined value to 
determine if the sequence is frequent or not. If support(S) > Min_sup the sequence S is frequent. Thus the 
problem of sequence pattern mining in data stream is to find the strongly frequent sequential patterns with 
support bigger than Min_sup with taking in consideration the memory and processing power limitations (Lee et 
al., 2014).  

The following example is given to illustrate the sequences in data stream environment, however we assume an 
element has only one item; this is common in sensor networks environment where each sensor is specialized in 
sensing one phenomena.  

 

Table1. Sequence Database 

Id Sequence
1 adc 
2 dab 
3 ac 
4 cdab 
5 adb 

Table1 shows a batch of sequenced data obtained from data stream environment. Considering the Min_sup = 2, 
sequence <ac>, as example, will be frequent because it appears twice.   
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3. Proposed Algorithm 

The idea is to divide the active coming streams into windows or batches. Where window size W is user defined 
value, for each element in the window we check the support and build the sequence tree only for elements with 
support larger than minimum support. After each specified number of windows P (prune time) we prune the tree 
in order to get rid of branches with low support.  

The idea behind building the sequence tree is based on the permutation for the sequence. Given any sequence S 
= {a, b, c, d} then all possible sub sequences are actually the permutation for that sequence {<a>, <b>, <c>, <d>, 
<ab>, <ac>, <ad>, <bc>, <bd>, <cd>, <abc>, <acd>, <bcd>, <abcd>}. Starting from the root node, permutation 
set of sequences will be inserted to the tree and the count will be incremented only for the latest item in each 
sequence. Last item in each sequence will indicate to a new possible path in the tree. 

 

DSSPM  Algorithm 
Input: Set of streams windows W = {w1, w2... wn}, Min_sup, prune time P. 

Output: Tree of frequent patterns with support > Min_sup. 

 Initialize the root node, root = {NULL} 
Initialize the supported items list, Sup_list = {}  

 while(true) /* streams always active so we need to run the algorithm forever */ 
    foreach item i ∈ wn do 
        calculate support(i) 
        if support(i) > Min_sup then 
            add i to Sup_list 
        end if      
    end for 
    foreach sequence s ∈ wn do 
        call pruneSequence(s, Sup_list) /* remove items with support less than Min_sup */ 
        calculate permutation(s) 
        foreach sequence ps ∈ permutaion_list do 
            add ps to the tree, starting from the root node 
              increment the count only for the latest item in the sequence      
        end for 
    end for 
    if n = P /* if number of processed windows = prune time */ 
        call pruneTree() /* remove sequences with support less than Min_sup */ 
    end if 
end while 

 

 

 

 

 

 
 

 

 
 

 

Lemma 1: In the above algorithm, the item I from  a sequence S can be considered as a frequent item only and 
only if support(I) > Min_sup. 

Proof: Before the sequence batch entered to the algorithm, a process of counting the repetition of each element 
in the batch is made and this grantee that only elements with count greater than the minimum support are 
considered. 

Lemma 2: For the sequence S, if length(S) > number of tree levels; then S is not a frequent sequence. 

Proof: Suppose we have a sequence S = {i1, i2... in} with n items and the number of tree levels is m where m < n. 
Since length of the sequence is n so we need n levels in the tree to store the complete sequence but we have m 
levels and m is less than n. So sequences S will not entirely fit in the tree, hence it is not a frequent sequence. 

Using Lemma 1 and Lemma 2 we can see that the algorithm will prune the Items with support < Min_sup. Some 
of the frequent patterns will be dropped from the final list of the frequent sequences due to the fact that the 
proposed algorithm will prune the sequences that are not frequent after ending the preset prune time (p).   

Complexity 

In the worst case, the time complexity to process one window using DSSPM will be the complexity to calculate 
the sequence permutation O(m2); where m is the number of items in the sequence, in addition to the complexity 
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when building the sequence tree for that window O(n.m); where n is the number of sequences in the window. 
The total time complexity will be O(n2), and this suit data streams environments such as web clicks and wireless 
sensors network. 

Structure of Sequence Tree 

Sequence tree is a data storage structure; it is used to store the frequent patterns with their support values. The 
root node of the tree is an empty node and just used as a link to the frequent sequences. Each of the tree nodes 
has two attributes; one stores the item and the other stores the support of the item inside the sequence. Any path 
from the root node to the leaf node is a frequent pattern and it is support is the support of the leaf node. The 
support of any parent node is equal or larger than support of it is children. 

Suppose the following two windows, as shown in table 2, each of five sequences are coming to the analysis node 
in data stream environment. The goal is to find sequence patterns with Min_sup = 3. Consider the prune time is 2 
and we have the following items set I = {a, b, c, d, e}. 

 

Table 2. Two input windows 

W1 W2 
Id Sequence Id Sequence
1 bad 1 aceb 
2 abec 2 cae 
3 aec 3 ecad 
4 bda 4 ade 
5 abde 5 ae 

 

First we should find the support for each element in W1, {a = 5, b = 4, c = 2, d = 3, e = 3}. Since support (c) < 
Min_sup, we will ignore item c when we build the sequence tree. After processing W1, we will have the tree 
shown in Figure 2. 

 

Figure 2. Sequence tree after processing W1 

 

Now we find the support for elements in W2, {a = 5, b = 1, c = 3, d = 2, e = 5}. Since support (b) < Min_sup and 
support (d) < Min_sup, we will ignore both items b and d. Sequence tree after processing W2 will be as shown in 
Figure 3. 



www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 3; 2015 

68 
 

 

Figure 3. Sequence tree after processing W2 
 

Now we have to prune the tree; we will remove all paths with support less than Min_sup. The final tree will be 
as shown in Figure 4. 

 

Figure 4. Sequence tree after pruning 
Traverse the tree we can get the sequence patterns with support > Min_sup = {<a>:10, <b>:4, <c>:3, <d>:3, 
<e>:8, <ae>:7, <bd>:3}. 

Prune time and Min_sup values can be tuned according to the processing node memory limitation; decrease 
Min_sup and increase prune time will give an accurate result and will increase the memory required to build the 
tree.  

We are using greedy algorithm for finding the frequent patterns; this will not give an optimal answers, which is 
normal for this class of algorithms. We are removing elements from sequences with support < Min_sup. Also we 
are pruning the sequences with support < Min_sup after prune time P. 

 

4. Experimental Results and Performance Analysis 

The algorithm is implemented in Java using PC running windows XP with dual core processor (2.8 GHz) and 
4GB of memory. We evaluated our proposed algorithm with synthetic data generated by sequence pattern mining 
framework SPMF (Fournier et al., 2015), each sequence has 17 unique transactions and each transaction is 
represented by a letter {a-q}. In order to show the efficiency of our proposed algorithm, we did a comparison 
with PrefixSpan algorithm (Pei et al., 2013). We report in Figure 5 the time needed to find all frequent patterns in 
100,000 sequences with different values of minimum support, each window contains 100 sequences and the 
pruning time is 100 windows. AS shown in Figure 5 (a) the execution time for PrefixSpan grows as the 
minimum support decrease. Clearly, in Figure 5 (a) the execution time for DSSPM increases slightly while 
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decreasing the minimum support. Moreover DSSPM outperforms PrefixSpan in execution time for all minimum 
support values. 

Figure 5 (b) shows the average memory allocated for both algorithms with different values of minimum support. 
With low minimum support values, PrefixSpan needs more memory than DSSPM. The value of memory 
allocated is decrease while increasing the minimum support. 

(a) (b) 

 
(c) 

Figure 5. Comparison between DSSPM and PrefixSpan 
 

Table 3. Most frequent sequences with minimum support of 10% 

 

 

 

 

 

 

 

 

 

 

In Figure 5 (c) we compared both algorithms in terms of number of frequent patterns found, it is clearly that with 
low minimum support PrefixSpan is more effective while with high support values DSSPM become more 
effective and can find more frequent patterns. 

In order to show the effectiveness of our proposed algorithm, we compared the top 10 most frequent sequences 
found when minimum support was set to 10%. The results are shown in Table 3. 

Sequence DSSPM Support PrefixSpan Support
adhji 154 17604 
iebfa 152 17557 
ebfgh 148 17676 
bfegi 147 17668 
gfaej 153 17709 
fhgbc 152 17677 
cadhj 171 17622 
dhjib 151 17763 
hjieb 144 17689 
jiebf 154 17642 
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DSSPM is a greedy algorithm; it looks only on the current window pruning the infrequent sequence patterns and 
this explains the low support values compared with PrefixSpan, but it still can find the frequent sequences which 
make it suited for data streams environments. 

5. Conclusion 

A new algorithm based on sequence tree was introduced for sequence pattern mining in data streams 
environment. The depth of the tree will be equal to the max length of supported sequences and this makes it 
suitable for data streams environment where there is a limitation in the memory. Algorithm inputs Min_sup and 
prune time are user defined variables which can be tuned according to the environment and the users need. 
However if the processing node has enough memory and a good processing power, user can decrease the 
Min_sup or increase the prune time to get more precise results; this improves the greedy behavior of this 
algorithm. 

We showed experimentally that the proposed algorithm is more efficient than the PrefixSpan algorithm for 
patterns with any support less than 30% for CPU time and with any support less than 60% for memory usage. 
While the proposed algorithm detects less frequent sequence patterns than the PrefixSpan algorithm, it still 
produces the top frequent patterns. 
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