
Computer and Information Science; Vol. 8, No. 2; 2015
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

1

Comparing Algorithms for Minimizing Congestion and Cost in the
Multi-Commodity k-Splittable Flow

Chengwen Jiao1, Suixiang Gao1 & Wenguo Yang1
1 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China

Correspondence: Wenguo Yang, School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing, 101408, China. E-mail: yangwg@ucas.ac.cn

Received: January 19, 2015 Accepted: March 13, 2015 Online Published: April 6, 2015

doi:10.5539/cis.v8n2p1 URL: http://dx.doi.org/10.5539/cis.v8n2p1

Abstract
In the k-splittable flow problem, each commodity can only use at most k paths and the key point is to find the
suitable transmitting paths for each commodity. To guarantee the efficiency of the network, minimizing
congestion is important, but it is not enough, the cost consumed by the network is also needed to minimize. Most
researches restrict to congestion or cost, but not the both. In this paper, we consider the bi-objective (minimize
congestion, minimize cost) k-splittable problem. We propose three different heuristic algorithms for this problem,

1A , 2A and 3A . Each algorithm finds paths for each commodity in a feasible splittable flow, and the only
difference between these algorithms is the initial feasible flow. We compare the three algorithms by testing
instances, showing that choosing suitable initial feasible flow is important for obtaining good results.

Keywords: k-splittable flow, minimum congestion, minimum cost, heuristic algorithm

1. Introduction
In the traditional multi-commodity flow problems, the number of paths each commodity can use is not restricted.
While in practice, large number of paths may reduce the central management of the network. Specifically in the
multi-protocol label switched (MPLS) networks, data packets are transmitted by the label switched paths (LSPs)
that support the routing of data traffic between different terminal nodes. Large number of LSPs will decrease the
performance of the protocol. Baier (2005) proposed the k-splittable flow problem and the only difference from
the traditional multi-commodity flow problem is that the number of paths each commodity can use is restricted.
The k-splittable flow problem can be described as follows: Given a directed graph (, , ,)G V E u c= with node
set V and edge set E . Each edge e E∈ has an arc capacity 0eu > and an arc cost 0ec > . A set of
commodities is denoted by L , each commodity l L∈ has a certain amount of demand ld to transmit from a
source node ls to a destination node lt . The number of paths commodity l can use is lk . If 1lk = , l L∀ ∈ , it
is the unsplittable flow problem (UFP) which is introduced by Kleinberg (1996). If | |lk E≥ , l L∀ ∈ , it resolves
into the traditional multi-commodity flow problem.

For the k-splittable flow problem, researchers generalized the four optimization versions introduced by
Kleinberg (1996) for the UFP. These versions are minimum congestion, minimum number of rounds, maximum
routable demand and maximum concurrent flow. In this paper, the minimum congestion version is studied and
the aim is to find the smallest value 0α > such that when using at most α fraction of the capacity of each
edge there still exists a k-splittable flow satisfying all demands.

Baier et al. (2005) proved that the maximum single commodity k-splittable flow problem is strongly NP-hard for
directed graphs and they designed approximating algorithms to solve the maximum budget constrained single-
and multi-commodity k-splittable flow problem. Koch et al. (2008) considered the maximum single commodity
k-splittable problem as a two-stage problem, where the first stage determined the k paths and then determined
the amount of the flow value on each path in the second stage. Kolliopoulos (2005) studied the minimum-cost
single-source 2-splittable flow problem with the assumption that the minimum edge capacity is larger than or
equal to the maximum commodity demand. The author proposed an approximation algorithm using rounding
down strategy with factor (2, 1) for minimum congestion and cost. Salazar et al. (2006) considered the single
source k-splittable flow problem. They used rounding up strategy and designed an approximation algorithm with
factor (1+1/k+1/(2k-1), 1) for minimum congestion and cost under the same assumption as Kolliopoulos (2005).

www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 2; 2015

2

Truffot et al. (2005, 2007, 2008) and Gamst et al. (2010, 2012, 2013) used branch-and-price to design algorithms
to solve the single- and multi-commodity k-splittable flow problems exactly. Branch-and-price combines column
generation and branching strategies to solve large scale mixed integer linear programs. But these algorithms
cannot obtain exact solutions in short time which are not suitable for the high speed networks.

Caramia et al. (2008) proposed an exact algorithm based on branch-and-bound rules to solve the maximum
concurrent k-splittable flow problem. The authors designed a fast heuristic algorithm for the same problem
(Caramia, 2010). The commodities are first routed using an augmenting path algorithm and then a local search
routine re-routes part of the paths. Jiao et al. (2014) considered the minimum congestion of the single source
multi-commodity flow problem in the MPLS networks and designed fast heuristic algorithms.

Except some approximation algorithms, such as Kolliopoulos (2005) and Salazar et al. (2006), there is little
study on the algorithms for the bi-objective k-splittable problem of minimizing congestion and cost. Solely
minimizing the congestion may increase the total cost of the network, since commodities may use long paths to
reduce the congestion. While not considering the congestion, only reducing the cost, commodities may
concentrate on using the lower-cost edges which will overload the network drastically. For example, in Figure 1,
a graph is given and a commodity with demand 1 from s to t is requested. Two edge-disjoint paths are used
to transmit the commodity. Path 1P has 1N > edges, each edge in 1P has cost 1C > , and path 2P has
only one edge with cost 1, the capacities of all edges equal to 1. If we only minimize the congestion, the flow
value of each path is 1/2, and the total cost is 1/ 2 1/ 2NC + , the congestion is the minimum value 1/2. If we only
minimize the total cost, the whole demand will be transmitted on path 2P , with minimum cost 1 but maximum
congestion 1. This is not a good thing for the real network with such congestion, since other commodities cannot
use these edges with congestion values already 1. We hope to find a compromise way to assess the congestion
and cost.

Figure 1. A commodity with demand value 1 from s to t

In this paper, we consider the bi-objective k-splittable flow problem. The demands and path restrictions of all
commodities must be satisfied, and the objective function is a convex combination of normalized congestion and
cost. In Section 2 we will describe the mathematical model in details. We propose heuristic algorithms in Section
3 and the simulation results are presented in Section 4.

2. Mathematical Formulation
Given a directed graph (, , ,)G V E u c= as before, the set of commodities is denoted by L , each commodity
l L∈ has four parameters (ls , lt , ld , lk), meaning that commodity l can only use at most lk paths to
transmit ld flow from ls to lt . The set of all feasible paths of commodity l in G is denoted by lP .

l

p ee p
c c

∈
=  denotes the unit cost of the path lp P∈ .

Let variable l
px denotes the flow value on path lp P∈ , {0,1}l

py ∈ denotes whether or not path lp P∈ is used
by commodity l , if 1l

py = , path p is used by commodity l , otherwise not. : min{ : }p eu u e p= ∈ denotes
the maximum flow value that path p can transmit. The mathematical model can be formulated as follows,
denote it by (MI).

(MI) min / (1) /l

l
pl L p P opt

l
opt pCong c Costxλ α λ

∈ ∈
⋅ + − ⋅ ⋅  (1)

. .s t , l

p l
e p el L p P

x uδ α
∈ ∈

⋅ ≤ ⋅  e E∀ ∈ (2)

 , l

l
p lp P

x d
∈

= l L∀ ∈ (3)

 , l l
p p px y M u≤ ⋅ ⋅ ,l L∀ ∈ lp P∈ (4)

 , l

l l
pp P

y k
∈

≤ l L∀ ∈ (5)

 0, l
px ≥ ,l L∀ ∈ lp P∈ (6)

 {0,1},l
py ∈ ,l L∀ ∈ lp P∈ (7)

0α > , (8)

⋅ ⋅ ⋅

s t

1P

2P

www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 2; 2015

3

The objective function (1) is to minimize the convex combination of two ratios, [0,1]λ ∈ is a constant. α and

 l

l l
p pl L p P

c x
∈ ∈  are the congestion and cost values of the network, respectively. We normalize the congestion

and cost in the objective function by dividing their corresponding optimal values, optCong and optCost ,

respectively. optCong and optCost are defined as follows:

When 1λ = , the objective function stresses the congestion and not considering the cost. We denote the optimal

minimum congestion in this case by
optCong .When 0λ = , replace constraints (2) and (4) by

, (2')l
p l

e p el L p P
x u e Eδ

∈ ∈
≤ ∀ ∈  and , , (4')l l l

p p px y u l L p P≤ ⋅ ∀ ∈ ∈ , respectively. Furthermore, we suppose that

there is a feasible solution under the new constraints. In this case, the objective function emphasizes the cost, not
considering the congestion . We denote the optimal minimum cost by

optCost .

The first constraints (2) ensure that the flow value on edge e is at most α of its capacity, {0,1}p
eδ ∈ is a

constant, if e p∈ , 1p
eδ = , otherwise 0. The constraints (3) ensure that each commodity’s demand is satisfied.

Constraints (4) indicate that only path p is used by commodity l , that is 1l
py = , the flow value l

px can be

non-negative. The constant M is any upper bound of the congestion value, which can be selected by

min\ll L
d u

∈ with min : min{ : }eu u e E= ∈ . Constraints (5) limit the number of paths each commodity can use.

Constraints (6) - (8) force the variables to take on feasible values.

Although we describe the above mathematical model exactly, it is difficult to solve it directly. First, it is a mixed
integer linear program which is NP-hard to solve. Second, the path set lP denotes all the feasible paths of
commodity l in G and it is not an easy thing to obtain it entirely. Third, the number of paths in lP
increases exponentially with the network's increasing, and so the size of variables is increasing drastically which
will run out of the memory of computer. Finally, obtaining

optCong and
optCost is not an easy thing.

In practice, obtaining exact solutions is time consuming which is not allowed in the high speed transportation
networks. The fast heuristic algorithms are more preferable. Choosing the suitable limited number of paths in the
k-splittable flow problem is critical for the congestion and cost of the network. In the next section, we propose
simple algorithms that quickly find paths for each commodity from a feasible splittable flow that satisfies all
demands. We test instances in section 4 to compare the effectiveness of the algorithms.

3. Heuristic Algorithms
Before describing the heuristic algorithms, we first give three relaxed linear programs, namely 1()R , 2()R and

3()R . Each of the three programs finds a feasible splittable flow (not considering the number of paths each
commodity use) that satisfies the demands of all the commodities respect to different objective functions. The
objective of 1()R is to minimize the congestion of the network. Suppose that the optimal objective value of

1()R is less than or equal to 1, denote it by lbCong , it is easy to see that lb optCong Cong≤ . Constraints (11)
ensure that each commodity’s demand is satisfied and (12) are the flow conservations. ()A v+ and ()A v−
denote the out-going and in-going arcs of node v V∈ , respectively. The objective of 2()R is to minimize the
total cost under the condition that all edge capacities are satisfied, see (16) , denote the optimal cost value by

lbCost . Similarly, we have lb optCost Cost≤ . The objective of
3()R is the same as that of

2()R and the
congestion of each edge is not greater than lbCong , see (18).

 1()R min α (9)

 . .s t ,l
e el L

x uα
∈

≤ ⋅ e E∀ ∈ (10)

() ()

,
l l

l l
e e le A s e A s

x x d+ −∈ ∈
− =  l L∀ ∈ (11)

() ()

0,l l
e ee A v e A v

x x+ −∈ ∈
− =  ,l L∀ ∈ ,v V∈ ,l lv s t≠ (12)

www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 2; 2015

4

 0, l
ex ≥ ,l L∀ ∈ e E∀ ∈ (13)

 0α > (14)

2()R min l
e ee E l L

c x
∈ ∈

⋅  (15)

 . .s t ,l
e el L

x u
∈

≤ e E∀ ∈ (16)

 Constraints (11)-(13)

3()R min l
e ee E l L

c x
∈ ∈

⋅  (17)

 . .s t ,l
e lb el L

x Cong u
∈

≤ ⋅ e E∀ ∈ (18)

 Constraints (11)-(13)

The main idea of the heuristic algorithm we will design is as follows: Firstly, find a feasible splittable flow that
satisfies all the demands of the commodities. The splittable flow can be decomposed into | |L sub-flows, one
for each commodity; Secondly, find limited number of transmitting paths from the flow for each commodity;
Finally, allocate flow value to each path through a simple linear program with the appropriate objective function.

The sketch of the heuristic algorithm is as follows:

Step 1: Find a feasible splittable flow initialf that satisfies all the demands of the commodities in L . The flow

initialf can be decomposed into | |L sub-flows, that is initial ll L
f f

∈
=  with lf being a flow of value

ld from ls to lt .

Step 2: For 1,...,| |l L= , let 1: l lf f f−= + , define 0 0f = , find paths from f for commodity l that carry the

largest flow values iteratively. Once a path is found, delete its edge flow values from f (for simplicity,

we also denote the current remaining flow by f), and then find the next one, until the total flow value of

paths already found for commodity l is equal to ld or the number of paths is equal to lk . Denote the
paths found for commodity l by lR . At the end of the l -th iteration, update lf by :lf f= .

Step 3: Reallocate flow values to each path in lR for commodity l with the objective function

 / (1) /l

l
pl L p R lb

l
plbCong c Costxλ α λ

∈ ∈
⋅ + − ⋅ ⋅  (19)

It is in fact to solve the following linear program, denote it by 4()R . {0,1}p
eδ ∈ is a constant, if

, 1p
ee p δ∈ = , otherwise 0p

eδ = .

4()R min / (1) /l

l
pl L p R lb

l
plbCong c Costxλ α λ

∈ ∈
⋅ + − ⋅ ⋅  (20)

 . .s t ,l

p l
e p el L p R

x uδ α
∈ ∈

⋅ ≤ ⋅  e E∀ ∈ (21)

 ,l

l
p lp R

x d
∈

= l L∀ ∈ (22)

 0, l
px ≥ ,l L∀ ∈ lp R∈ (23)

 0α > (24)

For simplicity, in the objective function of 4()R we use the lower bounds,
lbCong and

lbCost of the optimal

congestion and cost values
optCong ,

optCost . The above linear problem is easy to solve, since | |l lR k≤ , the

number of variables is largely reduced compared to (MI).

In step 2, at the beginning of dealing with the next commodity, say l , we not only use its initial flow lf but
also the remaining flow for the previous 1l − iterations, say 1lf − . We find paths in 1l lf f− + for commodity
l . By this way, we can get better paths for the current commodity.

We can see that given different initial feasible flows, we can obtain different algorithms. From solving the three
linear programs, 1()R , 2()R and 3()R , we get three different initial feasible splittable flows, and hence three
heuristic algorithms are obtained, denote them by 1A , 2A and 3A , respectively. Since the initial flow in 3A
is obtained by 3()R with network's congestion less than or equal to lbCong , that is from all the feasible
splittable flows with congestion value less than or equal to lbCong , we choose the one with minimum cost, and
the flow is tend to use the edges with small cost values. We guess that 3A may have a better compromise
effectiveness in congestion and cost, while 1A has good effectiveness in low congestion and 2A has
advantage in low cost. To show this, we test 72 instances in the next section.

4. Computational Results

www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 2; 2015

5

We use the Carbin instances, Bl instances and Bs instances, as our testing instances. All the instances have
32 nodes, the number of edges is between 96 and 320, and the number of commodities is between 48 and 320.
All tests have been performed with uniform values of k , i.e. lk k= for all commodities in L . We use three
different values of k , that are 1, 2 and 5. For simplicity, we only test instances on the case 1λ = of Step 3 in
the heuristic algorithms. After solving 4()R , we compute the resulting total cost of the transmitting paths. Tests
were performed on an Intel Core 2.4 GHz processor, 4 GB of RAM. We use CPLEX to solve the linear programs.
The experimental results are reported on Table1-Table4 in the Appendix. As for the time spent on the tests of the
three algorithms, it has little differences and the most time-consuming part is obtaining the initial feasible
splittable flows in Step 1. In this paper, we omit the time results and mainly analyze the results of the congestion
and cost values of the three algorithms.

In Table1 and Table2, for each instance name, the first column followed is the number of paths each commodity
can use, the next three columns are the congestions obtained by 1A , 2A and 3A , respectively, and the last
three columns are the ratios between the congestion values and their optimal lower bounds, lbCong . For the test
results of the 36 Bl instances in Table1, we can see that all the 36 congestions obtained by 1A is less than or
equal to that of 2A , 35 of 36 congestions obtained by 1A is less than or equal to that of 3A , and 34 of 36
congestions obtained by 3A is less than or equal to that of 2A . We conclude that 1A has advantage in
congestion, and 2A is the poorest among the three algorithms. As for the test results of the 36 Bs instances in
Table2, we have similar results.

In Table3 and Table4, we list the test results for the three algorithms on cost. For each instance name, the first
column followed is the number of paths each commodity can use, the next three columns are the ratios between
the cost values and their optimal lower bounds, lbCost . From Table3, we can see that all the cost values
obtained by 2A is less than or equal to that of 1A , 35 of 36 cost values obtained by 2A is less than or equal to
that of 3A , and all the cost values obtained by 3A is less than or equal to that of 1A . We conclude that 2A
has advantage in cost, and 1A is the poorest among the three algorithms. As for the test results for the 36 Bs
instances in Table4, we have similar results.

From the above analysis, we can see that algorithm 1A performed best in congestion but worst in cost and
algorithm 2A performed best in cost but worst in congestion. It is intelligible since 1A uses the feasible
splittable flow that is obtained from 1()R which restricts on congestion but not cost. Similarly, 2A uses the
feasible splittable flow that is obtained from 2()R which restricts on cost but not congestion. As for the
algorithm 3A , the congestion and cost values are between that of 1A and 2A . The congestion values of 3A
are closer to that of 1A than 2A , and the cost values of 3A are closer to that of 2A than 1A . 3A has a good
compromise between congestion and cost. We conclude that not considering cost in the beginning will cause a
high cost, such as 1A , while not considering congestion will cause a high congestion, such as 2A .

5. Conclusions
In this paper, we consider the bi-objective (minimize congestion, minimize cost) k-splittable flow problem. We
propose the mathematical model for this problem and use a convex combination of the normalized congestion
and cost as the objective function. We propose the sketch of a kind of heuristic algorithms which begins with a
feasible splittable flow satisfying all the demands of the commodities. This kind of algorithms is suitable for the
general multi-source k-splittable flow problem. We compare three different heuristic algorithms through testing
instances and they show different advantages on the effectiveness of congestion and cost. As for this kind of
heuristic algorithms, the most time-consuming part is to get the initial feasible splittable flow which is obtained
by solving a linear program. If the size of commodity set is large enough, we need to design other fast algorithms
which rely on the feasible flows less. In the future, we will continue to study the bi-objective k-splittable
problem and design better algorithms.

Acknowledgements
This work is supported by the National 973 Plan project under Grant No. 2011CB706900，the National 863 Plan
project under Grant No.2011AA01A102, the NSF of China (11331012, 71171189), the "Strategic Priority
Research Program" of the Chinese Academy of Sciences(XDA06010302), and Huawei Technology Co. Ltd.

References
Baier, G., Köhler, E., & Skutella, M. (2005). On the k-splittable flow problem. Algorithmica, 42, 231-248.

http://dx.doi.org/10.1007/s00453-005-1167-9

Caramia, M., & Sgalambro, A. (2008). An exact approach for the maximum concurrent k-splittable flow problem.
Optimization Letters, 2, 251-265. http://dx.doi.org/10.1007/s11590-007-0055-4

www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 2; 2015

6

Caramia, M., & Sgalambro, A. (2010). A fast heuristic algorithm for the maximum concurrent k-splittable flow
problem. Optimization Letters, 4, 37-55. http://dx.doi.org/10.1007/s11590-009-0147-4

Gamst, M. (2013). A decomposition based on path sets for the multi-commodity k-splittable Maximum Flow
Problem. Department of Management Engineering, Technical University of Denmark, DTU Management
Engineering Report No.6.

Gamst, M., & Petersen, B. (2012). Comparing branch-and-price algorithms for the multicommodity k-splittable
maximum flow problem. European Journal of Operational Research, 217(2), 278-286.
http://dx.doi.org/10.1016/j.ejor.2011.10.001

Gamst, M., Jensen, P. N., Pisinger, D., & Plum, C. (2010). Two-and three-index formulations of the mini-mum
cost multicommodity k-splittable flow problem. European Journal of Operational Research, 202(1), 82-89.
http://dx.doi.org/10.1016/j.ejor.2009.05.014

Jiao, Ch. W., Yang, W. G., Gao, S. X., Xia, Y. B., & Zhu, M. M. (2014). The k-Splittable Flow Model and a
Heuristic Algorithm for Minimizing Congestion in the MPLS Networks. Inter-national Conference on
Natural Computation(ICNC), Xiamen University, 19-21 August 2014.

Jiao, Ch.W., Gao, S. X., Yang, W. G., Xia, Y. B., & Zhu, M. M. (2014). A Fast Heuristic Algorithm for
Minimizing Congestion in the MPLS Networks. Int.J. Communications, Network and System Sciences, 7,
294-302. http://dx.doi.org/10.4236/ijcns.2014.78032

Kleinberg, J. M. (1996). Single-source unsplittable flow. In Proceedings of the 37th Annual Symposium on
Foundations of Computer Science, 68-77.

Koch, R., Skutella, M., & Spenke, I. (2008). Maximum k-splittable s,t-flows, Theory of Computing Systems,
43(1), 1432-4350. http://dx.doi.org/10.1007/s00224-007-9068-8

Kolliopoulos, S. G. (2005). Minimum-cost single-source 2-splittable flow. Information Processing Letters, 94(1),
15-18. http://dx.doi.org/10.1016/j.ipl.2004.12.009

Salazar, F., & Skutella, M. (2006). Single-source k-splittable min-cost flows. Operations research letters, 37,
71-74. http://dx.doi.org/10.1016/j.orl.2008.12.004

Truffot, J., & Duhamel, C. (2008). A branch and price algorithm for the k-splittable maximum flow problem.
Discrete Optimization, 5(3), 629-646. http://dx.doi.org/10.1016/j.disopt.2008.01.002

Truffot, J., Duhamel, C., & Mahey, P. (2005). Using branch-and-price to solve multicommodity k-splittable flow
problem. The Proceedings of International Network Optimization Conference (INOC), Lisbonne, 20-23,
March 2005.

Truffot, J., Duhamel, C., & Mahey, P. (2007). K-Splittable Delay Constrained Routing Problem: A Branch and
Price Approach. Design and Reliable Communication Networks (DRCN), 6th International Workshop on,
La Rochelle, 7-10. http://dx.doi.org/10.1109/DRCN.2007.4762284

Appendix
Table 1. Congestion results for the three algorithms on the Carbin instances called Bl

instance k 1A 2A 3A 1Gaps 2Gaps 3Gaps
Bl01 1 1.308 1.342 1.302 1.323 1.358 1.318
Bl01 2 0.988 1.109 1.023 1.000 1.031 1.035
Bl01 5 0.988 0.999 0.992 1.000 1.011 1.004
Bl03 1 1.464 1.882 1.619 1.485 1.909 1.642
Bl03 2 0.986 1.010 1.010 1.000 1.024 1.024
Bl03 5 0.986 0.995 0.991 1.000 1.009 1.005
Bl05 1 0.340 1.619 0.941 1.395 6.647 3.864
Bl05 2 0.253 1.088 0.389 1.040 4.465 1.597
Bl05 5 0.244 0.952 0.246 1.000 3.910 1.012
Bl07 1 0.512 1.450 1.133 1.554 4.402 3.441
Bl07 2 0.413 1.000 0.531 1.254 3.036 1.613
Bl07 5 0.329 1.000 0.339 1.000 3.036 1.030
Bl09 1 1.133 1.385 1.529 1.155 1.412 1.559
Bl09 2 1.000 1.012 1.013 1.019 1.032 1.033

www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 2; 2015

7

Bl09 5 1.000 1.003 1.000 1.019 1.023 1.019
Bl11 1 1.131 1.197 1.197 1.145 1.212 1.212
Bl11 2 0.993 0.994 0.993 1.005 1.006 1.005
Bl11 5 0.993 0.994 0.993 1.005 1.006 1.005
Bl13 1 1.250 1.818 1.539 1.651 2.401 2.032
Bl13 2 0.763 1.107 1.000 1.007 1.462 1.321
Bl13 5 0.757 1.000 0.813 1.000 1.321 1.073
Bl15 1 1.000 1.524 1.286 1.495 2.279 1.923
Bl15 2 0.714 1.083 0.794 1.068 1.620 1.188
Bl15 5 0.695 1.083 0.733 1.039 1.620 1.097
Bl17 1 1.152 1.220 1.220 1.158 1.226 1.226
Bl17 2 0.995 1.014 1.014 1.000 1.019 1.019
Bl17 5 0.995 1.014 1.014 1.000 1.019 1.019
Bl19 1 1.250 1.250 1.250 1.256 1.256 1.256
Bl19 2 0.995 0.999 0.995 1.000 1.004 1.000
Bl19 5 0.995 0.999 0.995 1.000 1.004 1.000
Bl21 1 1.231 1.474 1.462 1.858 2.225 2.206
Bl21 2 0.686 1.043 0.870 1.036 1.574 1.313
Bl21 5 0.677 1.000 0.677 1.021 1.510 1.021
Bl23 1 1.250 1.667 1.539 1.715 2.287 2.111
Bl23 2 0.787 1.031 0.800 1.080 1.415 1.098
Bl23 5 0.729 1.031 0.786 1.000 1.415 1.078

Table 2. Congestion results for the three algorithms on the Carbin instances called Bs

instance k 1A 2A 3A 1Gaps 2Gaps 3Gaps
Bs01 1 1.800 1.588 1.385 1.841 1.624 1.416
Bs01 2 0.990 1.048 0.987 1.013 1.009 1.072
Bs01 5 0.978 1.000 0.980 1.000 1.023 1.003
Bs03 1 1.857 1.345 1.345 1.885 1.365 1.365
Bs03 2 0.986 1.059 1.059 1.000 1.074 1.074
Bs03 5 0.986 1.000 1.000 1.000 1.015 1.015
Bs05 1 1.357 2.333 1.357 2.797 4.808 2.797
Bs05 2 0.679 1.111 0.744 1.398 2.290 1.534
Bs05 5 0.485 1.000 0.500 1.000 2.061 1.030
Bs07 1 1.188 1.682 1.267 2.824 4.000 3.013
Bs07 2 0.679 1.154 0.679 1.614 2.744 1.614
Bs07 5 0.421 1.000 0.448 1.000 2.378 1.066
Bs09 1 1.333 1.333 1.333 1.333 1.333 1.333
Bs09 2 1.000 1.017 1.017 1.000 1.017 1.017
Bs09 5 1.000 1.000 1.000 1.000 1.000 1.000
Bs11 1 1.170 1.281 1.300 1.187 1.300 1.319
Bs11 2 0.990 0.996 0.990 1.004 1.011 1.005
Bs11 5 0.990 0.998 0.990 1.004 1.013 1.004
Bs13 1 1.462 1.750 1.429 2.448 2.931 2.393
Bs13 2 0.694 1.200 0.740 1.162 2.010 1.240
Bs13 5 0.625 1.024 0.625 1.047 1.715 1.047
Bs15 1 1.429 1.750 1.667 2.271 2.782 2.650
Bs15 2 0.776 1.011 0.791 1.233 1.607 1.257
Bs15 5 0.654 1.000 0.654 1.039 1.590 1.039
Bs17 1 1.059 1.786 1.786 1.104 1.861 1.861
Bs17 2 0.974 1.003 0.974 1.015 1.045 1.015
Bs17 5 0.959 1.000 0.959 1.000 1.042 1.000
Bs19 1 1.215 1.240 1.240 1.224 1.248 1.248
Bs19 2 0.993 1.003 1.000 1.000 1.009 1.007
Bs19 5 0.993 1.003 1.000 1.000 1.009 1.007

www.ccsenet.org/cis Computer and Information Science Vol. 8, No. 2; 2015

8

Bs21 1 1.429 1.933 1.429 2.110 2.855 2.110
Bs21 2 0.775 1.012 0.776 1.144 1.494 1.146
Bs21 5 0.692 1.002 0.704 1.022 1.480 1.039
Bs23 1 1.188 1.667 1.308 1.969 2.764 2.168
Bs23 2 0.702 1.027 0.657 1.164 1.703 1.090
Bs23 5 0.614 1.004 0.632 1.047 1.665 1.047

Table 3. Cost results for the three algorithms on the Carbin instance called Bl

Table 4. Cost results for the three algorithms on the Carbin instance called Bs

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

instance k 1C Gaps− 2C Gaps− 3C Gaps− instance k 1C Gaps− 2C Gaps− 3C Gaps−
Bl01 1 1.179 0.996 0.994 Bl13 1 1.583 0.998 1.104
Bl01 2 1.155 1.008 1.009 Bl13 2 1.532 1.020 1.098
Bl01 5 1.145 1.005 1.009 Bl13 5 1.507 1.025 1.102
Bl03 1 1.130 1.003 1.016 Bl15 1 1.476 1.013 1.133
Bl03 2 1.119 1.011 1.022 Bl15 2 1.406 1.019 1.136
Bl03 5 1.098 1.021 1.032 Bl15 5 1.400 1.026 1.147
Bl05 1 2.298 0.997 1.309 Bl17 1 1.085 1.004 1.012
Bl05 2 2.375 1.007 1.364 Bl17 2 1.052 1.004 1.006
Bl05 5 2.539 1.022 1.340 Bl17 5 1.060 1.004 1.006
Bl07 1 2.548 1.007 1.192 Bl19 1 1.073 1.008 1.016
Bl07 2 2.272 1.014 1.132 Bl19 2 1.073 1.010 1.013
Bl07 5 2.377 1.014 1.162 Bl19 5 1.069 1.008 1.012
Bl09 1 1.108 1.000 1.015 Bl21 1 1.317 1.000 1.147
Bl09 2 1.060 1.006 1.011 Bl21 2 1.249 1.023 1.145
Bl09 5 1.061 1.010 1.018 Bl21 5 1.233 1.027 1.145
Bl11 1 1.080 0.999 1.001 Bl23 1 1.361 1.010 1.103
Bl11 2 1.047 1.011 1.011 Bl23 2 1.278 1.015 1.102
Bl11 5 1.038 1.009 1.010 Bl23 5 1.278 1.016 1.100

instance k 1C Gaps− 2C Gaps− 3C Gaps− instance k 1C Gaps− 2C Gaps− 3C Gaps−
Bs01 1 1.044 1.044 1.017 Bs13 1 1.424 1.010 1.420
Bs01 2 1.050 1.013 1.023 Bs13 2 1.332 1.018 1.294
Bs01 5 1.052 1.017 1.023 Bs13 5 1.308 1.029 1.288
Bs03 1 1.017 0.993 0.995 Bs15 1 1.412 1.010 1.201
Bs03 2 1.060 1.010 1.010 Bs15 2 1.279 1.027 1.175
Bs03 5 1.062 1.010 1.011 Bs15 5 1.265 1.024 1.176
Bs05 1 2.219 1.010 1.405 Bs17 1 1.158 1.013 1.040
Bs05 2 2.606 1.050 1.474 Bs17 2 1.101 1.007 1.033
Bs05 5 2.454 1.046 1.550 Bs17 5 1.093 1.006 1.030
Bs07 1 1.941 0.993 1.526 Bs19 1 1.096 1.011 1.006
Bs07 2 1.854 1.017 1.486 Bs19 2 1.093 1.011 1.010
Bs07 5 1.862 1.036 1.516 Bs19 5 1.089 1.011 1.011
Bs09 1 1.097 1.014 1.014 Bs21 1 1.379 1.011 1.206
Bs09 2 1.060 1.003 1.003 Bs21 2 1.304 1.016 1.208
Bs09 5 1.059 1.006 1.006 Bs21 5 1.299 1.016 1.206
Bs11 1 1.084 1.004 1.019 Bs23 1 1.375 1.002 1.345
Bs11 2 1.063 1.012 1.014 Bs23 2 1.301 1.017 1.294
Bs11 5 1.069 1.005 1.023 Bs23 5 1.279 1.019 1.279

