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Abstract 
In the k-splittable flow problem, each commodity can only use at most k paths and the key point is to find the 
suitable transmitting paths for each commodity. To guarantee the efficiency of the network, minimizing 
congestion is important, but it is not enough, the cost consumed by the network is also needed to minimize. Most 
researches restrict to congestion or cost, but not the both. In this paper, we consider the bi-objective (minimize 
congestion, minimize cost) k-splittable problem. We propose three different heuristic algorithms for this problem, 

1A , 2A  and 3A . Each algorithm finds paths for each commodity in a feasible splittable flow, and the only 
difference between these algorithms is the initial feasible flow. We compare the three algorithms by testing 
instances, showing that choosing suitable initial feasible flow is important for obtaining good results. 

Keywords: k-splittable flow, minimum congestion, minimum cost, heuristic algorithm 

1. Introduction 
In the traditional multi-commodity flow problems, the number of paths each commodity can use is not restricted. 
While in practice, large number of paths may reduce the central management of the network. Specifically in the 
multi-protocol label switched (MPLS) networks, data packets are transmitted by the label switched paths (LSPs) 
that support the routing of data traffic between different terminal nodes. Large number of LSPs will decrease the 
performance of the protocol. Baier (2005) proposed the k-splittable flow problem and the only difference from 
the traditional multi-commodity flow problem is that the number of paths each commodity can use is restricted. 
The k-splittable flow problem can be described as follows: Given a directed graph ( , , , )G V E u c=  with node 
set V  and edge set E . Each edge e E∈  has an arc capacity 0eu > and an arc cost 0ec > . A set of 
commodities is denoted by L , each commodity l L∈  has a certain amount of demand ld  to transmit from a 
source node ls  to a destination node lt . The number of paths commodity l can use is lk . If 1lk = , l L∀ ∈ , it 
is the unsplittable flow problem (UFP) which is introduced by Kleinberg (1996). If | |lk E≥ , l L∀ ∈ , it resolves 
into the traditional multi-commodity flow problem.  

For the k-splittable flow problem, researchers generalized the four optimization versions introduced by 
Kleinberg (1996) for the UFP. These versions are minimum congestion, minimum number of rounds, maximum 
routable demand and maximum concurrent flow. In this paper, the minimum congestion version is studied and 
the aim is to find the smallest value 0α >  such that when using at most α  fraction of the capacity of each 
edge there still exists a k-splittable flow satisfying all demands.  

Baier et al. (2005) proved that the maximum single commodity k-splittable flow problem is strongly NP-hard for 
directed graphs and they designed approximating algorithms to solve the maximum budget constrained single- 
and multi-commodity k-splittable flow problem. Koch et al. (2008) considered the maximum single commodity 
k-splittable problem as a two-stage problem, where the first stage determined the k paths and then determined 
the amount of the flow value on each path in the second stage. Kolliopoulos (2005) studied the minimum-cost 
single-source 2-splittable flow problem with the assumption that the minimum edge capacity is larger than or 
equal to the maximum commodity demand. The author proposed an approximation algorithm using rounding 
down strategy with factor (2, 1) for minimum congestion and cost. Salazar et al. (2006) considered the single 
source k-splittable flow problem. They used rounding up strategy and designed an approximation algorithm with 
factor (1+1/k+1/(2k-1), 1) for minimum congestion and cost under the same assumption as Kolliopoulos (2005).  
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Truffot et al. (2005, 2007, 2008) and Gamst et al. (2010, 2012, 2013) used branch-and-price to design algorithms 
to solve the single- and multi-commodity k-splittable flow problems exactly. Branch-and-price combines column 
generation and branching strategies to solve large scale mixed integer linear programs. But these algorithms 
cannot obtain exact solutions in short time which are not suitable for the high speed networks.  

Caramia et al. (2008) proposed an exact algorithm based on branch-and-bound rules to solve the maximum 
concurrent k-splittable flow problem. The authors designed a fast heuristic algorithm for the same problem 
(Caramia, 2010). The commodities are first routed using an augmenting path algorithm and then a local search 
routine re-routes part of the paths. Jiao et al. (2014) considered the minimum congestion of the single source 
multi-commodity flow problem in the MPLS networks and designed fast heuristic algorithms.  

Except some approximation algorithms, such as Kolliopoulos (2005) and Salazar et al. (2006), there is little 
study on the algorithms for the bi-objective k-splittable problem of minimizing congestion and cost. Solely 
minimizing the congestion may increase the total cost of the network, since commodities may use long paths to 
reduce the congestion. While not considering the congestion, only reducing the cost, commodities may 
concentrate on using the lower-cost edges which will overload the network drastically. For example, in Figure 1, 
a graph is given and a commodity with demand 1 from s  to t  is requested. Two edge-disjoint paths are used 
to transmit the commodity. Path 1P  has 1N >  edges, each edge in 1P  has cost 1C > , and path 2P  has 
only one edge with cost 1, the capacities of all edges equal to 1. If we only minimize the congestion, the flow 
value of each path is 1/2, and the total cost is 1/ 2 1/ 2NC + , the congestion is the minimum value 1/2. If we only 
minimize the total cost, the whole demand will be transmitted on path 2P , with minimum cost 1 but maximum 
congestion 1. This is not a good thing for the real network with such congestion, since other commodities cannot 
use these edges with congestion values already 1. We hope to find a compromise way to assess the congestion 
and cost. 

 

Figure 1. A commodity with demand value 1 from s to t  
 

In this paper, we consider the bi-objective k-splittable flow problem. The demands and path restrictions of all 
commodities must be satisfied, and the objective function is a convex combination of normalized congestion and 
cost. In Section 2 we will describe the mathematical model in details. We propose heuristic algorithms in Section 
3 and the simulation results are presented in Section 4. 

2. Mathematical Formulation 
Given a directed graph ( , , , )G V E u c= as before, the set of commodities is denoted by L , each commodity 
l L∈  has four parameters ( ls , lt , ld , lk ), meaning that commodity l  can only use at most lk  paths to 
transmit ld  flow from ls  to lt . The set of all feasible paths of commodity l  in G  is denoted by lP .

l

p ee p
c c

∈
=  denotes the unit cost of the path lp P∈ . 

Let variable l
px  denotes the flow value on path lp P∈ , {0,1}l

py ∈  denotes whether or not path lp P∈  is used 
by commodity l , if 1l

py = , path p  is used by commodity l , otherwise not. : min{ : }p eu u e p= ∈  denotes 
the maximum flow value that path p  can transmit. The mathematical model can be formulated as follows, 
denote it by (MI).  
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The objective function (1) is to minimize the convex combination of two ratios, [0,1]λ ∈  is a constant. α and

  l

l l
p pl L p P

c x
∈ ∈  are the congestion and cost values of the network, respectively. We normalize the congestion 

and cost in the objective function by dividing their corresponding optimal values, optCong  and optCost , 

respectively. optCong  and optCost  are defined as follows:  

When 1λ = , the objective function stresses the congestion and not considering the cost. We denote the optimal 

minimum congestion in this case by 
optCong .When 0λ = , replace constraints (2) and (4) by 

,    (2')l
p l

e p el L p P
x u e Eδ

∈ ∈
≤ ∀ ∈   and   ,   ,    (4')l l l

p p px y u l L p P≤ ⋅ ∀ ∈ ∈ , respectively. Furthermore, we suppose that 

there is a feasible solution under the new constraints. In this case, the objective function emphasizes the cost, not 
considering the congestion . We denote the optimal minimum cost by 

optCost .  

The first constraints (2) ensure that the flow value on edge e  is at most α of its capacity, {0,1}p
eδ ∈  is a 

constant, if e p∈ , 1p
eδ = , otherwise 0. The constraints (3) ensure that each commodity’s demand is satisfied. 

Constraints (4) indicate that only path p  is used by commodity l , that is 1l
py = , the flow value l

px  can be 

non-negative. The constant M is any upper bound of the congestion value, which can be selected by 

min\ll L
d u

∈ with min : min{ : }eu u e E= ∈ . Constraints (5) limit the number of paths each commodity can use.  

Constraints (6) - (8) force the variables to take on feasible values.  

Although we describe the above mathematical model exactly, it is difficult to solve it directly. First, it is a mixed 
integer linear program which is NP-hard to solve. Second, the path set lP  denotes all the feasible paths of 
commodity l  in G  and it is not an easy thing to obtain it entirely. Third, the number of paths in lP  
increases exponentially with the network's increasing, and so the size of variables is increasing drastically which 
will run out of the memory of computer. Finally, obtaining 

optCong  and 
optCost  is not an easy thing.  

In practice, obtaining exact solutions is time consuming which is not allowed in the high speed transportation 
networks. The fast heuristic algorithms are more preferable. Choosing the suitable limited number of paths in the 
k-splittable flow problem is critical for the congestion and cost of the network. In the next section, we propose 
simple algorithms that quickly find paths for each commodity from a feasible splittable flow that satisfies all 
demands. We test instances in section 4 to compare the effectiveness of the algorithms.  

3. Heuristic Algorithms 
Before describing the heuristic algorithms, we first give three relaxed linear programs, namely 1( )R , 2( )R  and 

3( )R . Each of the three programs finds a feasible splittable flow (not considering the number of paths each 
commodity use) that satisfies the demands of all the commodities respect to different objective functions. The 
objective of 1( )R  is to minimize the congestion of the network. Suppose that the optimal objective value of 

1( )R  is less than or equal to 1, denote it by lbCong , it is easy to see that lb optCong Cong≤ . Constraints (11) 
ensure that each commodity’s demand is satisfied and (12) are the flow conservations. ( )A v+  and ( )A v−  
denote the out-going and in-going arcs of node v V∈ , respectively. The objective of 2( )R  is to minimize the 
total cost under the condition that all edge capacities are satisfied, see (16) , denote the optimal cost value by 

lbCost . Similarly, we have lb optCost Cost≤ . The objective of 
3( )R  is the same as that of 

2( )R  and the 
congestion of each edge is not greater than lbCong , see (18). 
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The main idea of the heuristic algorithm we will design is as follows: Firstly, find a feasible splittable flow that 
satisfies all the demands of the commodities. The splittable flow can be decomposed into | |L  sub-flows, one 
for each commodity; Secondly, find limited number of transmitting paths from the flow for each commodity; 
Finally, allocate flow value to each path through a simple linear program with the appropriate objective function. 

The sketch of the heuristic algorithm is as follows: 

Step 1: Find a feasible splittable flow initialf  that satisfies all the demands of the commodities in L . The flow 

initialf  can be decomposed into | |L  sub-flows, that is initial ll L
f f

∈
=   with lf  being a flow of value 

ld  from ls  to lt . 

Step 2: For 1,...,| |l L= , let 1: l lf f f−= + , define 0 0f = , find paths from f  for commodity l  that carry the  

largest flow values iteratively. Once a path is found, delete its edge flow values from f  (for simplicity,  

we also denote the current remaining flow by f ), and then find the next one, until the total flow value of  

paths already found for commodity l  is equal to ld  or the number of paths is equal to lk . Denote the 
paths found for commodity l  by lR . At the end of the l -th iteration, update lf  by :lf f= . 

Step 3: Reallocate flow values to each path in lR  for commodity l  with the objective function  

  / (1 ) /l

l
pl L p R lb

l
plbCong c Costxλ α λ

∈ ∈
⋅ + − ⋅ ⋅                                 (19) 

It is in fact to solve the following linear program, denote it by 4( )R . {0,1}p
eδ ∈  is a constant, if 

,  1p
ee p δ∈ = , otherwise 0p

eδ = .  

4( )R      min  / (1 ) /l
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∈ ∈
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                          ,l
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                          0,  l
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For simplicity, in the objective function of 4( )R  we use the lower bounds, 
lbCong  and 

lbCost of the optimal 

congestion and cost values 
optCong , 

optCost . The above linear problem is easy to solve, since | |l lR k≤ , the 

number of variables is largely reduced compared to (MI). 

In step 2, at the beginning of dealing with the next commodity, say l , we not only use its initial flow lf  but 
also the remaining flow for the previous 1l −  iterations, say 1lf − . We find paths in 1l lf f− +  for commodity 
l . By this way, we can get better paths for the current commodity. 

We can see that given different initial feasible flows, we can obtain different algorithms. From solving the three 
linear programs, 1( )R , 2( )R  and 3( )R , we get three different initial feasible splittable flows, and hence three 
heuristic algorithms are obtained, denote them by 1A , 2A  and 3A , respectively. Since the initial flow in 3A  
is obtained by 3( )R  with network's congestion less than or equal to lbCong , that is from all the feasible 
splittable flows with congestion value less than or equal to lbCong , we choose the one with minimum cost, and 
the flow is tend to use the edges with small cost values. We guess that 3A  may have a better compromise 
effectiveness in congestion and cost, while 1A  has good effectiveness in low congestion and 2A  has 
advantage in low cost. To show this, we test 72 instances in the next section.  

4. Computational Results 
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We use the Carbin instances, Bl  instances and Bs  instances, as our testing instances. All the instances have 
32 nodes, the number of edges is between 96 and 320, and the number of commodities is between 48 and 320. 
All tests have been performed with uniform values of k , i.e. lk k=  for all commodities in L . We use three 
different values of k , that are 1, 2 and 5. For simplicity, we only test instances on the case 1λ =  of Step 3 in 
the heuristic algorithms. After solving 4( )R , we compute the resulting total cost of the transmitting paths. Tests 
were performed on an Intel Core 2.4 GHz processor, 4 GB of RAM. We use CPLEX to solve the linear programs. 
The experimental results are reported on Table1-Table4 in the Appendix. As for the time spent on the tests of the 
three algorithms, it has little differences and the most time-consuming part is obtaining the initial feasible 
splittable flows in Step 1. In this paper, we omit the time results and mainly analyze the results of the congestion 
and cost values of the three algorithms.  

In Table1 and Table2, for each instance name, the first column followed is the number of paths each commodity 
can use, the next three columns are the congestions obtained by 1A , 2A  and 3A , respectively, and the last 
three columns are the ratios between the congestion values and their optimal lower bounds, lbCong . For the test 
results of the 36 Bl  instances in Table1, we can see that all the 36 congestions obtained by 1A  is less than or 
equal to that of 2A , 35 of 36 congestions obtained by 1A  is less than or equal to that of 3A , and 34 of 36 
congestions obtained by 3A  is less than or equal to that of 2A . We conclude that 1A  has advantage in 
congestion, and 2A  is the poorest among the three algorithms. As for the test results of the 36 Bs  instances in 
Table2, we have similar results. 

In Table3 and Table4, we list the test results for the three algorithms on cost. For each instance name, the first 
column followed is the number of paths each commodity can use, the next three columns are the ratios between 
the cost values and their optimal lower bounds, lbCost . From Table3, we can see that all the cost values 
obtained by 2A  is less than or equal to that of 1A , 35 of 36 cost values obtained by 2A  is less than or equal to 
that of 3A , and all the cost values obtained by 3A  is less than or equal to that of 1A . We conclude that 2A  
has advantage in cost, and 1A  is the poorest among the three algorithms. As for the test results for the 36 Bs
instances in Table4, we have similar results. 

From the above analysis, we can see that algorithm 1A  performed best in congestion but worst in cost and 
algorithm 2A  performed best in cost but worst in congestion. It is intelligible since 1A  uses the feasible 
splittable flow that is obtained from 1( )R  which restricts on congestion but not cost. Similarly, 2A  uses the 
feasible splittable flow that is obtained from 2( )R  which restricts on cost but not congestion. As for the 
algorithm 3A , the congestion and cost values are between that of 1A  and 2A . The congestion values of 3A  
are closer to that of 1A  than 2A , and the cost values of 3A  are closer to that of 2A  than 1A . 3A  has a good 
compromise between congestion and cost. We conclude that not considering cost in the beginning will cause a 
high cost, such as 1A , while not considering congestion will cause a high congestion, such as 2A .  

5. Conclusions  
In this paper, we consider the bi-objective (minimize congestion, minimize cost) k-splittable flow problem. We 
propose the mathematical model for this problem and use a convex combination of the normalized congestion 
and cost as the objective function. We propose the sketch of a kind of heuristic algorithms which begins with a 
feasible splittable flow satisfying all the demands of the commodities. This kind of algorithms is suitable for the 
general multi-source k-splittable flow problem. We compare three different heuristic algorithms through testing 
instances and they show different advantages on the effectiveness of congestion and cost. As for this kind of 
heuristic algorithms, the most time-consuming part is to get the initial feasible splittable flow which is obtained 
by solving a linear program. If the size of commodity set is large enough, we need to design other fast algorithms 
which rely on the feasible flows less. In the future, we will continue to study the bi-objective k-splittable 
problem and design better algorithms.  
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Appendix 
Table 1. Congestion results for the three algorithms on the Carbin instances called Bl  

instance k  1A  2A  3A  1Gaps 2Gaps 3Gaps  
Bl01 1 1.308 1.342 1.302 1.323 1.358 1.318 
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Bl01 5 0.988 0.999 0.992 1.000 1.011 1.004 
Bl03 1 1.464 1.882 1.619 1.485 1.909 1.642 
Bl03 2 0.986 1.010 1.010 1.000 1.024 1.024 
Bl03 5 0.986 0.995 0.991 1.000 1.009 1.005 
Bl05 1 0.340 1.619 0.941 1.395 6.647 3.864 
Bl05 2 0.253 1.088 0.389 1.040 4.465 1.597 
Bl05 5 0.244 0.952 0.246 1.000 3.910 1.012 
Bl07 1 0.512 1.450 1.133 1.554 4.402 3.441 
Bl07 2 0.413 1.000 0.531 1.254 3.036 1.613 
Bl07 5 0.329 1.000 0.339 1.000 3.036 1.030 
Bl09 1 1.133 1.385 1.529 1.155 1.412 1.559 
Bl09 2 1.000 1.012 1.013 1.019 1.032 1.033 
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Bl09 5 1.000 1.003 1.000 1.019 1.023 1.019 
Bl11 1 1.131 1.197 1.197 1.145 1.212 1.212 
Bl11 2 0.993 0.994 0.993 1.005 1.006 1.005 
Bl11 5 0.993 0.994 0.993 1.005 1.006 1.005 
Bl13 1 1.250 1.818 1.539 1.651 2.401 2.032 
Bl13 2 0.763 1.107 1.000 1.007 1.462 1.321 
Bl13 5 0.757 1.000 0.813 1.000 1.321 1.073 
Bl15 1 1.000 1.524 1.286 1.495 2.279 1.923 
Bl15 2 0.714 1.083 0.794 1.068 1.620 1.188 
Bl15 5 0.695 1.083 0.733 1.039 1.620 1.097 
Bl17 1 1.152 1.220 1.220 1.158 1.226 1.226 
Bl17 2 0.995 1.014 1.014 1.000 1.019 1.019 
Bl17 5 0.995 1.014 1.014 1.000 1.019 1.019 
Bl19 1 1.250 1.250 1.250 1.256 1.256 1.256 
Bl19 2 0.995 0.999 0.995 1.000 1.004 1.000 
Bl19 5 0.995 0.999 0.995 1.000 1.004 1.000 
Bl21 1 1.231 1.474 1.462 1.858 2.225 2.206 
Bl21 2 0.686 1.043 0.870 1.036 1.574 1.313 
Bl21 5 0.677 1.000 0.677 1.021 1.510 1.021 
Bl23 1 1.250 1.667 1.539 1.715 2.287 2.111 
Bl23 2 0.787 1.031 0.800 1.080 1.415 1.098 
Bl23 5 0.729 1.031 0.786 1.000 1.415 1.078 

 

Table 2. Congestion results for the three algorithms on the Carbin instances called Bs  

instance k  1A  2A  3A  1Gaps 2Gaps 3Gaps  
Bs01 1 1.800 1.588 1.385 1.841 1.624 1.416 
Bs01 2 0.990 1.048 0.987 1.013 1.009 1.072 
Bs01 5 0.978 1.000 0.980 1.000 1.023 1.003 
Bs03 1 1.857 1.345 1.345 1.885 1.365 1.365 
Bs03 2 0.986 1.059 1.059 1.000 1.074 1.074 
Bs03 5 0.986 1.000 1.000 1.000 1.015 1.015 
Bs05 1 1.357 2.333 1.357 2.797 4.808 2.797 
Bs05 2 0.679 1.111 0.744 1.398 2.290 1.534 
Bs05 5 0.485 1.000 0.500 1.000 2.061 1.030 
Bs07 1 1.188 1.682 1.267 2.824 4.000 3.013 
Bs07 2 0.679 1.154 0.679 1.614 2.744 1.614 
Bs07 5 0.421 1.000 0.448 1.000 2.378 1.066 
Bs09 1 1.333 1.333 1.333 1.333 1.333 1.333 
Bs09 2 1.000 1.017 1.017 1.000 1.017 1.017 
Bs09 5 1.000 1.000 1.000 1.000 1.000 1.000 
Bs11 1 1.170 1.281 1.300 1.187 1.300 1.319 
Bs11 2 0.990 0.996 0.990 1.004 1.011 1.005 
Bs11 5 0.990 0.998 0.990 1.004 1.013 1.004 
Bs13 1 1.462 1.750 1.429 2.448 2.931 2.393 
Bs13 2 0.694 1.200 0.740 1.162 2.010 1.240 
Bs13 5 0.625 1.024 0.625 1.047 1.715 1.047 
Bs15 1 1.429 1.750 1.667 2.271 2.782 2.650 
Bs15 2 0.776 1.011 0.791 1.233 1.607 1.257 
Bs15 5 0.654 1.000 0.654 1.039 1.590 1.039 
Bs17 1 1.059 1.786 1.786 1.104 1.861 1.861 
Bs17 2 0.974 1.003 0.974 1.015 1.045 1.015 
Bs17 5 0.959 1.000 0.959 1.000 1.042 1.000 
Bs19 1 1.215 1.240 1.240 1.224 1.248 1.248 
Bs19 2 0.993 1.003 1.000 1.000 1.009 1.007 
Bs19 5 0.993 1.003 1.000 1.000 1.009 1.007 
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Bs21 1 1.429 1.933 1.429 2.110 2.855 2.110 
Bs21 2 0.775 1.012 0.776 1.144 1.494 1.146 
Bs21 5 0.692 1.002 0.704 1.022 1.480 1.039 
Bs23 1 1.188 1.667 1.308 1.969 2.764 2.168 
Bs23 2 0.702 1.027 0.657 1.164 1.703 1.090 
Bs23 5 0.614 1.004 0.632 1.047 1.665 1.047 

 

Table 3. Cost results for the three algorithms on the Carbin instance called Bl  

 

Table 4. Cost results for the three algorithms on the Carbin instance called Bs  
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instance k  1C Gaps− 2C Gaps−  3C Gaps− instance k 1C Gaps− 2C Gaps−  3C Gaps−
Bl01 1 1.179 0.996 0.994 Bl13 1 1.583 0.998 1.104 
Bl01 2 1.155 1.008 1.009 Bl13 2 1.532 1.020 1.098 
Bl01 5 1.145 1.005 1.009 Bl13 5 1.507 1.025 1.102 
Bl03 1 1.130 1.003 1.016 Bl15 1 1.476 1.013 1.133 
Bl03 2 1.119 1.011 1.022 Bl15 2 1.406 1.019 1.136 
Bl03 5 1.098 1.021 1.032 Bl15 5 1.400 1.026 1.147 
Bl05 1 2.298 0.997 1.309 Bl17 1 1.085 1.004 1.012 
Bl05 2 2.375 1.007 1.364 Bl17 2 1.052 1.004 1.006 
Bl05 5 2.539 1.022 1.340 Bl17 5 1.060 1.004 1.006 
Bl07 1 2.548 1.007 1.192 Bl19 1 1.073 1.008 1.016 
Bl07 2 2.272 1.014 1.132 Bl19 2 1.073 1.010 1.013 
Bl07 5 2.377 1.014 1.162 Bl19 5 1.069 1.008 1.012 
Bl09 1 1.108 1.000 1.015 Bl21 1 1.317 1.000 1.147 
Bl09 2 1.060 1.006 1.011 Bl21 2 1.249 1.023 1.145 
Bl09 5 1.061 1.010 1.018 Bl21 5 1.233 1.027 1.145 
Bl11 1 1.080 0.999 1.001 Bl23 1 1.361 1.010 1.103 
Bl11 2 1.047 1.011 1.011 Bl23 2 1.278 1.015 1.102 
Bl11 5 1.038 1.009 1.010 Bl23 5 1.278 1.016 1.100 

instance k  1C Gaps− 2C Gaps−  3C Gaps− instance k 1C Gaps− 2C Gaps−  3C Gaps−
Bs01 1 1.044 1.044 1.017 Bs13 1 1.424 1.010 1.420 
Bs01 2 1.050 1.013 1.023 Bs13 2 1.332 1.018 1.294 
Bs01 5 1.052 1.017 1.023 Bs13 5 1.308 1.029 1.288 
Bs03 1 1.017 0.993 0.995 Bs15 1 1.412 1.010 1.201 
Bs03 2 1.060 1.010 1.010 Bs15 2 1.279 1.027 1.175 
Bs03 5 1.062 1.010 1.011 Bs15 5 1.265 1.024 1.176 
Bs05 1 2.219 1.010 1.405 Bs17 1 1.158 1.013 1.040 
Bs05 2 2.606 1.050 1.474 Bs17 2 1.101 1.007 1.033 
Bs05 5 2.454 1.046 1.550 Bs17 5 1.093 1.006 1.030 
Bs07 1 1.941 0.993 1.526 Bs19 1 1.096 1.011 1.006 
Bs07 2 1.854 1.017 1.486 Bs19 2 1.093 1.011 1.010 
Bs07 5 1.862 1.036 1.516 Bs19 5 1.089 1.011 1.011 
Bs09 1 1.097 1.014 1.014 Bs21 1 1.379 1.011 1.206 
Bs09 2 1.060 1.003 1.003 Bs21 2 1.304 1.016 1.208 
Bs09 5 1.059 1.006 1.006 Bs21 5 1.299 1.016 1.206 
Bs11 1 1.084 1.004 1.019 Bs23 1 1.375 1.002 1.345 
Bs11 2 1.063 1.012 1.014 Bs23 2 1.301 1.017 1.294 
Bs11 5 1.069 1.005 1.023 Bs23 5 1.279 1.019 1.279 


