
Computer and Information Science February, 2010

 91

CLCL-A Clustering Algorithm Based on Lexical Chain

for Large-Scale Documents
Ming Liu (Corresponding author)

School of Computer Science and Technology, Harbin Institute of Technology
PO box 319, Harbin, Heilongjiang Province, 150001, China

E-mail: mliu@insun.hit.edu.cn

Xiaolong Wang
School of Computer Science and Technology, Harbin Institute of Technology

PO box 319, Harbin, Heilongjiang Province, 150001, China
Tel: 86-451-8641-3322 E-mail: xlwang@insun.hit.edu.cn

Yuanchao Liu

School of Computer Science and Technology, Harbin Institute of Technology
PO box 319, Harbin, Heilongjiang Province, 150001, China

Tel: 86-451-8641-3322 E-mail: lyc@insun.hit.edu.cn

The research is financed by National Natural Science Foundation of China No.60435020, National High Technology
Development 863 Program of China No. 2007AA01Z172. (Sponsoring information)

Abstract
Along with explosion of information, how to cluster large-scale documents has become more and more important. This
paper proposes a novel document clustering algorithm (CLCL) to solve this problem. This algorithm first constructs
lexical chains from feature space to reflect different topics which input documents contain, and documents also can be
separated into clusters by these lexical chains. However, this separation is too rough. So, idea of self organizing
mapping is used to optimize cluster partition. For agglomerating documents with semantic similarities into one cluster,
influences from similar features are also considered. Experiments demonstrate that because effects of semantic
similarities between different documents are considered, CLCL has better performance than traditional document
clustering algorithms.
Keywords: Lexical chain, Large-scale document clustering, Self organizing mapping, Neuron adjustment
1. Introduction
Along with evolvement of technology on internet, how to cluster large-scale information from website has become
more and more important. After some tags are removed from webpage which are coded as HTML or XML, information
from website is just document. This is why document clustering has become an effective method to analyze information
from website (Niu et al., 2007; Luo et al., 2009; Xu & Wunsch, 2005). Recently, there are many document clustering
algorithms, such as K-means (Guo et al., 2006), FTC (Beil et al., 2002), FCM (Wang et al., 2004), Hierarchical
clustering (Wu et al., 2009), WEBSOM (Azcarraga et al., 2004). These algorithms all use Vector Space Model (VSM)
to organize documents. In this model, all the features from feature space are used to construct vectors to represent
documents and clusters. This method not only imports many useless features, but also augments dimension number of
vectors to increase running time. This problem is called as “disaster of dimensionality”. When dimension number of
feature space becomes larger, this problem is worse. That will make similarities among most documents close to 0, and
will decrease partition ability of document clustering algorithms (Jennifer & Carla, 2004).
There is another problem of traditional clustering algorithm. That is traditional algorithms often use Euclidean distance

Vol. 3, No. 1 Computer and Information Science

 92

as similarity computation. This similarity is decided by minus between weights of same feature in different vectors
(Tuomo et al., 2007). In document clustering, words are often used as features, and different words may have semantic
similarity (Liu et al., 2009). That means different words reflect similar meaning. This situation will cause that even if
feature vectors of different documents don’t share same features, these two documents will also reflect similar meaning
because of features which have semantic similarities among them. There have been proposed some clustering
algorithms which import semantic similarity, such as ConSOM (Liu et al., 2008). It uses WordNet to compute semantic
similarity between different features, and combine semantic similarity and Euclidean distance together to form a novel
similarity computation method. However, it neglects importing semantic similarity to optimize partition of clusters.
In order to solve previous problems, a novel document clustering algorithm (CLCL) is proposed in this paper. This
algorithm constructs lexical chains to remove features which are irrelative to topic of document. Lexical chains are also
used to construct initial clusters. After construction of initial clusters, idea of self organizing mapping is imported to
optimize partition of clusters and influences from similar features are considered in similarity computation and neuron
adjustment. Experiments demonstrate that because semantic similarity is imported, precision and time complexity of
CLCL are better than those of traditional document clustering algorithms.
2. Construction of lexical chain
Lexical chain is first proposed by Hirst in literature (Jane & Graeme, 1991). It is constructed by linearly scanning
feature space, and each chain may reflect profile of topic information which document reflects. This technique has been
applied in many fields, such as text analysis and abstract extraction (Chan, 2004; Kumar et al., 2003). In order to
construct lexical chain, the first thing is to know how to compute similarity between different features. In this paper,
co-occurring word vectors are constructed to compute semantic similarity between different features.
2.1 Semantic similarity computation
The linguist indicates: “the syntax function of a feature is the distribution of this feature” (Sven et al., 1998). The
context of a feature is a typical distribution. So, if the contexts of different features are almost the same, the semantic
similarity between these features is close. The word before the feature and the word after the feature mostly determine
the semantic meaning of this feature. So, in this paper, co-occurring word and co-occurring word probability are used to
construct feature’s co-occurring word vector. Each dimensionality of this vector corresponds to one co-occurring word.
The value of this dimensionality is the co-occurring probability between the feature and its co-occurring word. By
computing the Kullback-Leibler divergence (Frans, 2005) between different co-occurring word vectors, semantic
similarity between different features can be gotten.

(,) 1- (,)p qSSim F F H= () ()p qFV F FV F (1)
Formula (1) describes how to compute similarity between tow features. H(FV(Fp), FV(Fq)) is the Kullback-Leibler
divergence between two co-occurring word vectors-FV(Fp) and FV(Fq)-of features Fp and Fq . Main meaning of this
formula can be gotten from formula (3).

(,)()

()* ()
p k

p k
p k

Fre F CoWP CoW
Fre F Fre CoW

= (2)

Formula (2) shows how to compute co-occurring probability of feature-Fp and its co-occurring word-CoWk. This
probability can reflect the semantic relation between the feature and its co-occurring word at certain degree (Rishi &
David, 2006).

2 2 2
1 1 1

() 1(,) - log () (*log) (*log)
2 2

n n n
i i

i i i i i i

i i i

p qH p q p p q q
= = =

+ ⎡ ⎤= + + +⎢ ⎥⎣ ⎦
∑ ∑ ∑() ()p qFV F FV F (3)

Formula (3) describes the Kullback-Leibler divergence between Fp and Fq. pi is ith co-occurring word probability in
FV(Fp), and qi is ith co-occurring word probability in FV(Fq). n represents the size of co-occurring word vector. From
formula (3), it can be gotten that, the larger the difference between the contexts of different features is, the bigger the
value of Kullback-Leibler divergence is. So, Kullback-Leibler divergence can compute the semantic similarity between
different features.
2.2 Construction of lexical chain
After semantic similarity is computed, lexical chains can be constructed to represent topic which each document reflects.
Besides, lexical chains also can be used to separate feature space to construct initial clusters. In this method, each chain
represents one cluster, and this cluster includes the documents which all reflect the topic which this chain describes.
Construction steps of lexical chain are shown as follows.
[1] Assume input document set as D, and ith document in it as Di. Assume FSi as feature set of Di. Assume LCi as chain

Computer and Information Science February, 2010

 93

set of Di, and Lk as kth lexical chain in LCi .
[2] Scan FSi from top to down. Assume Fj as the feature which is being scanned.
[3] Use formula (4) to compute similarity between Fj and each lexical chain in LCi. Assume Lk as the lexical chain which
has the max similarity to Fj, and insert Fj in Lk.
[4] Repeat steps [1] ~ [3] until all the features in FSi have been scanned.

(,)
(,) | |

d k

d j
LF Lk j

k

SSim LF F
Sim L F L

∈=
∑

 (4)

Formula (4) shows how to compute similarity between lexical chain and feature. In this formula, LFd means dth feature
which is includes by Lk. This formula uses average similarity between Fj and each feature in Lk to be the similarity
between Lk and Fj as literature (Gonenc and Ilyas, 2007) shows.
After previous construction, one set can be used to include lexical chains of each document, and each chain in it reflects
one subtopic which this document describes. Formula (5) shows how to compute the weight of lexical chain Lk . By this
formula, the lexical chain which has the largest weight can be regarded as the representation of topic which this
document emphasizes.

(,) (,) log(| |)
d k

k i d d i k
LF L

w L D w LF D L
∈

= ×∑ (5)

In formula (5), wd(LFd,Di) represents weight of LFd in document Di. This weight is computed by classical TF/IDF
(Akiko, 2004) method as formula (6) shows.

(,)(,) ()
d i

d d i
d

fre LF Dw LF D fre LF= (6)

In formula (6), fre(LFd,Di) represents frequency of appearances of LFd in Di. It is TF value of LFd. fre(LFd) represents
number of documents which includes LFd. It is DF value of LFd.
Previous steps also can be used to partition feature space into some lexical chains. Each chain among them represents
one cluster, and this cluster includes the documents which all reflect similar information to this chain. The approach
which constructs lexical chains from feature space is similar to previous approach which constructs lexical chains from
document. It is shown as follows.
[1] Assume input document set as D. Assume FS as feature space of D. Assume LS as lexical chain set of FS, and Lk as
kth lexical chain in LS.
[2] Scan FS from top to down. Assume FSj as the feature which is being scanned.
[3] Use formula (4) to compute similarity between Fj and each lexical chain in LS. Assume Lk as the lexical chain which
has the max similarity to Fj, and insert Fj in Lk.
[4] Repeat steps [1] ~ [3] until all the features in FS have been scanned.
2.3 Initial cluster partition by lexical chain
After previous construction, each lexical chain can represent one cluster, and we can compute semantic similarity
between document and lexical chain to map documents into clusters.
Formula (7) shows semantic similarity between document and cluster. In this formula, L(Di) represents lexical chain
which is constructed from document Di and has the largest weight. This chain is used as the representation of topic
which Di reflects. Lk represents lexical chain which is constructed to represent cluster Ck. wd(ft,Di) represents weight of ft
in document Di as formula (6) shows. wc(ft,Ck) represents weight of ft in cluster Ck. It can be computed by formula (8).
In formula (7), two parameters are combined to compute similarity between document and cluster. They are intersection
between lexical chains of document and cluster and weights of features in this intersection.

()&&

()

(,) (,)
(,) ((),)

(,) (,)

t i t k

P i q k

d t i c t k
f L D f L

i k i k

d p i c q k

f L D f L

w f D w f C
Sim D C Sim L D L

w f D w f C

∈ ∈

∈ ∈

+
= =

+

∑

∑ ∑
 (7)

Vol. 3, No. 1 Computer and Information Science

 94

()
(,)

(,) | |
t l

l k

d t l
f L Dc t k

l
D C

w f D
w f C D

∈

∈

=
∑

∑ (8)

In the following section, idea of self organizing mapping is imported to optimize cluster partition. From experiments,
we can see, after lexical chains are used to get initial clusters, CLCL only needs little running time to get convergence.
This is because, initial clusters, which are partitioned by lexical chains, include documents which reflect distinct topics.
So, there are few documents which are not correctly partitioned, and it only needs few iterative steps to perform
adjustments.
3. Training approach
Previous cluster partition is not exact. There are some documents which are not correctly partitioned. The one reason to
this situation is that previous lexical chains are constructed linearly. They may include some features which reflect
irrelative meanings. The other reason is that there are some features which have several different meanings. That means
they will be included by more than one lexical chain, whereas, previous construction can’t satisfy this situation.
In order to solve previous problems, idea of self organizing mapping (SOM) is imported. There are two parameters of
SOM (Kohonen, 1997; Alahakoon & Halgamuge, 2000). They are neuron topology and initial neurons. In CLCL, each
cluster which is constructed from lexical chain is set as one initial neuron. Assume Nk as the neuron which is
constructed from lexical chain Lk. Features in Nk are separated as two parts. They are features which are included by Lk
and features which aren’t included by Lk. Weights of features which are included by Lk are set as their weights in Lk.
Weights of features which aren’t included by Lk are set as 0. After previous operations, initial neurons are gotten. In
CLCL, neurons are organized as square topology as Figure 1 shows (Andreas et al., 2002). This topology has two layers.
The upper layer is competitive layer. It includes neurons. The lower layer is input layer. It includes vectors of input
documents.
SOM and its varieties often use the following approach to perform clustering.
[1] Initialize neuron topology of SOM. Evaluate each dimensionality of each neuron vector with a small random value.
[2] Randomly select a datum as input of SOM network. Assume this datum as Dk.
[3] Use formula (1) to compute similarity between Dk and each neuron in neuron structure. The neuron which has the
max similarity is the winner.
[4] Use monotonous anneal algorithm to adjust vector of winner neuron and other vectors of neurons which are in the
neighborhood of winner neuron.
[5] Estimate whether clustering algorithm achieves convergence condition or not. If achieve, stop running. If not, repeat
[2] ~ [5] until it achieves convergence condition.
Traditional SOM algorithms use Euclidean distance as similarity computation method (Kohonen et al., 2000). Only the
weights of features which are both included by neuron and document are considered by this method. However, it
neglects semantic similarity between documents. That means documents which don’t share same features may reflect
similar meanings. This is caused by some features which have semantic similarity between them, such as “internet” and
“network”. If they are respectively included by different documents, these documents may reflect similar meanings.
Semantic similarity is considered in CLCL. When one feature in neuron is adjusted, the features which reflect similar
meaning to it are also adjusted. If previous method isn’t performed, the documents, which have semantic similarities,
may be partitioned into different clusters. This assumption is proved in the following paragraph.
Assume features f1 and f2 have semantic similarity, such as “internet” and “network”. It is possible to find two initial
neurons, such as n1 and n2. Weight of f1 is large in n1, and weight of f2 is large in n2. Assume d1 and d2 are two
documents which respectively include f1 and f2. If documents d1 and d2 are selected to adjust neurons in training
approach, d1 will map to n1 and weight of f1 is adjusted larger to make d1 and n1 more similar. Certainly, d2 will map to
n2 and weight of f2 is adjusted larger to make d2 and n2 more similar. When algorithm converges, weight of f1 will be
large in n1, and weight of f2 will be large in n2. This situation makes the gap between weights of f1 and f2 augment in the
same neuron. As literature (Kohonen, 1997) shows, if feature in neuron has larger weight, the documents which are
mapped to this neuron will reflect similar meaning to this feature. We know f1 represents “internet”, and f2 represents
“network”. So, the documents which map to n1 reflect similar meaning to “internet” and the documents which map to n2
reflect similar meaning to “network”. Because “internet” and “network” reflect similar meaning, the clusters which are
gotten from n1 and n2 include the documents which reflect similar meanings. That means previous method partitions
similar documents into different clusters.

Computer and Information Science February, 2010

 95

In order to solve previous problem, weights of similar features are considered in similarity computation and neuron
adjustment in training approach. From section 2, we know, lexical chain includes the features which reflect relative
meanings. So, in CLCL, the features which are in the same lexical chain are regarded as similar features.
Because pervious method adjusts more features in training approach than traditional SOM algorithms. That will
obviously reduce number of adjustment steps to get convergence, and also reduces clustering time. Figure 2 in
experiments also proved it.
3.1 Similarity computation
Formula (9) shows how to adjust neuron vector according to input document. This formula considers influences from
similar features on similarity computation.

2

2

21

((,) (,)) ;

((,) (,) (,))

(,) & & & & , , ;

(,) (,)
((,))

t

s

s

t i t k t i

f

t s t i s k

f

i k s i t i s t p

m

t s t i

t
s k

f

s

W f D W f N If f D

SSim f f W f D W f N

Dist D N If f D f D p f f L

SSim f f W f D
W f N

m
If f

=

− ∈

× −

= ∉ ∈ ∃ ∈

×
−

∑

∑

∑
∑

& & (1 ~) & & , , ;i t i s t pD f D t m p f f L

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪

∉ ∈ = ∃ ∈⎪⎩

 (9)

Previous formula has three parts. The first part is the same as Euclidean distance to compute similarity between
document and neuron. This part disposes the features which appear in the document, such as feature ft in the document
Di. The second part disposes the features which don’t appear in the document, whereas, there are other features which
appear in the document and they have semantic similarity to the features which don’t appear in the document. Let’s
make it clearer. Assume fs as the feature which doesn’t appear in Di. Assume ft as the feature which appears in Di, and it
has semantic similarity to fs. That also means ft and fs in the same lexical chain such as Lp. The second part of formula (9)
uses semantic similarity between ft and fs to import influences from similar features on adjustment. There is another
problem in previous adjustment. That is it exists more than one feature which appears in Di and has semantic similarity
to fs. Assume these features as f1, f2,…,fm. The third part of formula (9) disposes this situation. This part uses average
semantic similarity among features to perform adjustment.
3.2 Neuron adjustment
Formula (10) shows neuron adjustment according to input document. This adjustment is similar to previous similarity
computation. It not only considers the features which appear in the document Di such as ft, but also considers the
features which don’t appear in the document Di but have semantic similarity to ft such as fs.

(,)(1) (,)() () ()((,) (,)())
 ;

(,)(1) (,)(

t k t k t i t k

t i

s k s k

W f N t W f N t a t h t W f D W f N t
If f D

W f N t W f N t

+ = + −
∈

+ =

1

) () ()((,) (,) (,)())
 && & & , , ;

(,) (,)
(,)(1) (,)() () ()(

t s t i s k

s i t i s t p

m

t s t i

ts k s k

a t h t SSim f f W f D W f N t
If f D f D p f f L

SSim f f W f D
W f N t W f N t a t h t =

+ × −
∉ ∈ ∃ ∈

×
+ = +

∑
(,)())

 & & (1~) & & , , ;

s k

s i t i s t p

W f N t
m

If f D f D t m p f f L

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪

−⎪
⎪
⎪ ∉ ∈ = ∃ ∈⎩

 (10)

Formula (10) also has three parts to adjust weights of features. The first part adjusts weights of features as traditional
SOM algorithm. In this formula, a(t) is learning rate, which decreases along with training approach. h(t) is adjusted
function, and Gauss function is often used as adjusted function (Kohonen et al., 2000). The second part is used to adjust
fs which doesn’t appear in the document Di but has semantic similarity to ft. The third part disposes the situation that
there is more than one feature which appears in Di but has semantic similarity to fs.
4. Experiments and analysis
Ten hundred thousand articles are selected from China Daily of 1998 as the first testing corpus. However, this corpus is
too large, and each document from it can’t be manually marked with certain cluster index. Precision and recall also
can’t be computed in this situation. So, a smaller corpus is constructed. Five thousand articles are randomly selected
from website Yahoo as the second testing corpus. This corpus is manually classified into thirty classes. They include
sports, entertainment, medicine, education, military, and so on.

Vol. 3, No. 1 Computer and Information Science

 96

In this paper, purity is used to test clustering precision on the smaller corpus (Gu et al., 2001).

1

1() max()
z

q
r rq

r

P S n
n =

= (11)

In this formula, z represents cluster number or neuron number. Sr represents rth cluster after clustering algorithm. nr
represents data number of Sr. We know each datum in the smaller testing corpus is already marked with certain cluster
index. Then, Cq is used to represent the cluster which includes the documents that are marked with qth cluster index in
testing corpus. nq is used to represent the number of documents in Cq.

q
rn is used to represent the number of documents,

which belong to Cq in testing corpus and belong to Sr after clustering algorithm.
The average purity of different clusters can be used to represent precision of clustering algorithm.

1

()
z

r
r

r

nPurity P S
n=

=∑ (12)

In Table 1, the performance of algorithm which imports semantic similarity in similarity computation and neuron
adjustment is tested. In this table, we call the algorithm, which imports semantic similarity in similarity computation
and neuron adjustment, as CLCL_S. We call the algorithm, which doesn’t import semantic similarity, as CLCL_N.
Table 1 shows clustering precision and running time of CLCL_S and CLCL_N on smaller corpus.
From Table 1, we can see, running time and clustering precision of CLCL_S are better than those of CLCL_N. The
reason is that the clusters which are constructed from CLCL_S can agglomerate the documents which have semantic
similarities into one cluster. This situation will obviously improve precision. Besides, when CLCL_S performs neuron
adjustment, more features are adjusted. So, it obviously needs smaller iterative steps to get convergence.
Because the larger testing corpus is too large, we can’t manually separate it and then compute precision and recall. So,
we regard the clusters which are generated from clustering algorithm as C1, C2,…,Cm, and each cluster among them is
separated into some sub-clusters by their meanings. Assume the sub-clusters which are separated from Ci as SCi1,
SCi2,…,SCiz. The sub-cluster which has the max number of documents is used to represent Ci, and this sub-cluster is
assumed as SCimax. Regard other sub-clusters are irrelative to Ci. Then, clustering precision on Ci can be represented as:
|SCimax|/|Ci|. |Ci| is the number of documents in Ci. The average precision on all the clusters is used to represent precision
of clustering algorithm.
Running time and clustering precision of CLCL-S on larger testing corpus is respectively compared with those of
CLCL-N in Figure 2 and Figure 3.
From Figure 2 and Figure 3, we can see that the method which imports semantic similarity in similarity computation
and neuron adjustment can effectively improve clustering precision and reduce running time. When number of
documents increases, this situation is more obvious. The reason is that, when number of documents increases, there are
more features which have semantic similarities. So, there are more documents which have semantic similarities, and
CLCL_S can better cluster them than CLCL_N. Besides, when more features have semantic similarities, CLCL_S
needs to adjust more features in neuron adjustment. That will greatly decrease number of iterative steps, and will reduce
running time.
Lexical chains which are constructed by linearly scanning feature space are shown in Table 2.
From Table 2, we can see, different lexical chains reflect distinct meanings. So, initial clusters which are constructed
from these chains will have clear inter-cluster distinctness. However, there are some irrelative features in lexical chains
which will decrease clustering precision, such as “city” in lexical chain 1 and “brand” in lexical chain 3.These features
will be adjusted by training approach of CLCL.
Clustering precision and running time of different algorithms on smaller testing corpus are shown in Table 3. They
include K-means, FTC, Hierarchical clustering, WEBSOM, ConSOM.
From Table 3, we can see, CLCL has the least running time among all the testing algorithms. This is because CLCL
uses semantic similarity to construct lexical chains to partition documents into initial clusters. This partition is close to
convergent partition. So, it needs few iterative steps to get convergence. This is one reason why CLCL has the lowest
time complexity. In training approach of CLCL, similar features are also adjusted. This method increases number of
features which are adjusted in training approach, and will decrease number of iterative steps. This is the other reason
why CLCL has the lowest time complexity. Besides, similar features are considered in training approach. That will
make cluster agglomerate documents which have semantic similarities, and will increase clustering precision greatly.
From Table 3, we also can see, two algorithms based on SOM (WEBSOM and ConSOM) have better performance on

Computer and Information Science February, 2010

 97

time complexity and clustering precision. This is because, SOM uses neurons to represent clusters, and iteratively
adjusts neuron vector to get convergence. Between these two algorithms, ConSOM has better precision. This is because
ConSOM imports semantic similarity (Liu et al., 2008). However, this algorithm neglects influences from similar
features on neuron adjustment. So, precision of ConSOM is lower than that of CLCL. Because, ConSOM has more
steps to compute semantic similarity than WEBSOM, running time of WEBSOM is lower than that of ConSOM. FTC
measures overlapping scale between feature sets to compute similarity between different documents (Beil et al., 2002).
This computation certainly can’t find semantic similarity between different documents. Besides, FTC doesn’t perform
any optimization on cluster partition. So, precision of FTC is little lower. FTC needs to linearly scan feature space to
cluster documents. So, its time complexity is linear with the scale of feature space. In our experiments, running time of
FTC is in the middle position among testing clustering algorithms. Running time of K-means is short and it is close to
CLCL. This is because K-means has linear time complexity. However, because K-means uses Euclidean distance to
compute similarity, precision of K-means is lower. Time complexity and clustering precision of Hierarchical clustering
are both worst. This is because it has O(n2) time complexity. Besides, when cluster is formed, documents which belong
to this cluster can’t be moved to different clusters.
Running time and clustering precision of CLCL are also compared with those of other clustering algorithms on larger
testing corpus. They are shown in Figure 4 and Figure 5.
From Figure 4, we can see, precisions of the algorithms (CLCL, ConSOM, and WEBSOM) are stable, when number of
documents increases. This is because these algorithms are based on the idea of self organizing mapping. They map high
dimensional space into low dimensional plane, which can avoid the interferences from the problem of “disaster of
dimensionality”. We also can see that rank of precisions from low to high is WEBSOM, ConSOM and CLCL. This is
because semantic similarity is considered in CLCL and ConSOM. So, precisions of them are better than that of
WEBSOM. In comparison with ConSOM, CLCL not only imports semantic similarity but also considers influences
from similar features in adjustment approach. So, precision of CLCL is better than that of ConSOM. Precision of FTC is
not greatly affected by number of documents. This is because FTC uses overlapping scale between feature sets to
measure similarity. This method can avoid the problem aroused by high dimension number. Precisions of K-means and
Hierarchical clustering drop greatly, when number of documents increase. This is because they don’t perform any
optimization to cluster documents in high dimensional space. So, when number of documents increases, high
dimensional feature space will greatly decrease clustering precision.
From Figure 5, we can see, when number of documents increases, running time of CLCL, ConSOM, and WEBSOM
increases stably. This is because they map high dimensional feature space to low dimensional plane. This method can
avoid interferences aroused by high dimension number. When number of documents increases, running time of FTC
increases greatly. This is because, time complexity of FTC is sensitive to dimension number of feature space. Running
time of K-means and Hierarchical clustering also increases greatly, when number of documents increases. This is
because they use Vector Space Model (VSM) to organize documents. When number of documents increases, it needs
much time to compute similarity by this model.
5. Conclusions
A novel clustering algorithm based on lexical chain (CLCL) is proposed in this paper for large-scale documents. This
algorithm first constructs co-occurring word vectors to compute semantic similarity between different features. After
computation, lexical chains are constructed to partition documents into some initial clusters. Experiments demonstrate
that these initial clusters reflect distinct meanings and need few iterative steps to get convergence. In order to
agglomerate documents which have semantic similarities into one cluster, similar features are considered in similarity
computation and neuron adjustment. This method not only can improve clustering precision but also can reduce running
time. Experiments demonstrate running time and clustering precision of CLCL are both better than those of traditional
clustering algorithms.
References
Akiko A. (2004). An information-theoretic perspective of tf–idf measures. Information Processing and Management, 39,
45-65.
Alahakoon D, & Halgamuge S. K. (2000). Dynamic self-organizing maps with controlled growth for knowledge
discovery. IEEE Transactions on Neural Networks, 11, 601-614.
Alam H. Kumar, A. Nakamura, M. Rahman, F. Tarnikova, & Y. Che Wilcox. (2003). Structured and unstructured
document summarization: design of a commercial summarizer using Lexical chains. Proceedings of the Seventh
International Conference on Document Analysis and Recognition, pp. 1147-1152.
Andreas Rauber, Dieter Merkl, & Michael Dittenbach. (2002). The growing hierarchical self-organizing map:
exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks, 13, 1331-1341.

Vol. 3, No. 1 Computer and Information Science

 98

Arnulfo P. Azcarraga, Teddy N. Yap, Jonathan Tan, & Tat Seng Chua. (2004). Evaluating keyword selection methods for
WEBSOM text archives. IEEE Transactions on Knowledge and Data Engineering, 16, 380-383.
Chan S. W. (2004). Extraction of salient textual patterns: synergy between lexical cohesion and contextual coherence.
IEEE Transactions on Systems, Man, and Cybernetics. Part A, Systems and Humans, 34, 205-218.
Congnan Luo, Yanjun Li, & Soon M. Chung. (2009). Text document clustering based on neighbors. Data and
Knowledge Engineering, 68, 1271-1288.
Florian Beil, Martin Ester, & Xiaowei Xu. (2002). Frequent term-based text clustering. Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 436-442.
Frans M. Coetzee. (2005). Correcting the Kullback–Leibler distance for feature selection. Pattern Recognition Letters,
26, 1675-1683.
Gonenc E, & Ilyas C. (2007). Using lexical chains for keyword extraction. Information Processing and Management,
43, 1705-1714.
Hai-xiang Guo, Ke-jun Zhu, Si-wei Gao, & PTing Liu. (2006). An improved genetic k-means algorithm for optimal
clustering. Proceedings of the Sixth IEEE International Conference on Data Mining, pp. 793-797.
Jane Morris, & Graeme Hirst. (1991). Lexical cohesion computed by thesaural relations as an indicator of the structure
of text. Computational Linguistics, 17, 21-48.
Jennifer G. Dy, & Carla E. Brodley. (2004). Feature selection for unsupervised learning. Journal of Machine Learning
Research, 5, 845–889.
Junjie Wu, Hui Xiong, & Jian Chen. (2009). Towards understanding hierarchical clustering: a data distribution
perspective. Neurocomputing, 72, 2319-2330.
M. Gu, H. Zha, C. Ding, X. He, H. Simon, & J. Xia. (2001). Spectral relaxation models and structure analysis for
k-way graph clustering and bi-clustering. Technical Report, CSE-01-007, Penn State University.
Min Liu, Weiming Shen, Qi Hao, & Junwei Yan. (2009). A weighted ontology-based semantic similarity algorithm for
web service. Expert Systems with Applications, 36, 12480-12490.
Rui Xu, & Wunsch D. II. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16, 645-678.
Rishi Jobanputra, & David A. Clausi. (2006). Preserving boundaries for image texture segmentation using grey level
co-occurring probabilities. Pattern Recognition, 39, 234-245.
Sven M., Jorg L., & Hermann N. (1998). Algorithms for bigram and trigram word clustering. Speech Communication,
24, 19-37.
T. kohonen. (1997). Self-organizing maps. Berlin: Springer, (Chapter 3).
Teuvo Kohonen, Samuel Kaski, Krista Lagus, Jarkko Salojarvi, Vesa Paatero, & Antti Saarela. (2000). Self organization
of a massive document collection. IEEE Transactions on Neural Networks, 11, 574-585.
Tuomo Korenius, Jorma Laurikkala, & Martti Juhola. (2007). On principal component analysis, cosine and Euclidean
measures in information retrieval. Information Sciences, 177, 4893-4905.
X. Z. Wang, Y. D. Wang, & L. J. Wang. (2004). Improving fuzzy c-means clustering based on feature weight learning.
Pattern Recognition Letters, 25, 1123-1132.
Yuanchao Liu, Xiaolong Wang, & Chong Wu. (2008). ConSOM: A conceptional self-organizing map model for text
clustering. Neurocomputing, 71, 857-862.
Zheng-Yu Niu, Dong-Hong Ji, & Chew Lim Tan. (2007). Using cluster validation criterion to identify optimal feature
subset and cluster number for document clustering. Information Processing and Management, 43, 730-739.

Table 1. Clustering time and clustering precision of CLCL_S and CLCL_N on smaller corpus

Methods CLCL_S CLCL_N
Time (s) 83 127

Precision (%) 84.13 77.36

Computer and Information Science February, 2010

 99

Table 2. Lexical chains constructed by linearly scanning feature space

List Feature chains
1 champion, competition, game, train, match, almightiness, athlete, Olympic game,

judgment, score, goal, coach, club, world cup, city, torch, gym, race, trials, contest,
2 economy, price, commodity, company, technique, garden, enterprise, industry,

agriculture, labor, product, supply, order goods, trade, market, shop, check,
3 computer, crash, PC, machine, cursor, hypertext, pure text, icon, link, space, brand,

byte, internet, off-line, memory, website, notebook, processor, keyboard, mouse,
4 land, earth, location, mountain, sea, coast, port, delta, furrow, bog, highland, shore,

seaport, dock, cattle farm, cliff, peak, river bank, grotto, latitude, geography,
5 professor, research, investigate, teacher, doctor, bachelor, student, building, grade,

school, certification, education, diploma, suspend classes, dissertation, college,

Table 3. Clustering precision and running time of different algorithms

Methods K-means FTC Hierarchical WEBSOM ConSOM CLCL
Time (s) 85 176 273 126 149 83

Precision (%) 69.51 73.07 68.49 76.41 79.98 84.13

Figure 1. Square neuron topology of SOM

Figure 2. Running time of CLCL_S and CLCL_N

Vol. 3, No. 1 Computer and Information Science

 100

Figure 3. Clustering precisions of CLCL_S and CLCL_N

Figure 4. Clustering precisions of different algorithms

Figure 5. Running time of different algorithms

