
Computer and Information Science November, 2009

 55

Unsupervised Coreference Resolution with HyperGraph Partitioning
Jun Lang (Corresponding author)

School of Computer Science and Technology
Harbin Institute of Technology

PO box 321, Harbin 150001, China
Tel: 86-451-8641-3683 E-mail: bill_lang@ir.hit.edu.cn

Bing Qin

School of Computer Science and Technology
Harbin Institute of Technology

PO box 321, Harbin 150001, China
Tel: 86-451-8641-3683 E-mail: qinb@ir.hit.edu.cn

Ting Liu

School of Computer Science and Technology
Harbin Institute of Technology

PO box 321, Harbin 150001, China
Tel: 86-451-8641-3683 E-mail: tliu@ir.hit.edu.cn

Sheng Li

School of Computer Science and Technology
Harbin Institute of Technology

PO box 321, Harbin 150001, China
Tel: 86-451-8641-3683 E-mail: lis@ir.hit.edu.cn

The research is supported by National Natural Science Foundation of China (60675034, 60803093), National High
Technology Research and Development Program of China (863 Program) (2008AA01Z144). (Sponsoring information)

Abstract
Unsupervised-learning based coreference resolution obviates the need for annotation of training data. However,
unsupervised approaches have traditionally been relying on the use of mention-pair models, which only consider
information pertaining to a pair of mentions at a time. In this paper, it is proposed the use of hypergraph partitioning to
overcome this limitation. The mentions are modeled as vertices. By allowing a hyperedge to cover multiple mentions
that share a common property, the additional information beyond a mention pair can be captured. This paper introduces
a hypergraph partitioning algorithm that divides mentions directly into equivalence classes representing individual
entities. Evaluation on the ACE dataset shows that our unsupervised hypergraph based approach outperforms previous
unsupervised methods.
Keywords: Coreference resolution, HyperGraph partitioning, Unsupervised learning
1. Introduction
Coreference resolution is the process of partitioning mentions into different real world entities. It is a key component of
many Natural language processing (NLP) applications. Especially, due to its important role in Information extraction

Vol. 2, No. 4 Computer and Information Science

 56

(IE), coreference resolution was defined as an IE subtask and officially evaluated in the Message Understanding
Conference (MUC) and Automatic Content Extraction (ACE) programs. So far, supervised-learning-based approaches
have been widely applied to coreference resolution, which requires a set of training data to build a classifier for
coreference judgment (Soon et al., 2001; Ng and Cardie, 2002). However, coreference annotation is a difficult task,
which involves not only deep linguistic knowledge, but also background knowledge related to the domain. For this
reason, the size of existing annotated coreference corpora is quite small (e.g., 599 documents in the ACE2005 corpus)
compared with other NLP tasks, and is limited only in some specific domains.
To deal with the lack of the training data, several unsupervised approaches were proposed which require no training
data for coreference resolution and are adaptive to different domains. For example, Cardie and Wagstaff (1999)
suggested recasting coreference resolution to a clustering problem, which tries to group noun phrases into different
coreference clusters. They defined a distance function to measure the incompatibility of two mentions. Given a
document, mentions are processed backwards one by one. Two mentions are placed into the same cluster if their
distance is below a threshold, and no mentions from their respective clusters are incompatible. Wagstaff (2002) further
enhanced this method by adding more linguistic constraints (must-link and cannot-link) during clustering.
However, there are several problems with the previous clustering based unsupervised methods.
(1) As with many other learning based approaches to coreference resolution (e.g., Soon et al. (2001), and Ng and Cardie
(2002)), these methods adopt a mention-pair model. The distance function is only based on the information of two given
mentions. However, as individual mentions lack adequate information about the entities they refer to, the distance may
be not accurate to represent the (in)compatibility of two mentions. For example, the compatibility between mentions
“Powell” and “She” may be different, depending on the gender information of “Powell” which cannot be determined
from the mention alone.
(2) As the clustering is agglomerative, the wrong linking decision could not be undone and would lead to cascading
errors. Suppose we have three mentions “Mr. Powell”, “Powell”, “She”. If “She” is wrongly linked to “Powell”, the
cluster cannot be broken and will prevent the subsequent linking of “Powell” with “Mr. Powell”.
To overcome the above problems, this paper proposes an unsupervised coreference resolution approach with hypergraph
partitioning. Hypergraph is a special graph in which an edge connects more than two vertices (Berge, 1989). To model
coreference resolution, mentions could be viewed as vertices. A set of mentions is covered by a hyperedge if they show
a specific common property. As a hyperedge can describe information shared by two or more mentions, it has a more
powerful representation capability for knowledge than a traditional mention-pair feature. By using a partitioning
algorithm, mentions are divided into equivalence partitions representing individual entities. The partitioning process can
avoid the cascading errors in the clustering-driven unsupervised approaches. In our experiments, we evaluated our
approach on the ACE data and our experimental results show that our approach is effective for coreference resolution.
The following sections are organized as following: Section 2 describes some related works for coreference resolution
and hypergraph with its applications. Section 3 introduces the basic concepts of hypergraph and the partitioning
algorithm. Section 4 describes the hypergraph-based model for coreference resolution. Section 5 gives the experimental
results with some discussions. Finally, section 6 summarizes the conclusion and presents future works.
2. Related work
Supervised-learning-based approaches are widely adopted in coreference resolution. It was first proposed by using
decision tree approach (McCarthy and Lehnert, 1995), and later many other systems follow. A typical one of them is
presented by (Soon et al., 2001). In it, coreference resolution is deemed as a classification problem. A training or testing
instance is formed by two mentions, with a feature vector describing their properties and relationships, including the
information of gender, number, person, semantic, string match, appositive, name alias, and so on. When testing, a
mention to be resolved is checked against its preceding mentions, and is linked with the closest one that is classified as
positive. The work is further enhanced by expanding the feature set and adopting “best-first” linking strategy (Ng and
Cardie, 2002).
Such a mention-pair-based model only considers information related to two mentions in question, and would cause
triangular contradiction errors at a testing time. Suppose we have three mentions “Mr. Powell”, “Powell”, and “she” in a
document. The model tends to link “she” with “Powell” because of their proximity, and link “Mr. Powell” with
“Powell” since head string matching. Merging the two pairs together, nevertheless, would lead to gender disagreement
between “she” and “Mr. Powell”.
Several researchers proposed to use graph theory to deal with the triangular contradiction errors in coreference
resolution. They converted a document to a graph in which mentions in the document are mapped to vertices in the
graph. An edge connecting two vertices represents the coreference relationship between the two corresponding mentions.
The weight of an edge accounts for the confidence of the coreference relationship and is derived from coreference
classification. Then, some graph partitioning algorithms can be used for global optimization, such as BESTCUT

Computer and Information Science November, 2009

 57

(Nicolae and Nicolae, 2006). Similarly, Bell-Tree global searching (Luo et al., 2004) and triangular contradiction
constraint learning with Conditional Random Field (McCallum and Wellner, 2003) are proposed for such problem.
However, they all are supervised learning methods.
Hypergraph has shown many advantages in clustering and classification problems (Zhou et al., 2006). In recent years, it
is also employed in NLP applications like sentence parsing (Klein and Manning, 2001; Huang, 2008), word sense
disambiguation (Klapaftis and Manandhar, 2007) and document clustering (Shinnou and Sasaki, 2007). However, to our
knowledge, our work is the first effort to adopt this technique to the coreference resolution task.
3. Basic concepts of hypergraph
Let X = {x1, x2, …, xn} be a finite set, H = {E1, E2, …, Em} be a family of subsets of X. The family H is said to be a
hypergraph on X if

()miEi ,,2,1 K=≠ φ (1)

U
m

i
i XE

1=
= (2)

H = (X: E1, E2, …, Em) is called a hypergraph. |X| = n is the order of the hypergraph. The elements x1, x2, …, xn are
vertices and the sets E1, E2, …, Em are called hyperedges.
An example hypergraph is shown in Figure 1. An edge Ei with |Ei| > 2 is drawn as a curve encircling all of its vertices.
An edge Ei with |Ei| = 2 is drawn as a line connecting its two vertices. An edge Ei with |Ei| = 1 is drawn as a loop as in a
graph. If |Ei| ≤ 2 for all i, a hypergraph is reduced to a common graph. In a hypergraph, two vertices are said to be
adjacent if there is a hyperedge Ei that contains both of these vertices. Two hyperedges are said to be adjacent if their
intersection is not empty.
The incidence matrix of hypergraph H = (X: E1, E2, …, Em) is a matrix A = (aij) with m rows that represent the
hyperedges of H and n columns that represent the vertices of H, that is,

⎩
⎨
⎧

∉
∈

=
ij

ij
ij Exif

Exif
a

,0
,1

 (3)

Each (0, 1)-matrix is an incidence matrix of a hypergraph if no row or column contains only zeros. For illustration, the
hypergraph of Figure 1 can be converted to the following one.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01000000
00000011
01000110
11100000
10010000
00011100

6

5

4

3

2

1

11111111

E
E
E
E
E
E

xxxxxxxx

A (4)

There exist quite a few hypergraph partitioning algorithms that have been proved effective in different practical
problems, such as partitioning circuit netlists, clustering categorical data, and segmenting images. In our study, we
chose hMETIS (2.0pre1) (Note 1) which is capable of providing high quality partitions with a high speed. The
algorithm in hMETIS is based on multilevel hypergraph partitioning algorithm (Selvakkumaran and Karypis, 2006). In
our study, we used the direct k-way partitioning scheme of hMETIS. The overall quality of the obtained partitioning can
be computed using the following quality measures (Note 2):
3.1 Scaled Cost: defined for k-way partitioning as

()
()

∑
=−

k

i i

i

P
PE

kn 11
1 (5)

where |E(Pi)| is the number of hyperedges that are incident but not fully contained inside the partition Pi.
3.2 Absorption: This is defined as

∑ ∑
= ≠∈ −

−k

i PeEe

i

i e
Pe

1 | 1
1

φI

I
 (6)

where E is the set of hyperedges, |e∩Pi| is the number of vertices of a hyperedge e in partition Pi, and |e| is the number
of vertices of e.

Vol. 2, No. 4 Computer and Information Science

 58

The hMETIS program performs partitioning by minimizing the Scaled Cost, while maximizing Absorption at the same
time.
4. HyperGraph modeling for coreference resolution
To recast coreference resolution to a hypergraph partitioning problem, we view mentions as vertices, and use various
kinds of knowledge for coreference resolution to create hyperedges. In this section, we will focus on several important
aspects of the hypergraph model: designing hyperedges, choosing proper weights of hyperedges, performing
partitioning, and setting the stopping criterion.
4.1 Hyperedges
Traditional learning based coreference resolution systems represent knowledge in terms of features. For coreference
resolution with hypergraph partitioning, however, we represent knowledge with hyperedges. As introduced in Section 3,
a hyperedge is a special edge that covers more than one vertex. We can convert mentions in a document to vertices in a
hypergraph. Several mentions are thought of being covered by a hyperedge if they share a specific common property. In
this way, we can capture the information of multiple mentions at the same time, instead of a mention-pair as in tradition
learning-based approaches to coreference resolution. Hence, the hypergraph would provide us a more powerful
representation capability for knowledge.
In our study, we define the following types of hyperedges. For illustration, we use the text in Table 1 as an example.
1) FullString: This type of hyperedge covers the mention vertices that have the same string (excluding the determiners).
For example, in Table 1, mentions m2 and m7 have the same string, and so do mentions m6 and m10. Then we will have
two FullString hyperedges that cover {m2, m7} and {m6, m10}, respectively.
2) Head: This type of hyperedge covers mentions with the same head string.
3) Gender: This type of hyperedge covers the mentions that have the same gender type. To considering only effective
partitioning of mentions, there are only two types of gender (Note 3), Male and Female. A hypergraph has at most two
Gender hyperedges. A mention with a neuter gender (such as “it”, “the president”) is not covered by a hyperedge of
type Male for Female. In Table 1, mentions m4, m5 and m9 are male and thus will be covered by a hyperedge {4, 5, 9}.
4) Number: This type of hyperedge covers the mentions that have the same number type. A hypergraph may have two
Number hyperedges for singular or plural mentions.
5) Person: This type of hyperedge covers the mentions that have the same person type. There are only two Person
hyperedges for mentions that are persons or non-persons.
6) Semantic: This type of hyperedge covers the mentions that have the same semantic type. A hypergraph may contain
five hyperedges of this type for the semantic types Organization, GPE, Person, Location, and Facility defined in the
ACE annotation scheme. Features for semantic types were obtained from the gold annotations. In Table 1, we can get
three Semantic hyperedges {1, 6, 8, 10, 11}, {2, 7} and {3, 4, 5, 9}, for Organization, GPE and Person, respectively.
7) ThreeSentences: This type of hyperedge covers a pronoun (Note 4) and the preceding mentions in the current
sentence and previous two sentences. In Table 1, for pronoun its2, its7 and He9, the mentions in the 3-sentence window
are {m1 - m2}, {m1 - m7}, {m1 - m9}, respectively. Thus, we have two hyperedges: {1, 2, 3, 4, 5, 6, 7} and {1, 2, 3, 4, 5, 6,
7, 8, 9}. Note that we do not generate a hyperedge {1, 2} as its vertices are fully contained in the hyperedge {1, 2, 3, 4,
5, 6, 7}.
8) TwoSentences: This type of hyperedge is similar to ThreeSentences, but it just considers mentions within a
two-sentence window.
9) OneSentence: This type of hyperedge is similar to ThreeSentences, but it just considers mentions within the same
sentence.
10) NameAlias: This type of hyperedge covers the mentions that are name alias of one another in a document. Consider
Table 1, {m4, m5}, {m1, m6, m10} are name-alias groups and thus we can have two NameAlias hyperedges {4, 5}, {1, 6,
10}.
11) Appositive: This type of hyperedge covers the mentions that are in the same appositive structure.
12) CannotLink: As suggested by Wagstaff (2002), we enforce cannot-link constraints during partitioning. For this
purpose, we create hyperedges to cover a pair of mentions <mi, mj> that are not likely to corefer. In our study, we
consider the following constraints:
a. mj is an indefinite noun phrase.
b. mi and mj are three sentences apart and do not have the same head word.
c. mi and mj are pronouns and mi and mj do not agree in number or gender.

Computer and Information Science November, 2009

 59

d. mj is a pronoun and mi and mj are three sentences apart.
In Table 1, mention pairs m2 - m9 and m7 - m9 violate the third constraint and thus are covered by two CannotLink
hyperedges {2, 9} and {7, 9}, respectively.
The hyperedges generated for Table 1 are in Table 2.
4.2 Weights for hyperedges
We classify the hyperedges into six categories based on their confidence level for a positive coreference determination,
as shown in Table 3.
The hypergraph partitioning algorithm tends to divide vertices covered by a hyperedge with a low-weight, and retain in
the same partition vertices covered by a high-weight hyperedge. Thus, we manually assign a higher weight to a
hyperedge that covers mentions that are likely to corefer, while a lower weight to a hyperedge that covers mentions that
are unlikely to corefer. Table 3 shows the different weights for different levels of hyperedges. The hyperedge
CannotLink was assigned the lowest weight of zero (Note 5). The hyperedges FullString, Appositive, and NameAlias,
which are strong indicators of coreference relationship (Soon et al., 2001), were given the highest weight.
4.3 Coreference resolution with mention partitioning
Given a document, all the mentions are placed into a large cluster initially. As described, we map each mention to a
vertex in a hypergraph, and find out all the possible hypergraphs for the vertices. Then we can invoke the hMETIS
program to perform mention partitioning. The process is done in an unsupervised way. After the partitioning stops, a
generated partition could be deemed as a coreferential cluster for a single entity, with all the mentions in the same
cluster being coreferential with each other.
4.4 Stopping Criterion
One problem with mention partitioning is when the process should stop. In other partitioning tasks, the number of target
clusters is predefined. However, for our task, it is not possible to give a predefined cluster number as the number of
entities in a document is unknown before resolution. Therefore, we need to design a stopping criterion for partitioning.
As described in Section 3, to certain partitioning clusters number k, the hMETIS program performs partitioning by
minimizing the Scaled Cost (5), while maximizing Absorption (6) at the same time. After inner optimization, hMETIS
would find the best partitioned clusters with the final Scaled Cost and Absorption values, named as ScaledCostf inal(k)
and Absorptionf inal(k) respectively.
Enlarging the target entity number k would make the former value increase while the latter decrease. Without any prior
knowledge, we try to find a k which compromise on the two costs varying trends at the same time. For this
consideration, we define a stopping criterion based on the product of final generated ScaledCostf inal(k) and Absorptionf

inal(k) values after optimization:

)()()(kAbsorptionkScaledCostkP finalfinal ∗= (7)

We prefer a partition with high product of ScaledCost and Absorption. For a given document, we put all the mentions in
a cluster (k=1) and perform partitioning repeatedly. The process stops at a round when the value of P reaches the peak,
or when each cluster contains only one mention. The generated clusters are output as the coreference resolution result.
Actually, in our study such stop criterion achieved good result.
5. Experiments and results
5.1 Experimental Setup
In our study, we did evaluation on the ACE-2 V1.0 corpus (NIST, 2003) that is divided into three domains: broadcast
news (BNews), newspaper (NPaper), and newswire (NWire). As we conducted unsupervised learning, we did not use
the training data and just ran the system on the test data. However, in the comparing supervised systems, the training
and testing data were used together. The number of entities with more than one mention, as well as the number of the
contained mentions, is summarized in Table 4.
For both training and resolution, an input raw document was processed by a pipeline of NLP modules of OpenNLP
(Note 6), including sentence boundary detector, tokenizer, and part-of-speech tagger. The boundaries of a mention are
directly from annotation in the corpus. Our experiment setup just follows the official “diagnose” evaluation of ACE in
which coreference resolution is done and evaluated on the perfect mentions, which allows the validation of the utility of
the hypergraph method under an environment of accurate mention features. We used the mention’s head, boundaries,
and the semantic type information from “gold” annotation. Other features, like string-matching, apposition, name-alias,
distance and so on, were all computed at a running time. Following tradition, all results are reported using recall,
precision and F-measure based on the MUC-6 scoring algorithm (Vilain et al., 1995).

Vol. 2, No. 4 Computer and Information Science

 60

5.2 Results and discussion
Table 5 lists the performance of different coreference resolution systems.
For comparison, we first duplicated the traditional unsupervised learning based system by Cardie and Wagstaff (1999)
as baseline. The first line of Table 5 shows the results of such a system, which adopted the same clustering radius
threshold (i.e., r = 4) as in Cardie and Wagstaff (1999)’s system. Our duplicated system (denoted by Cardie99r4)
achieves a recall of 66.30% and a precision of 50.99%, obtaining an F-measure of 57.64%. The F-measure (57.64%) is
higher than their results (52.8%) reported on the MUC-6 data.
Cardie and Wagstaff (1999)’s radius value was fined-tuned for the MUC-6 data, and is not necessarily optimal for the
ACE data. In our experiments, we examined the performance of the duplicated system under different radius value from
1 to 10. We found that the system achieves the best result when r = 6 (Cardie99r6), with 67.34% recall, 51.73%
precision and 58.5% F-measure. The recall, precision, F-measure results for each domain are consistently higher than
those of Cardie99r4. It indicates that the performance of their system is significantly affected by the threshold value.
In the experiments, we were also interested in comparing performance difference between the system with unsupervised
learning and the system with supervised learning. For this purpose, we implemented the classical decision trees-based
coreference resolution system by Soon et al. (2001) (denoted by Soon01), and the results are shown in the third line of
Table 5. Compared with Cardie99r6, the system has a drop in recall (up to 11.83%), but achieves a large improvement
in precision (up to 21.23%). Overall, it produces an average 55.51% recall, 72.96% precision, and 63.05% F-measure.
The F-measure is 4.54% higher than Cardie99r6. This is in line with Wagstaff (2002)’s report that Cardie and Wagstaff
(1999)’s unsupervised approach got an F-measure about 9% lower than the supervised system.
The fourth line of Table 5 summarizes the performance of our system with hypergraph partitioning. From the table, the
system produces a higher recall of 79.37%, 12.03% than Cardie99r6, with just only 2.87% loss in precision. Overall, the
F-measure is about 2% higher than Cardie99r6. The difference against the supervised based system (Soon01) is reduced
to 2.57%, and the results are encouraging considering that our approach did not use any training data.
One interesting finding of the table is that unsupervised approaches tend to produce a lower precision but a higher recall
than supervised approaches. This should be the case because our hypergraph method is based on top-down partitioning.
Mentions tend to be retained in the same cluster unless they have some inconsistency. By contrast, a supervised
approach is based on bottom-up merging, mentions are only merged together if some coreference indicators, like string
matching, name alias or appositive can be satisfied. The merge is comparatively conservative and thus leads to a higher
precision but a lower recall.
We were also concerned how much each type of hyperedge affected the resolution performance. Table 6 summarizes the
performance contribution of each kind of hyperedges to our system of HyperGraph. The last three columns show the
gain or loss in recall, precision and F-measure, respectively, because of subtracting a particular hyperedge while
keeping the rest in the HyperGraph system.
As our approach is partitioning-driven, the low-weight hyperedges play an important role in dividing mentions. We
were also concerned how much the hyperedge CannotLink affects the resolution performance. The last line of Table 6
shows the loss of performance by removing the CannotLink from the system. From the table, the removal of
CannotLink results in a drop of by 37.56% in recall and 6.14% in precision. Overall, the F-measure decreases by
18.22%. Similarly, the hyperedge contribution to whole system F-measure decreased like Semantic(1.27%),
NameAlias(0.54%), Number(0.35%), ThreeSentences(0.24%), Gender(0.14%), HeadString(0.08%), Appositive(0.05%).
Interestingly, when only subtracting FullString, Person, TwoSentences, and OneSentence, the final F-measure increased
0.25%, 0.11%, 0.30%, 0.21%, respectively. In other words, the four kinds of hyperedges decreased the whole system
performance using all features. After deep analysis, we found that the FullString with high weight is little repeated by
HeadString with middle weight. Moreover, Person is just a kind of semantic. The Person=True hyperedges are replaced
by Semantic=Person hyperedges. When replaced, the hyperedges are redundant, and hence decrease the final resolution
result. Meanwhile TwoSentences is repeated to some extent by ThreeSentences and OneSentence. Similarly, so does
OneSentence by ThreeSentences and TwoSentences.
Our results show that reducing feature redundancy is a practical problem for unsupervised coreference resolution
hypergraph partitioning. Actually, we experimented on subtracting any two, three or all of the above four kinds of
hyperedges while keeping the rest in the HyperGraph system. The results were all worse than using all features. It was
because all the features were intersecting in the hypergraph.
6. Conclusion
This paper presented an unsupervised learning approach for coreference resolution based on hypergraph partitioning. It
converts a document to a hypergraph where a vertex corresponds to a mention in the document. It uses a hyperedge to
cover mentions that share a specific common property, which can capture information about multiple mentions, instead

Computer and Information Science November, 2009

 61

of only two mentions as in the traditional approaches based on the mention-pair model. Our approach adopts a
hypergraph partitioning algorithm to divide mentions into clusters each representing a single entity. The partitioning
process can avoid the cascading errors in the previous clustering-based unsupervised approaches.
In the paper, we described the resolution framework, the definition of hyperedges, and the stopping criteria of
partitioning. The evaluation on the ACE data set shows that the hypergraph partitioning approach performs better than
the previous clustering-based unsupervised approach (with up to 1.97% in F-measure), and the gap between the
supervised approach is only 2.57% in F-measure.
Our current work focuses on the framework of coreference resolution with hypergraph partitioning. There are several
directions for future work:
(1) For simplicity, we currently just used some common knowledge, represented as hyperedges, for coreference
resolution. We would like to explore more effective knowledge, such as grammar roles, context template information,
and others proposed in Ng and Cardie (2002).
(2) In the current system, the weights for hyperedges were all heuristically designed. We intend to try some weights
learning mechanisms, e.g., the genetic algorithm.
(3) The stopping criterion has a big influence on the final resolution performance. However, our current stop criterion
was defined in a heuristic way. We would like to incorporate more prior knowledge related to coreference resolution.
(4) Feature redundancy is another problem for hypergraph partitioning. We will try to process it as a learning problem.
References
Andrew McCallum and BenWellner. (2003). Toward conditional models of identity uncertainty with application to
proper noun coreference. Proceedings of the IJCAI-03 Workshop on IIWeb, pp.79-84.
C. Berge. (1989). Hypergraphs. North-Holland, Amsterdam
C. Cardie and K. Wagstaff. (1999). Noun phrase coreference as clustering. Proceedings of the Joint SIGDAT
Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pp.82-89.
C. Nicolae and G. Nicolae. (2006). Best cut: A graph algorithm for coreference resolution. Proceedings of the EMNLP,
pp.275-283.
D. Klein and C.D. Manning. (2001). Parsing and hypergraphs. Proceedings of the IWPT.
D. Zhou, J. Huang, and B. Schölkopf. (2006). Learning with hypergraphs: Clustering, classification, and embedding.
Proceedings of the NIPS, pp.1601-1608.
Hiroyuki Shinnou and Minoru Sasaki. (2007). Ensemble document clustering using weighted hypergraph generated by
nmf. Proceedings of the ACL, pp.77-80.
I.P. Klapaftis and S. Manandhar. (2007). UOY: A Hypergraph Model For Word Sense Induction & Disambiguation.
Proceedings of the SemEval, pp.414-417.
Joseph F. McCarthy and Wendy G. Lehnert. (1995). Using decision trees for coreference resolution. Proceedings of the
IJCAI, pp.1050-1055.
Kiri Lou Wagstaff. (2002). Intelligent Clustering with Instance-Level Constraints. Ph.d. thesis, Cornell University,
Liang Huang. (2008). Forest reranking: Discriminative parsing with non-local features. Proceedings of the
ACL-08:HLT, pp.586-594.
M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and L. Hirschman. (1995). A model-theoretic coreference scoring
scheme. Proceedings of the 6th MUC, pp.45-52.
N. Selvakkumaran and G. Karypis. (2006). Multiobjective Hypergraph-Partitioning Algorithms for Cut and Maximum
Subdomain-Degree Minimization. IEEE Trans. on CAD of Integrated Circuits and Systems, 25(3):504-517.
V. Ng and C. Cardie. (2002). Improving machine learning approaches to coreference resolution. Proceedings of the
ACL, pp.104-111.
W.M. Soon, H.T. Ng, and D.C.Y. Lim. (2001). A Machine Learning Approach to Coreference Resolution of Noun
Phrases. Computational Linguistics, 27(4):521-544.
Xiaoqiang Luo, Abe Ittycheriah, Hongyan Jing, Nanda Kambhatla, and Salim Roukos. (2004). A mention-synchronous
coreference resolution algorithm based on the bell tree. Proceedings of the ACL, pp.135-142.

Vol. 2, No. 4 Computer and Information Science

 62

Notes
Note 1. http://glaros.dtc.umn.edu/gkhome/fetch/sw/hmetis/hmetis-2.0pre1.tar.gz
Note 2. These definitions can be extended in a straightforward manner for hypergraphs with weighted hyperedges, as
described in http://glaros.dtc.umn.edu/gkhome/fetch/sw/hmetis/manual.pdf
Note 3. The gender type of a person name was obtained from a name-gender list provided by the corpora from NLTK
package, while the gender of a common noun (e.g., mother, son, president) was got from WordNet (if the gender of a
mention, such as ”the president”, is not available in WordNet, we set the gender type as neuter).
Note 4. These sentence hyperedges only aim for pronoun resolution. They do not cover non-pronoun anaphora, as the
sentence factor plays little influence on the coreference determination for non-pronoun resolution.
Note 5. Intuitively, negative weight for CannotLink is better. However, the hypergraph toolkit hMETIS could not accept
negative weights. So here, zero is chosen.
Note 6. http://opennlp.sourceforge.net/

Table 1. This is an example about tables

[Microsoft Corp.]1 announced [[its]2 new CEO]3 [Steve
Ballmer]4 yesterday. [Mr. Ballmer]5 said [Microsoft]6
would try [its]7 best to compete with [Google]8. [He]9
also mentioned that [Microsoft]10 had been challenged
by [some companies]11 in internet area during the late
years.

Table 2. An example of generated hyperedges

Type Hyperedges
FullString {2,7}, {6,10}
HeadString {2,7}, {6,10}, {4,5}
Gender {4,9}
Number {1,2,3,4,5,6,7,8,9,10}
Person {3,4,5,9}, {1,2,6,7,8,10,11}
Semantic {1,6,8,10,11}, {2,7}, {3,4,5,9}
ThreeSentences {1,2,3,4,5,6,7}, {1,2,3,4,5,6,7,8,9}
TwoSentences {1,2,3,4,5,6,7}, {5,6,7,8,9}
OneSentence {1,2}, {5,6,7}
NameAlias {4,5}, {1,6,10}
Appositive {3,4}
CannotLink {2,9}, {7,9}

Table 3. Weights for four kinds of hyperedges

Level Hyperedges Weight
Cannot CannotLink 0
Low-1 ThreeSentences 5
Low-2 TwoSentences 10
Low-3 OneSentence 15
Middle HeadString, Gender, Number,Person, Semantic 20
High FullString, Appositive, NameAlias 30

Computer and Information Science November, 2009

 63

Table 4. Statistics of entities (length > 1) and contained mentions for the test data set in ACE

Domain #entity #mention
BNews 468 2493
NPaper 365 2290
NWire 411 2304

Table 5. Results of different systems for coreference resolution

Table 6. Results of different systems for features contribution comparison

System
Total Gain(+)/Loss(-)

R P F R P F
All Features 79.37 48.86 60.48
-ExtentString 79.87 48.99 60.73 0.50 0.13 0.25
-HeadString 79.34 48.76 60.40 -0.03 -0.10 -0.08
-Gender 79.06 48.79 60.34 -0.31 -0.07 -0.14
-Number 78.67 48.66 60.13 -0.70 -0.20 -0.35
-Person 79.41 48.98 60.59 0.04 0.12 0.11
-Semantic 77.34 47.96 59.21 -2.03 -0.90 -1.27
-ThreeSentences 79.02 48.67 60.24 -0.35 -0.19 -0.24
-TwoSentences 79.91 49.05 60.78 0.54 0.19 0.30
-OneSentence 79.58 49.05 60.69 0.21 0.19 0.21
-Appositive 79.30 48.82 60.43 -0.07 -0.04 -0.05
-NameAlias 78.73 48.39 59.94 -0.64 -0.47 -0.54
-CannotLink 41.81 42.72 42.26 -37.56 -6.14 -18.22

Figure 1. An example of hypergraph

System
BNews NPaper NWire Total

R P F R P F R P F R P F
Cardie99r4 72.06 61.28 66.23 60.58 44.89 51.57 66.26 48.04 55.70 66.30 50.99 57.64
Cardie99r6 73.22 61.89 67.08 62.18 46.26 53.05 66.60 48.19 55.92 67.34 51.73 58.51

Soon01 60.63 81.03 69.36 51.92 65.53 57.94 53.91 72.77 61.94 55.51 72.96 63.05
HyperGraph 86.83 55.12 67.43 72.44 45.75 56.08 78.81 45.84 57.97 79.37 48.86 60.48

