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Abstract 
In the literature, self-organizing physical and chemical systems have been proposed as candidates for physical 
intelligent systems that may solve problems in the field of artificial intelligent in a non-algorithmic way that is 
not based on computation. In this theoretical study, decision-making in such physical intelligent systems is 
discussed in terms of non-equilibrium transitions between two self-organized states. The control parameter 
driving the non-equilibrium transitions is related to two growth rate factors. It is shown for a particular 
non-equilibrium system that the decision-making process satisfies the principle of selecting the state with the 
fastest growth rate factor. The system under consideration is a two component gas discharge system whose 
current flows can be described by means of an electronic blueprint.   
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1. Introduction 
It has been proposed that physical and chemical self-organizing systems may exhibit problem-solving abilities 
similar to humans and animals (Jun & Hübler, 2005; Hübler, 2009; Turvey & Carello, 2012). In this context, the 
phrase "physical intelligent systems" has been coined. In particular, in engineering applications the motivation 
for studying physical systems solving problems in the field of artificial intelligence (e.g., Isa et al., 2008; 
Adenowo & Patel, 2014) is to explore alternatives to algorithmic, computer-based intelligence. Such alternatives 
may help to overcome limitations of the state-of-the-art computer technology. Pattern formation systems are 
promising candidate systems for physical intelligence (Frank, 2011a, 2012a). In particular, associative memory 
systems may be based on gas or fluid systems that exhibit roll patterns when driving into a Benard instability 
(Bestehorn & Haken, 1991; Haken, 1991). Decision making systems may be realized by means of pattern 
formation systems, as well. This idea has been exemplified for an internet router storage buffer (Frank, 2011b). 
One of the most fundamental type of decision making systems are systems switching between two possible states 
(binary decision making). In this context, the question arises whether or not there are general principles that 
govern decision making in self-organizing physical systems. At least two principles have been considered that 
view decisions as non-equilibrium phase transitions in far-from equilibrium systems or bifurcations in dynamical 
systems. The so-called 4th law states that non-equilibrium phase transitions in physical systems happen in such a 
way that the speed (rate) at which entropy is produced is maximized (Swenson & Turvey, 1991). The principles 
of fastest growth rates states that in dynamical systems bifurcations from a self-organized state A to a 
self-organized state B happen such that the growth rate parameter of the emerging state B is higher than the 
growth rate of the state A. The latter principle has rigorously been derived for systems satisfying Haken's pattern 
formation amplitude equations (Frank, 2011b, 2011c, 2012b) and for the competitive Lotka-Volterra model 
(Frank, in press). The two principles are related to each other. It has been advocated that in a large class of 
systems the growth rate parameters are measures for the speed of entropy production (Frank, 2010, 2011b). 
Therefore, for such systems the selection principles of fastest growth rates is consistent with the aforementioned 
4th law.  

As mentioned above, the principle of fastest growth rates governs mode-mode transitions in pattern formation 
systems satisfying Haken's amplitude equations and determines bifurcations in dynamical systems described by 
the competitive Lotka-Volterra model. In the search for physical intelligence, physical systems exhibiting such 
mode-mode transitions and bifurcations may be used as smart decision making devices (recall the 



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 4; 2014 

56 
 

abovementioned example of an internet router). We show in what follows that a two compartment gas discharge 
system with compartments L (left) and R (right) exhibits hysteretic transitions between the emergence of gas 
discharge solitons in the compartments L and R. That is, a soliton existing in compartment L disappears and a 
soliton in compartment R emerges or vice versa. The control parameter involved in these transitions is an 
asymmetry parameter. The transition is similar to human decision making transitions in object grasping. Small 
objects are typically grasped with one hand, while larger objects are grasped with two hands. Laboratory 
experiments have confirmed the hysteretic nature of such grasping transitions related to two-choice decision 
making (Richardson et al., 2007; Lopresti-Goodman et al. 2009). In analogy to human grasping behaviour 
guided by object-size perception, we will argue that the two compartment gas discharge system can recognize or 
perceive the asymmetry between the compartments and can be regarded as a physical, decision making device 
regulated by that asymmetry parameter. Most importantly, we will show that the transitions (decisions) satisfy 
the principle of fastest growth rates 

2. Decision Making Regulated by Growth Rate Factors 
2.1 Current Flow Description of a Two Compartment Gas Discharge System 

The study of gas discharge systems is of importance for industrial and entertainment applications. In addition, 
gas discharge systems are a testbed for studying pattern formation in nonlinear far-from equilibrium systems. 
Typically a gas discharge system consists of a gas filled chamber between two electrodes. A constant voltage U0 
is applied across the gap. For sufficiently large values of U0 discharge solitons can be observed (see e.g. Bödeker 
et al., 2003,2004) and the reviews by Purwins et al. (2010) and Liehr (2013)). Let us consider rectangular 
electrodes such that the discharge gap forms a cuboid with a long axis and two short axes. Along the long axis, 
solitons can emerge at any position provided U0 is high enough. For our purposes, it is important to notice that 
the current flows in the device can be described by means of an electronic blueprint involving resistors, 
capacitors, and inductors (Purwins et al., 2010). To this end, the long axis is compartmentalized into cells or 
compartments. That is, we consider a coarse-grained description in which all solitons that emerge in a certain 
"bin" are considered to belong to the same equivalent class. In other words, they represent the same soliton. The 
simplest arrangement that allows for a discussion of physical intelligence is a gas discharge device that is 
described in terms of two compartments. Even in this case the original electronic blueprint yields a description 
that is mathematically involved. However, this original blueprint includes a 5 piece core circuit shown in Figure 
1. 

Figure 1. A five piece core model describing the current flows across the discharge gap of a two compartment 
gas discharge system. The model is composed of a linear ohmic resistor (empty box, top part), two inductors 

(grey boxes) and two nonlinear resistors (empty boxes marked with a tilde) 

 

As we will show below this core model is sufficient to describe the multistable (here bistable) nature of gas 
discharge systems. In this context, we note that a state with a relative high current in one compartment but a 
relative low current in the other compartment reflects that the gas discharge system exhibits only one soliton. 
The soliton is located in the high current compartment. As such, for a two compartment model there are four 
different states. Both compartments do not exhibit a soliton. Only the left compartment exhibits a soliton. Only 
the right compartment exhibits a soliton. Both compartments exhibit solitons.  

The first objective is to explain the experimentally observed multistability (here bistability) of gas discharge 
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systems in terms of a multistability (bistability) of the underlying current flow model. The second objective is to 
use the model to show that gas discharge systems can recognize asymmetries. That is, they can be regulated by 
asymmetries such that transitions occur between the two states in which only one compartment exhibits a soliton. 
The two states that involve a single solitons may be considered as two possible decisions in a two-choice 
situation (e.g. a "yes" or "no" decision). In this sense, the gas discharge model may be interpreted as a physical 
decision-making devise. 

2.2 Dynamical Systems Modelling 

Let us derive the evolution equations for the currents flowing through the left and right branches of the two 
compartments core model. The voltage U0 can be computed from the voltages Utop and Ubottom,k across the top 
and bottom circuit of the device such that 

0 ,top bottom kU U U                      (1) 

Note that with the index k=1,2 we distinguish between the left (k=1) and right (k=2) compartments. The total 
current in the top circuit is given by the sum of the currents Ik of the two compartments: I(tot)=I1+I2 . The voltage 
Utop follows Ohm's law such that 

 1 2( )topU R I tot R I I                          (2) 

The inductors are assumed to have the same inductivity L such that the voltages UL,k at the inductors is given by 

,L k k

d
U L I

dt
                             (3) 

The voltage-current relationship of the nonlinear resistors in the bottom circuits are approximately described by 
cubic functions like (see Figure 2a in Purwins et al. (2010)) 
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with b,s>0. The parameters δk capture impurities (inhomogeneities) leading to asymmetric properties of the two 
nonlinear resistors. For δk =0 and k=1,2 the resistors have the same properties and the two compartment gas 
discharge system is symmetric. For our purposes, it is sufficient to consider a single asymmetry parameter (rather 
than 2 independent parameters). Therefore, we put  

 k
k )1(                (5) 

For Λ=0 the resistors are identical and the gas discharge system exhibits symmetry. For Λ≠0 the nonlinear 
resistors have slightly different properties and we are concerned with an asymmetric gas discharge device. We 
refer to Λ as effective asymmetry parameter. The voltages in the bottom circuits are given by 

kNLkLkbottom UUU ,,, 
              (6) 

Substituting these relations in the equation for voltage U0, we obtain 
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for k=1,2. Solving for Ik , we obtain two coupled first order differential equation in terms of 
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with k=1,2. Rescaling time, we can eliminate the inductivity L such that 



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 4; 2014 

58 
 





2,1

,0 )(
m

mkkNLk IRIUUI
dt

d

                (9) 

More explicitly, we have 
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2.3 Global Stability and Gradient Dynamics 

The dynamical model can be expressed by means of a gradient dynamics involving a potential. That is, we have 
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with  
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The term -UNL in the evolution equations for the currents reflects a globally attractive force. Therefore, -Ф is a 
globally attractive potential. The last term on the right hand side of the potential V reflects a globally attractive 
component. It is quadratic and dominates the linear, first term of the potential for large currents. Therefore, V is a 
globally attractive potential. This implies that for any initial currents I1(t=0)>0 and I2(t=0)>0 in the two gas 
discharge compartments, the gas discharge system will evolve in time such that the currents will converge to 
fixed point values. In other words, the gas discharge system will become stationary in any case. 

2.4 Unstable Co-Existence Fixed Point 

In order to identify a bistable parameter domain exhibiting two stable winner-takes-all fixed points and one 
unstable co-existence fixed point, we focus on the symmetric case and conduct some analytical computations. 
For the symmetric case, the co-existence fixed point is assumed to have coordinates I1=I2=ξ. Note that at this 
stage of our analysis the precise value of ξ is unknown. Let εk denote small deviations from the fixed points 
coordinates such that I1(t)= ξ+ε1(t) and that I2(t)= ξ+ε2(t). Substituting these relations into the evolution equations 
for the currents and conducting a linear stability analysis, we obtain 
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for k=1,2. This equation can equivalently be expressed as 
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and 

   RsbA  231                 (15) 

The eigenvalues or Lyapunov exponents (Margaris, 2012) may be computed from the matrix involved in the 
equation above. Alternatively, we consider the evolution equations for the auxiliary variables u(t)=ε1(t)-ε2(t) and 
v(t)=ε1(t)+ε2(t), which read  
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and 

  231 sbB                           (17) 

Consequently, if the co-existence point exists, then it is unstable if B>0 holds. Note that for B>0 we might have 
an unstable node or saddle. From the condition B>0 it follows 

 
3

12  s
                          (18) 

Let us determine a parameter domain in which this sufficient condition for instability holds. To this end, we 
consider the case ξ=s. Substituting I1=I2=s into the evolution equations for Ik and putting the left-hand-sides 
equal to zero (stationary case), we obtain 

RsUU 2*0                       (19) 

That is, if the voltage U0 is appropriately chosen such that this matching condition is satisfied, then the 
co-existence fixed point I1=I2=s exist and is unstable. 

2.5 Nullclines 

Let us briefly describe the two nullclines of the two compartment gas discharge model. The nullcline dI1 /dt=0 
reads 

     11
3
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Likewise, the nullcline dI2 /dt=0 reads 
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In the symmetric case, that is, for δk=0 with k=1,2, the nullclines are symmetric with respect to the diagonal of 
the phase space spanned by I1 and I2. We obtain 
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with 
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0 *)(             (23) 

Both in the symmetric and the asymmetric case we see that nullclines are cubic functions in general. In fact, we 
need to exploit the cubic character of the functions in order to design a decision making device that involves a 
bistable dynamical regime in the symmetric case and exhibits hysteretic transitions in the asymmetric case, see 
Section 2.6 and 2.7. 

2.6 Existence of a Bistable Parameter Domain for the Symmetric Two Compartment Gas Discharge System 

Given the relative large parameter domain, we restrict ourselves to show the existence of at least one bistable 
parameter domain for the symmetric device (δk=0 for k=1,2). We conducted a numerical search taking the 
matching condition (19) into account. For fixed parameters s=2.0 and R=1.0 measured in arbitrary units (a.u.) we 
found that for b in [0.5,2] the nullclines had three intersection points provided that U0 was chosen such that the 
matching condition U0=U*+2Rs was satisfied. Figure 2 illustrates for a particular value of b the nullclines and 
the intersection points.  
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Figure 2. Nullclines computed from Equations (22) and (23). Parameters: s=2.0, R=1.0, b=1.0, U0 was defined 
by U0=U*+2Rs. The nullclines exhibit three intersection points. Topologically similar graphs were observed in 

the range 0.5<b<2 

 

As shown above the co-existence fixed point I1=I2=s is unstable. In addition, due to the symmetry of the problem 
at hand, the two remaining fixed point have the same stability property. Since the device has global stability, we 
conclude that the two remaining fixed points are stable fixed points. In fact, we solved the evolution equations 
for the currents I1 and I2 numerically with initial conditions close to the two remaining fixed points. As expected 
we found that the solutions converged to the fixed points. The two stable fixed points describe a gas discharge 
systems with highly unequal current flows in the two compartments. For one of the stable fixed points we have a 
high current in compartment I and a low current in compartment II. For the other stable fixed points the opposite 
situation is true. As mentioned above, a relative high current reflects a gas discharge soliton in the respective 
compartment, whereas a low current indicates the absence of a soliton. That is, the fixed point with I1 > I2 
indicates the presence of a soliton in compartment L only. Likewise, the fixed point with I2 > I1 indicates the 
presence of a soliton in compartment R only. For the conditions specified here, the voltage gap U0 is large 
enough to induce the emergence of a gas discharge soliton. However, it is not sufficiently large to excite two 
solitons. As a result, a soliton appears either in compartment L or R. The gas discharge system is bistable. We 
will refer to the fixed points with I1 > I2 and with I2 > I1 as winner-takes-all fixed points because the soliton can 
be found in only one compartment. In summary, the nullcline analysis reveals the existence of a bistable 
parameter domain involving two stable fixed points and an unstable fixed point. The stable fixed points are 
winner-takes-all fixed points indicating the emergence of a soliton in one of the two compartments. The 
co-existence fixed point is unstable and therefore will not be observed in real devises that operate under finite 
temperature and are subjected to fluctuations.  

2.7 Hysteretic Transitions and Decision Making Regulated by System Asymmetry 

Next, let us take the asymmetry parameters device δk into consideration. As mentioned above, we focus on the 
effective asymmetry parameter Λ that induces via δk a positive and negative bias in the two compartments, see 
Equation (5). Since Λ affects the two compartments in the opposite way, it is plausible to assume that the two 
nullclines will be separated (pushed away from each other) when Λ is sufficiently large in the amount. In fact, 
calculating the nullclines for different values of Λ illustrates this effect, see Figures 3 and 4. In Figures 3 and 4 
the top panels are identical with Figure 2 and serve as a reference point. That is, the top panels refer to the 
symmetric case with Λ=0. The bottom panels illustrate the effect of Λ≠0. Figure 3 shows the impact of Λ>0, 
which implies -δ1>0 (positive left bias) and -δ2<0 (negative right bias). Accordingly, the fixed point with I2 > I1 
disappears and the gas discharge system becomes monostable. In this case, the system exhibits a soliton in 
compartment L and can not exhibit a soliton in compartment R. Figure 4 shows the impact of Λ<0: the fixed 
point with I1 > I2 disappears and the gas discharge system becomes monostable again. In this case, the system 
exhibits a soliton in compartment R and can not exhibit a soliton in compartment L. As a result, the two 
compartment system can recognize or perceive the asymmetry. If the asymmetry is changed from a left biasing 
to a right biasing asymmetry then the soliton in the left compartment will disappear and a soliton in the right 
compartment will emerge. Likewise, if the asymmetry is changed in the opposite direction, the opposite 
bifurcation will be observed. This transition is hysteretic because the underlying system for Λ=0 is bistable. In 
order to illustrate the hysteretic nature of the transition we changed the asymmetry parameter from the left 
biasing to the right biasing condition in three steps. For each step the evolution equations for the currents were 
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solved numerically. The trajectories are shown in Figure 5 (top panel). Likewise, we changed the asymmetry 
parameter from the right biasing to the left biasing condition in three steps and determined the current flow 
dynamics under this scenario by solving numerically the evolution equations for the currents. The result of the 
computer simulation is shown in Figure 5 (bottom panel). The transitions can be clearly seen in Figure 5. 
Moreover, the hysteretic nature is evident from comparison of the two panels of Figure 5. 

 

Figure 3. Top panel: nullclines for the symmetric case 
as in Figure 2. Bottom panel: nullclines for an 

asymmetric device. The nullclines were computed 
from Equations (20) and (21). Parameters: s=2.0, 

R=1.0, b=1.0. U0 was defined by U0=U*+2Rs. Λ=0.7, 
which implies for the negative asymmetry parameters: 

(-δ1) = +0.7 and (-δ2) = -0.7. Consequently, 
compartment L is positively biased, compartment R 

negatively biase 

 

Figure 4. as in Figure 3 but for Λ=-0.7, which implies 
for the negative asymmetry parameters: (-δ1) = -0.7 
and   (-δ2) = +0.7. Consequently, compartment L is 
negatively biased, compartment R positively biased 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Simulation results showing trajectories I1(t) (solid lines) and I2(t) (dashed lines) computed from 
Equation (10) using an Euler forward method (single time step 0.01). Fixed parameters: s=2.0, R=1.0, b=1.0. U0 
was defined by U0=U*+2Rs. Top panel: Λ was initially put at Λ=+0.7 (left bias). At t=5 time units Λ was put to 
Λ=0 (symmetric case). At t=10 time units Λ was put to Λ=-0.7 (right bias). Bottom panel: Λ was initially put at 
Λ=-0.7 (right bias). At t=5 time units Λ was put to Λ=0 (symmetric case). At t=10 time units Λ was put to 

Λ=+0.7 (left bias) 
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2.8 Selection Principle 

The evolution equations for the currents in the gas discharge compartments involve in the lowest order additive 
terms. The additive terms result in an increase or decay of the currents that is linear with respect to time. We may 
consider the expression λk=U0-δk as an effective model parameter. For relative small asymmetry parameters (i.e., 
for δk<U0) the parameters λk can be interpreted as growth parameters. By means of these growth parameters, the 
evolution equations for the currents read 

     



2,1

3*
m

mkkkk IRsIsIbUI
dt

d 
            (24) 

The hysteretic transition described in the previous section can be described by means of the growth rate 
parameters. If λ1 is sufficiently large, then only the fixed point with I1>I2 exists, (see Figure 3) and for any initial 
condition the gas discharge system will converge to that fixed point. A gas discharge soliton will emerge in the 
compartment I. Mathematically speaking, we define the threshold θ>1, whose precise value has to be determined 
numerically. For λ1>λ2·θ the system is monostable. For λ1<λ2·θ and λ2<λ1·θ the system is bistable. If we change 
the ratio λ1/λ2 from a value λ1/λ2 >θ to a value λ1/λ2 <θ but λ1/λ2 >1/θ then the system enters the bistability domain. 
The soliton in compartment I will continue to exist. For example, in the simulation illustrated in the top panel in 
Figure 5 the asymmetry parameter Λ was changed such that λ1/λ2 decreased from a value λ1/λ2>θ to λ1/λ2=1. If 
the ratio λ1/λ2 is decreased further beyond the threshold 1/θ then the system becomes monostable again. Only the 
fixed point I2>I1 exists, (see Figure 4) and for any initial condition a gas discharge soliton will emerge in the 
compartment II. In particular, if λ1/λ2 is decreased beyond the threshold 1/θ at transition from the fixed point with 
I1>I2 to the fixed point I2>I1 occurs (see Figure 5, top). The bifurcation takes place when λ2 exceeds the threshold 
λ1·θ, that is, λ2>λ1. The gas discharge system bifurcations to a new fixed point that exhibits a larger growth rate 
parameters. Likewise, if the ratio λ1/λ2 is increased from λ1/λ2<1/θ to a value λ1/λ2>θ then a transition from the 
fixed point I2>I1 to the fixed point I1>I2 occurs (see Figure 5, bottom). Again, the transition occurs such that the 
new fixed point has a larger growth rate: λ1>λ2. In summary, the bifurcations happen such that the emerging 
self-organized states exhibit higher growth rates than the disappearing self-organized states.  

3. Discussion 
In this study we examined the behaviour of a two compartment gas discharge system by means of an electronic 
model for the current flows through the two compartments. We showed that the gas discharge system can exhibit 
bistability which is consistent with the laboratory observation that gas discharge systems under appropriate 
condition indeed exhibit multistability (Purwins et al., 2010). We showed that the variations in the asymmetry of 
the device can induce transitions between the two self-organized states. In this sense, the physical system is 
sensitive to the asymmetry or can "perceive" the asymmetry. Therefore, the physical system can be interpreted as 
a decision-making device regulated by the asymmetry parameter. The transition is shown to be hysteretic. In fact, 
in experiments on grasping, human participants are known to show the same hysteretic behavioural transitions. 
When the size of the two-be-grasped objects is increased, participants switch from one-handed grasping to 
two-handed grasping. When object size is decreased, participants switch from two-handed grasping to 
one-handed grasping. The transition points are different and hysteresis can be observed (Richardson et al., 2007; 
Lopresti-Goodman et al., 2009). It has been speculated that human intelligence and physical intelligence is 
governed by the same principles (Turvey & Carello, 2012). Our analysis supports this argument. We found that 
the transitions between the self-organized states of the gas discharge system satisfy the principle of fastest 
growth rates. This principle has been found to hold for pattern formation systems satisfying Haken's amplitude 
equations and for systems satisfying the competitive Lotka-Volterra equation. Haken's amplitude equations are 
known to capture the characteristics of human behaviour (Haken, 1991). Likewise, the Lotka-Volterra model 
seems to be an appropriate description for transitions in human emotions (Frank, in press). However, Haken's 
amplitude equations also govern pattern formation of convection rolls (Bestehorn & Haken, 1991; Haken, 1991). 
Therefore, the results obtained in the present study in combination with the aforementioned work reported in 
earlier studies indeed support the idea that there are general principles that govern human intelligence and the 
behaviour of physical systems that mimic human intelligence.  

While such considerations are of academic interest, it has also been suggested that physical and chemical 
self-organizing systems that exhibit intelligent behaviour have engineering applications (Hübler, 2009). In line 
with an earlier suggestion (Frank, 2011b) the two component gas discharge system may be used to engineer a 
telecommunication buffer. Telecommunication buffers are used to delay the transit time of signals such that other 
(more important) operations can be executed by the receiver device and are frequently used to connect digital 
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computer circuits that operate on the same kind of data but at different speeds. An example for the latter case is a 
print spooler or buffer that connects the fast operating word processing unit with the relatively slowly operating 
printer. Let us assume the buffer can store N characters. Let us further consider a buffer that can operate only two 
tasks: receiving data or sending out data. For example, we consider a printer buffer (print spooler) that can only 
receive characters or print characters but can not do both at the same time. The two modes correspond to the 
presence of a soliton in the left and right compartment. More precisely, a soliton in the left compartment means 
that the buffer operates in the data receiving mode, whereas a soliton in the right compartment means that the 
buffer operates in the data-send-out mode. The two growth parameters of the gas discharge system can be related 
to a suitably defined control parameter, namely, the relative used buffer space (Frank, 2011b). Accordingly, we 
put the first growth parameter equal to 1-RUBS and the second growth parameter equal to RUBS. Here, RUBS 
stands for relative used buffer space and is a number between 0 and 100 percent. It can then be shown that for a 
stationary (i.e., continuous) data input flow the buffer will operate in an oscillating fashion (Frank, 2011b). In the 
beginning, the buffer will be empty and consequently the first growth parameter will be relatively large. The 
soliton appears in the left compartment and the buffer operates in the data-receiving mode. As a result, the 
control parameter RUBS will increase. At a certain point in time, RUBS will reach a threshold value (depending 
on the coupling parameter) at which the soliton in the left compartment becomes unstable. The gas discharge 
system will undergo a bifurcation. The soliton will appear in the right compartment. The telecommunication 
buffer switches from the receiving mode to the send-out-data mode. The RUBS will decay. Again, at a certain 
critical value of RUBS the soliton in the right compartment will be unstable and the soliton in the left 
compartment will emerge. The buffer switches the operation mode again and the receive-data-send-out-data 
cycle begins again. Note that this scenario holds only for a continuous data input stream considered in Frank 
(2011b). In order to construct a more flexible telecommunication buffer based on a physical intelligent system 
(the gas discharge system), we may use a flag that indicates that there is an input signal at all. Then the first 
growth parameter equals FLAG·(1-RUBS), where the FLAG equals 1 if there is an input signal and equals zero 
otherwise. Consequently, in the absence of an input signal, the gas discharge soliton will always emerge in the 
right compartment and the telecommunication buffer will send out data (e.g., send out data for printing).  
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