
Computer and Information Science; Vol. 7, No. 1; 2014
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

An Improved Guess-and-Determine Attack on the A5/1
Stream Cipher

Ayan Mahalanobis1 & Jay Shah1

1 IISER Pune, Dr. Homi Bhabha Road, Pashan Pune 411008, India

Correspondence: Ayan Mahalanobis, IISER Pune, Dr. Homi Bhabha Road, Pashan Pune 411008, India. E-mail:
ayan.mahalanobis@gmail.com

Received: November 3, 2013 Accepted: December 8, 2013 Online Published: January 13, 2014

doi:10.5539/cis.v7n1p115 URL: http://dx.doi.org/10.5539/cis.v7n1p115

Abstract

In Europe and North America, the most widely used stream cipher to ensure privacy and confidentiality of con-
versations in GSM mobile phones is the A5/1. In this paper, we present an improved guess-and-determine attack
on the A5/1 stream cipher with an average time complexity of 248.5, which is much less than any known guess-
and-determine attack. The attack has a 100% success rate and requires a small amount of memory. We provide a
detailed description of our new attack along with its implementation results.

Keywords: A5/1, GSM, guess-and-determine attack, stream ciphers

1. Introduction

The most widely used stream cipher to ensure privacy and confidentiality of communications in GSM mobile
phones in Europe and North America is the A5/1. The A5/1 was developed in 1987 when GSM was not considered
for use outside of Europe. The description of the A5/1 was initially kept secret. However, its design was disclosed
in 1999 by reverse engineering (Briceno, Goldberg, & Wagner, 1999). The GSM organization later confirmed the
disclosed algorithm (Biryukov, Shamir, & Wagner, 2001).

1.1 Our Contributions

Broadly speaking, attacks on the A5/1 can be classified into known-plaintext attacks and time-memory trade-off-
attacks. There are some exceptions to this: for example, Ekdahl and Johansson (2003) produced an attack that
exploits bad key intializations in A5/1. Other such examples are the bounded distance decoder (BDD) attack
(Krause, 2002) or a ciphertext only attack by Barkan et al. (2008). However BDD attack is clearly exponential
in the length of the shift registers. There is a general criticism against the time-memory trade-off attacks, they are
exponentially more expensive. So one can just increase the register lengths to avoid such attacks.

In this paper, we describe an improved guess-and-determine attack on the A5/1 stream cipher. This attack has an
average complexity of 248.5 steps, and is better than all known guess-and-determine attacks and expands on a novel
idea. Our attack is simple to describe and easy to analyze. Guess-and-determine attacks are of interest because of
many reasons; three most important ones are:

(a) They are easy to implement, much easier than the time memory trade-off attacks.

(b) They can be efficiently implemented in parallel programming environment.

(c) They are easy to describe.

Our attack is a known-plaintext attack. It can be briefly described (Note 1) as follows, (ref. Figure 1): we assume
that the register R1 is full (guessed) with 19 bits and registers R2 and R3 will be filled (determined) sequentially
as the attack progresses. At any stage of this attack, R1 is completely filled and R2 and R3 are partially filled. We
call these states as state candidates. Once all three registers are completely filled, we call that state candidate
a complete state candidate. Our attack has a 100% success rate and has low memory requirement. With the
knowledge of only 11 bits of the known keystream, the attack algorithm is able to determine a set of complete state
candidates which may contain the key. With every additional round of the attack, the number of complete state
candidates increase. We provide a detailed description of our new attack along with its implementation in Sections

115



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 1; 2014

4 and 5.

The complexity of this attack is about 248.5 A5/1 clockings when done in serial. This means that we go over
the guesses of R1 one after another. However one can easily parallelize this, each thread of computing starts with
an independent and different guess. In this case the complexity is substantially reduced. In case of the extreme
situation, when we start with 219 threads of computation, the complexity is 229.5.

Let us say this upfront: we were unable to do a large-scale industrial-grade implementation of this attack because
of resource constraints. We did an implementation, which was not fully optimized. We report some of those results
in Table 1.

2. A Brief Description of the A5/1 Stream Cipher

The A5/1 stream cipher is built from three short linear feedback shift registers (LFSR) of lengths 19, 22 and 23
bits. We denote these by R1, R2 and R3 respectively. The rightmost bit in each register is labeled as bit zero. The
tapping bits of R1 are at bit positions 13, 16, 17, 18, of R2 are 20 and 21, and of R3 are 7, 20, 21 and 22 (ref. Figure
1).

Figure 1. A5/1 stream cipher

The A5/1 keystream generator works as follows: First, an initialization phase is run giving rise to a initial state.
Based on this initial state, a warm-up phase is performed. In the keystream production stage the registers are
clocked in a stop-and-go fashion using the following majority rule. Each register has a single clocking bit (bit 8
for R1, 10 for R2, and 10 for R3) which decides the clocking pattern for that register. Before each clocking cycle,
the clocking bits are observed; they are either 0 or 1. The majority function outputs the registers that have the most
similar bits. Those registers are clocked. At each step either two or three registers are clocked, and each register
has 3/4 probability of moving.

A total of four clocking pattern are possible. They are:

• CB1 = CB2 , CB3 (Clock only R1 and R2)

• CB1 , CB2 = CB3 (Clock only R2 and R3)

• CB1 = CB3 , CB2 (Clock only R1 and R3)

• CB1 = CB2 = CB3 (Clock all three registers)

where CBi denotes the clocking bit for register i where i ∈ {1, 2, 3}.

After clocking, an output bit is generated from the values of R1, R2, and R3 by XORing their most significant bits,
as shown in Equation 1. This XORed bit is called the keystream bit. We denote the full keystream by KS and the
ith bit by KS[i]. The keystream is a sequence of these keystream bits indexed by the clocking, where every clock
produces a keystream bit.

R1[18] ⊕ R2[21] ⊕ R3[22] = a keystream bit. (1)

3. Known Attacks on the A5/1

This section surveys many known guess-and-determine attacks on the A5/1. A guess-and-determine attack is a

116



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 1; 2014

known-plaintext attack on a stream cipher, where the attacker knows some bits of the keystream and the remaining
bits are determined from the known keystream bits. A known plaintext attack, is an attack model where the
attacker has access to both the plaintext and its encrypted ciphertext. This can be used to reveal the keystream
used for encrypting the known plaintext to the ciphertext. Guess-and-determine attacks include Anderson’s attack
(Anderson, 1994), Golic’s attack (Golic, 1997), Biham-Dunkelman’s attack (Biham & Dunkelman, 2000), Keller-
Seitz’s attack (Keller & Seitz, 2001) and Gendrullis-Novotny-Rupp’s attack (also known as the modified Keller-
Seitz attack) (Gendrullis, Novotny, & Rupp, 2008). All these attacks assume that consecutive 64 bits of the
keystream are known.

3.1 Guess-and-Determine Attacks

The first guess-and-determine attack on the A5/1 was proposed by Anderson (1994). Anderson suggested guessing
all bits of registers R1 and R2 and the lower half of register R3 (i.e., 19 + 22 + 11 = 52 bits) to determine the
remaining bits of R3 by Equation 1. In the worst-case, each of the possible 252 state candidates would have to
be verified against the known keystream. This attack was not implemented as Biham-Dunkelman’s attack and
Keller-Seitz’s attack had better complexity.

Golic proposed an attack that had a complexity of 240, additionally one has to solve a 64×64 set of linear equations
(Golic, 1997). His approach was to guess the lower half of all three registers and determine the remaining bits of
the registers with the known keystream by Equation 1. However, each operation in this attack was much more
complicated as it was based on finding solutions of a system of linear equations. In practice, Anderson’s approach
(Anderson, 1994) and Keller-Seitz’s (Keller & Seitz, 2001) approach are better than Golic’s attack.

Pornin and Stern (2000) proposed a software-hardware trade-off attack, which was based on Golic’s approach.
But in contrast to Golic’s approach, they guessed the clocking sequence at the very beginning. The increased
assumptions and complexity of the attacks made the actual implementation very difficult and impractical.

The Biham-Dunkelman attack (Biham & Dunkelman, 2000) was expected to be a thousand times faster than the
Anderson’s attack (Biham & Dunkelman, 2000) or Keller-Seitz’s attack (Keller & Seitz, 2001). The attack requires
247 A5/1 clockings and about 220.8 bits of plaintext data, which is equivalent to 2.36 minutes of conversation. The
attacker guesses 12 bits from R1[9] to R1[12], from R1[14] to R1[18], R2[0], R3[22] and R3[10], and determines the
remaining bits of registers R1 and R2 by Equation 1 and the known keystream bits. The attack algorithm assumes
that register R3 is not clocked (i.e., R1[8] = R2[10] , R3[10]) for 10 consecutive rounds. Such an event will occur
in one out of 220 possible cipher states. The attacker must know the exact location of the information-leaking event
where register R3 is not clocked for 10 consecutive rounds. This is a big assumption. Thus, the attacker will need to
probe about 220 different starting locations by trial-and-error before the event actually occurs. This attack requires
a lot of data and precomputation space. Hence this attack is not practical for implementation.

Keller and Seitz designed a new attack (Keller & Seitz, 2001) based on the attack proposed by Anderson. But un-
like Anderson’s approach, they took into account the asynchronous clocking of the A5/1 stream cipher. According
to their algorithm, the attacker guesses registers R1 and R2 completely and determines all bits of register R3 by
Equation 1. The attack was divided into two phases: a determination phase in which a possible state candidate
consisting of the three registers of A5/1 after its warm-up phase (Briceno et al., 1999) is generated, and a subse-
quent post-processing-phase in which the state candidate is checked for consistency. In the determination phase,
the authors try to reduce the complexity of the simple guess-and-determine attack by early recognizing contradic-
tions that could occur on guessing the clocking bit of R3 such that R3 will not be clocked. Hence, all states arising
out of the contradictory guesses neither need to be computed further nor checked afterwards. The authors not only
discard the incorrect possibilities for R3[22] in case of contradiction, but also limit the number of choices to the
one of non-clocking R3, when this is possible without any contradiction. This further reduces the complexity. If
a case arises where R1[8] = R2[10] and R3[10] has to be guessed, the authors suggest to always consider the case
R1[8] = R2[10] = R3[10] and clock register R3 with register R1 and register R2. This leaves out the possible case
of R1[8] = R2[10] , R3[10]. Thus, the success probability of this attack is approximately 18%, and the number of
state candidates inspected by Keller and Seitz to the number of valid states is 86

471 ≈ 0.18.

Gendrullis, Novotny and Rupp (2008) (GNR) proposed a modification to the Keller-Seitz attack. Unlike Keller-
Seitz (Keller & Seitz, 2001), the authors only discard the wrong possibilities for the clocking bit of register R3
which would lead to a contradiction. But if no contradiction exists, they consider both cases: clocking and not-
clocking of R3. Thus, every possible state candidate is taken into account. This gives us a success probability of
100%. The attacker needs an expected 17.67 clocking rounds to determine a complete state candidate and check it

117



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 1; 2014

for consistency with the given keystream. The time complexity of the complete attack is 254.02.

Besides Golic (1997) and Babbage (1995), Biryukov, Shamir and Wagner (2001) proposed an attack with a com-
plexity of 248, which requires about 300 GB storage, where the online phase of the attack can be executed within
minutes and has a success probability of 60%.

Barkan-Biham-Keller et al. (2008) also proposed another attack along these lines. However, in the precomputation
phase of such an attack huge amount of data need to be computed and stored. For example, with three minutes of
ciphertext available, one needs to precompute about 50 TB of data to achieve a success probability of about 60%.
These are practical obstacles that make the implementation of such attacks very difficult.

4. An Improved Guess-and-Determine Attack on the A5/1 Stream Cipher – Our Attack

Our approach is based on the guess-and-determine attack proposed by Anderson (1994), but with novel modifi-
cations that makes the attack faster. With 64 bits of the keystream known, all bits of register R1 are guessed and
all bits of registers R2 and R3 are determined. Eventually, we have about 248.5 possible state candidates, which is
better than all known guess-and-determine attacks, see Table 2 for details.

The attack consists of two phases, the determination phase and the post-processing phase. The determination
phase is again divided into two parts, the processing-phase1 and the processing-phase2.

4.1 Determination Phase

We assume that the register R1 is full and the registers R2 and R3 are vacant. We are trying to fill these two registers
in this phase with the help of a known keystream. We introduce two counters t2 and t3 and initialize them to 0.
Every time register R2 moves we increment the counter t2 by one and similarly for R3 we increment t3.

4.1.1 Processing-Phase1

Compute the most significant bits of register R2 and register R3 using the MSB of register R1 and KS bit by
Equation 1. If the values of three of these bits are known, the fourth can be computed easily by the equation. If
R2[21] and R3[22] are unknown, then there exist four possible combinations for the unknown bits – 00, 01, 10
and 11. But Equation 1 reduces the number of possibilities to two. The two possible combinations that satisfy the
equation are:

• If R1[18] = KS bit, then R2[21] = R3[22] = 0 or R2[21] = R3[22] = 1.

• If R1[18] , KS bit, then R2[21] = 0, R3[22] = 1 or R2[21] = 1, R3[22] = 0.

This reduces the number of possible cases by half and the number of possible state candidates to two. For more
details see Figure 2.

4.1.2 Processing-Phase2

Consider the clocking bits of registers R2 and R3. There are three possibilities:

• If R2[10] is filled and R3[10] is vacant, then replicate the state candidate twice, fill one copy with R3[10] = 0, and
the other copy with R3[10] = 1.

• If R2[10] is vacant and R3[10] is filled, then replicate the state candidate twice, fill one copy with R2[10] = 0, and
the other copy with R2[10] = 1.

• If R2[10] and R3[10] are both vacant, then replicate the state candidate four times, fill the first copy with R2[10]
= 0, R3[10] = 0; the second copy with R2[10] = 0, R3[10] = 1; the third copy with R2[10] = 1, R3[10] = 0; and the
fourth copy with R2[10] = 1, R3[10] = 1.

• Since the bit R3[7] is a feedback bit, we need to take special care of R3[7]. If there is a feedback, i.e., clocking in
R3, that bit needs to be full. So after each replication we see whether there will be clocking in the register R3 from
the majority function. If there is clocking and R3[7] is vacant, we duplicate that state candidate and fill 0 in R3[7]
for one, and 1 in the other.

Thus, all possible combinations are taken into consideration. Further details are available in Figure 3.

Now consider the bits R2[20] and R3[21] and let KS[i] be the known keystream bit for some i ∈ N. If registers R2
and R3 are clocked, then these bits will become the new MSBs for their respective registers after clocking. If both
these bits are vacant, there are four possible combinations for these bits; i.e., 00, 01, 10 and 11. But Equation 4.1
in Figure 3 (R1[17]⊕KS[i + 1] = R2[20]⊕R3[21]) and Equation 4.2 (R1[18]⊕KS[i + 1] = R2[20]⊕R3[21]) reduce

118



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 1; 2014

INITIALIZE

Are R2[21] AND R3[22] filled?

Replicate block twice. 
Determine R2[21] AND R3[22] by Equation 2.1

Fill each block with a specific valid combination.

Is t2 ≥ 10 AND t3 ≥ 11? TERMINATE

Go to Processing Phase2

Clock registers. Increase counters. 
Equation 2.1: KS[i] = R1[18] ⊕ R2[21] ⊕ R3[22]

t2 = no. of times R2 is clocked
t3 = no. of times R3 is clocked

NO

YES

YES

NO

Is R2[21] filled but R3[22] vacant? Determine R3[22] by 
Equation 2.1

YES

NO

Is R3[22] filled but R2[21] vacant? Determine R2[21] by 
Equation 2.1

YES

NO

Figure 2. Determination phase of the attack (processing-phase1)

them to two possibilities. This reduces the number of possible cases by half, a 50% save.

If only one of these bits is vacant, there are two possibilities for the vacant bit, 0 or 1. But this is reduced to only
one possibility. For example, if R2[10] , R1[8] = R3[10], then R3[21] = R1[17] ⊕ R2[21] ⊕ KS[i + 1]. In this
case, only R3[21] is unknown. This bit can be calculated by the above equation. Here, two possibilities for R3[21]
reduce to only one possibility. This reduces the number of cases by half.

Follow this protocol as long as t2 < 10 or t3 < 11. When this condition is not satisfied, i.e., the first time t2 ≥ 10
and t3 ≥ 11, stop. At this moment, registers R2 and R3 are completely determined for the known KS and register
R1. The number of bits between the clocking bit (CB) and the MSB for register R2 is 10 and for register R3 is
11. Hence, register R2 has to be clocked at least 10 times and register R3 has to be clocked at least 11 times to
determine all the bits in those registers.

A complete state candidate is a state candidate with all bits filled. The minimum number of KS bits required to
obtain a set of complete state candidates is eleven. This will happen when both registers R2 and R3 are clocked
together for 10 consecutive clocking cycles and register R3 is clocked again in the next round.

4.2 Post-Processing-Phase

The post-processing-phase checks for the key from the set of complete state candidates obtained after the determi-
nation phase. As discussed in Section 4.1, the minimum number of rounds needed to perform the post-processing-
phase is 11. The number of complete state candidates increases with every additional round. Hence, the probability
of finding the key increases with every additional round.

In this phase, we generate output bits by performing normal A5/1 encryption with each of the complete state
candidates obtained from the determination phase. Match these output bits bit-wise with the known KS bits. If
the KS bits and output bits match, continue clocking and generating output bits until a contradiction of bit-wise

119



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 1; 2014

NO

Replicate Block 4 times

Fill the replicated Blocks accordingly:
Block 1: R2[10] = 0, R3[10] = 0 
Block 2: R2[10] = 0, R3[10] = 1
Block 3: R2[10] = 1, R3[10] = 0
Block 4: R2[10] = 1, R3[10] = 1

Replicate Block twice

Fill one Block with R3[10] = 0 
Fill other Block with R3[10] = 1

Are R2[10] AND R3[10] filled?

Is R2[10] filled but R3[10] vacant?

Is R3[10] filled but R2[10] vacant? 
YES

YES

Replicate Block twice

Fill one Block with R2[10] = 0 
Fill other Block with R2[10] = 1

Now for each Block, do the following:
If R1[8] = R2[10] = R3[10], then replicate this new Block twice and fill each Block with a 

valid combination for R2[20] AND R3[21] by Equation 4.1
If R1[8] ≠ R2[10] = R3[10], then replicate this new Block twice and fill each Block with a 

valid combination for R2[20] AND R3[21] by Equation 4.2

If R2[10] ≠ R1[8] = R3[10], then R3[21] = R1[17] ⊕ R2[21] ⊕ KS[i+1]
If R3[10] ≠ R1[8] = R2[10], then R2[20] = R1[17] ⊕ R3[22] ⊕ KS[i+1]

Also, if R3[7] is vacant, then duplicate Block twice.
Fill one Block with R3[7] = 0, and other Block with R3[7] = 1

NO

NO

Equation 4.1: R1[17] ⊕ KS[i+1] = R2[20] ⊕ R3[21]
Equation 4.2: R1[18] ⊕ KS[i+1] = R2[20] ⊕ R3[21]

YES

Are R2[20] AND R3[21] 
filled?

YESNO

Figure 3. Determination phase of the attack (processing-phase2)

matching occurs. If all the output bits match the given 64 KS bits, that complete state candidate is the key. We
have thus found the key among the set of complete state candidates.

5. Analysis of the Attack

After initialization, we perform the determination phase. At this stage, all bits of register R1 are filled, while
registers R2 and R3 are vacant. According to the attack protocol, the determination phase determines the most
significant bits of registers R2 and R3 (R2[21] and R3[22]) in the processing-phase1; the clocking bits of R2 and R3
(R2[10] and R3[10]), if possible bit R3[7], bits R2[20] and R3[21] by processing-phase2.

If vacant, MSB of registers R2 and R3 are to be determined. The number of possible combinations reduces from
four to two by Equation 1. During the implementation of further rounds, there may be a possibility where only
one of the MSB of R2 or R3 is vacant. Theoretically, the number of combinations to fill that vacant bit is two, but
Equation 1 reduces that to only one correct possibility.

Processing-phase2 of the determination phase considers four bits: R2[10] (CB of R2), R3[10] (CB of R3), R2[20]
and R3[21]. All these four bits may or may not be vacant at all times. In the following table (Figure 4), we consider
all possible cases of these four bits being vacant or full, and the number of maximum possible valid combinations
that exist as a result of Equation 1. The last column depicts the percentage of the total possible cases that are
discarded due to the attack algorithm compared to an exhaustive search.

Now let us consider the bit R3[7] in register R3, which is part of the feedback bit for the register. If this bit is vacant,
there are two possibilities, 0 or 1. We could not eliminate any of these possibilities in our algorithm, so this case is
not included in Figure 4.

120



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 1; 2014

EMPTY? POSSIBLE
CASES

MAX. 
POSSIBLE 

VALID CASES
% SAVE

CB2 R2[20] CB3 R3[21]
✓ ✓ ✓ ✓ 16 6 62.5
✓ ✓ ✓ - 8 NA NA
✓ ✓ - ✓ 8 3 62.5
✓ - ✓ ✓ 8 4 50
- ✓ ✓ ✓ 8 3 62.5
✓ ✓ - - 4 2 50
✓ - ✓ - 4 NA NA
✓ - - ✓ 4 2 50
- ✓ - ✓ 4 2 50
- ✓ ✓ - 4 NA NA
- ✓ - ✓ 4 2 50
- - ✓ ✓ 4 2 50
✓ - - - 2 2 0
- ✓ - - 2 1 50
- - ✓ - 2 NA NA
- - - ✓ 2 1 50
- - - - 0 0 0

Figure 4. All possibilities during Processing-Phase2

After the determination phase of our algorithm, if the clocking bit of R3 is vacant, the bit R3[21] must also be
vacant. It is impossible to have a case where clocking bit of R3 is vacant, but bit R3[21] is filled. This reduces the
number of possible valid cases and is denoted in Figure 4 as Not Applicable (NA) cases.

In the determination phase, a total of 7 bits (i.e., R2[21], R2[20], R2[10], R3[22], R3[21], R3[10] and R3[7]) have to
be determined. These 7 bits would have 27 = 128 possible combinations. But the attack algorithm gives only 24
valid possible combinations. Thus rejecting 104 combinations, a saving of 81.25%.

If R3[7] is not considered, the first round of implementation will always generate 12 state candidates. On an
average, the second round generates 60 state candidates and the third round generates 300 state candidates. The
number of state candidates (up to round 10) can be approximated by the formula 12 × 5n−1, where n denotes
the number of round, 1 ≤ n < 11. It is only after the 11th round that we get the first set of complete state
candidates. When the bit R3[7] is taken into consideration, the first round of implementation will always generate
24 state candidates. From round three to round ten, the number of possible state candidates after every round is
approximately five times the total number in the previous round.

6. Discussion

We discuss in detail a probabilistic approach to determine the time complexity and success probability of our new
attack. The results of this probabilistic approach are also corroborated by experimental data. According to these
results, the average number of rounds necessary to get the key is 15.5 and the average number of complete state
candidates obtained after 15.5 rounds is 248.5. We conclude this section with a comparison of our attack with other
known attacks.

6.1 Time Complexity

We now study the time-complexity of our algorithm. The work done by this algorithm can be split in the following:

121



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 1; 2014

• checking to see if a cell in a register is vacant or full, in this paper we often called it as a bit is full or vacant.

• replication of state candidates.

• filling up vacant bits.

It is reasonable to assume that the checking and filling of bits take negligible amount of time. Hence, we can safely
assume that the unit of our time complexity measurement should be the number of replications needed, where one
unit of time is one replication. The algorithm starts with registers R2 and R3 vacant and register R1 filled (guessed).
At the end, it creates about 248.5 complete state candidates, i.e., 248.5 replications.

The number of bits between the clocking bit (CB) and the most significant bit for register R2 is 10 and for register
R3 is 11. Hence, the number of times the registers R2 and R3 have to be clocked to fill all the bits is at least 10 and
11 respectively. The minimum number of KS bits required to obtain a set of complete state candidates is 11. This
will occur when both registers R2 and R3 are clocked together for 10 consecutive clocking cycles and register R3
is clocked again in the following round. For one guess of the register R1, the number of complete state candidates
after 11 clocking rounds is approximately 240. With every clocking round, the number of complete state candidates
increases.

According to the majority function for the clocking rule of the A5/1, a register will get clocked 3 out of 4 times. At
every clocking cycle, at least two registers will get clocked. As stated in Section 2, a total of four cases are possible
for the clocking patterns of the registers and each are equally likely with a probability of 0.25. Let n1 be the event
that exactly one of the registers R2 or R3 is clocked along with R1. Let n2 be the event that both the registers R2 and
R3 are clocked. The probability that an event ni to occur is denoted by P(ni) where i = 1, 2. Thus P(ni) = 0.5 for
each i. Registers R2 and R3 have to be clocked at least 10 and 11 times respectively to determine all bits in those
registers.

Let X be the random variable denoting the number of clocking cycles needed to obtain a complete state candidate.
Let x1 be the minimum number of clocking cycles needed for event n1 to get a complete state candidate. Let x2
be the number of clocking cycles needed to get a complete state candidate from the event n2. It is easy to see that
x1 = 21, x2 = 10. The expectation for this variable X is given by

E[X] = x1 × P(n1) + x2 × P(n2)

= 21 ×
1
2

+ 10 ×
1
2

= 15.5

We concluded earlier that the minimum number of clocking cycles necessary to obtain a set of complete state
candidates is 11. After 15.5 rounds, there is a very high probability that the set of complete state candidate
contains the key. Experimental results show us that after 11 rounds we get about 240 complete state candidates.
The advantage of this attack is that once we have a set of complete state candidates, we can perform the post-
processing-phase separately and simultaneously, independent of the processing-phases of the next round and save
time.

6.2 Success Probability

In Table 1, we describe the data obtained from our experiments with this attack. The four columns of the table are:
number of clocking rounds, total number of state candidates obtained after that round, total number of complete
state candidates obtained, and the percentage of complete state candidates over the total number of state candidates
for that particular round. All values of the experimental data in the table are approximated to one decimal place.

Table 1. Storage requirement and success probability

No. of Rounds Total State Candidates Complete State Candidates Complete
Total × 100

11 245.2 239.2 1.6%

12 246.0 242.5 9.0%

13 246.7 244.5 22%

14 246.9 245.3 30%

15 247.1 246.1 50%

122



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 1; 2014

Remark: Our guess-and-determine attack guesses the entries of the register R1 and tries to determine the bits of
the register R2 and R3. Once R1 is fixed we have 19 fixed bits. In Figure 2, and the subsequent text we produced an
algorithm to determine these bits. We argued that the number of choices our algorithm makes is at most half the
amount of choices one would have made, if all possible combinations were taken into account. We also showed
that one would need, in average, about 15.5 clocking cycles. Now if all the possible choices of R2 and R3 were
considered then that would be 245 choices. In 15.5 clock cycles we would fill the registers R2 and R3 if all possible

choices were made. So the number of choices in our algorithm is 245 ×
(

1
2

)15.5
= 229.5. So for each possible choices

of the register R1 there are 229.5 choices. There are 219 choices for the register R1. If one works in serial, one choice
for R1 after another then the total number of A5/1 clocking is 219×229.5 = 248.5. It is now clear that this complexity
can be substantially reduced by parallelizing this algorithm, where each thread of computation takes on a different
choice for R1.

Table 2. Comparison of the known attacks on the A5/1

Attack KS bits Time complexity Success probability Notes/Storage
Anderson (Anderson, 1994) 64 252 100% –

Golic (Golic, 1997) 64 240.16 100% additionally
solve 64x64
linear system
of equations

Biham-Dunkelman – – – –

(Ghafari & Mohajeri, 2011) 220.8 237.89 63% 64 GB Storage

Keller-Seitz (Keller & Seitz, 2001) 64 251.24 18% –

GNR (Gendrullis et al., 2008) 64 254.02 100% –

BSW (Biryukov et al., 2001) 64 248 60% 300 GB

Rainbow Table (Nohl, 2010) 64 few seconds 90% 2 TB storage
and 2 GPU

Our Attack 64 248.5 100% –

References

Anderson, R. (1994). A5 (was: Hacking digital phones). Newsgroup Communication, 1994.

Babbage, S. (1995). A space time tradeoff in exhaustive search attacks on stream ciphers. In European convention
on security and detection. http://dx.doi.org/10.1049/cp:19950490

Barkan, E., Biham, E., & Keller, N. (2008). Instant ciphertext-only cryptanalysis of GSM encrypted communica-
tion. Journal of Cryptology, 21(3), 392-429. http://dx.doi.org/10.1007/s00145-007-9001-y

Biham, E., & Dunkelman, O. (2000). Cryptanalysis of the A5/1 GSM stream cipher. In Indocrypt’00.

Biryukov, A., Shamir, A., & Wagner, D. (2001). Real time cryptanalysis of A5/1 on a PC. In FSE’00.

Briceno, M., Goldberg, I., & Wagner, D. (1999). A pedagogical implementation of the GSM A5/1 and A5/2 ”voice
privacy” encryption algorithms. Retrieved January 5, 2012, from http://cryptome.org/gsm-a512.htm

Ekdahl, P., & Johansson, T. (2003). Another attack on A5/1. IEEE Transactions on Information Theory, 49(1),
284-289. http://dx.doi.org/10.1109/TIT.2002.806129

Gendrullis, T., Novotny, M., & Rupp, A. (2008). A real-world attack breaking A5/1 within hours. In CHES’08
(pp. 266-282).

Ghafari, V., & Mohajeri, J. (2011). An improved attack on A5/1. In Information security and cryptology (pp.
41-44).

Golic, J. (1997). Cryptanalysis of alleged A5 stream cipher. In Eurocrypt’97 (pp. 239-255).

Keller, J., & Seitz, B. (2001). A hardware-based attack on the A5/1 stream cipher (Tech. Rep.). FernUniversitat in

123



www.ccsenet.org/cis Computer and Information Science Vol. 7, No. 1; 2014

Hagen, Germany. Retrieved June 14, 2011, from http:// pv.fernuni-hagen.de/docs/apc2001-final.pdf

Krause, M. (2002). BBD-based crytanalysis of key stream generators. In Eurocrypt’02 (pp. 222-237).

Nohl, K. (2010). Attacking phone privacy. (Blackhat 2010 Lecture Notes)

Pornin, T., & Stern, J. (2000). Software-hardware trade-offs: Application to A5/1 cryptanalysis. In CHES’00 (pp.
318-327).

Notes

Note 1. A reader not familiar with the A5/1 stream cipher is encouraged to read Section 2 first.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

124


