
Computer and Information Science; Vol. 6, No. 2; 2013
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

134

A Generic Tool for Teaching Compilers

Riad Jabri1
1 University of Jordan, Amman, Jordan

Correspondence: Riad Jabri, Computer Science Department, King Abdullah II School for Information
Technology, University of Jordan, Amman 11942, Jordan. E-mail: jabri@ju.edu.jo

Received: March 11, 2013 Accepted: April 24, 2013 Online Published: April 26, 2013

doi:10.5539/cis.v6n2p134 URL: http://dx.doi.org/10.5539/cis.v6n2p134

Abstract

In this paper, we propose a two-fold generic tool for compiler construction. First, it facilitates teaching compilers.
Second, it constitutes a new approach for compiler construction. In addition, it enables a smooth transition from
theory to practice and introduces a unified approach for the implementation of the different compiler phases.
Such unification is achieved based on the representation of the compiler phases as a generic domain that is then
mapped into a generic automaton. The generic automaton simulates the behavior of finite and shift-reduce
automata, annotated by respective translation schemes. Thus, the tool acts as a scanner, a parser or as syntax
directed translator. Without loss of generality, the proposed tool is used within a compiler-teaching framework.
Comparisons with similar and well-known approaches have shown that our approach is pedagogical,
conceptually simpler, requires less student efforts and more relevant to core curriculum.

Keywords: teaching framework, scanning, parsing, grammars, syntax directed translation

1. Introduction

In this paper, we propose a generic tool for teaching compilers. Usually, compiler construction is taught as a
one-semester course having as prerequisites courses in programming languages; data structures and computer
organization. Within the framework of the compiler construction course, the students are requested to write a
compiler from a given language specification, using automated tools such as Lex and Yacc (Mason & Brown,
1990). However, such teaching approach loosely-couples the theory of scanning and parsing. In addition, it
constitutes an ambiguous shift from theory to practice, associated by the inherent difficulties and the typical errors
of automated tools (Mallozzi, 2005). Hence, in this paper we set an objective to tightly couple scanning, parsing
and translation, as well as to keep a connection and a smooth transition between theory and practice.

Such coupling is based on a proposed generic tool for the construction of scanners, parsers, and syntax directed
translators. The proposed tool is used as a unifying tool within the following framework for teaching compilers

1) Introduce compilation, including its different phases.

2) Introduce regular expressions and context-free grammars. Emphasize their roles in specifying the lexical
and syntactic levels of high level programming languages.

3) Introduce scanning in terms of finite automata. Emphasize the role of automata as scanners of languages
specified by regular expressions (definitions).

4) Introduce parsing in terms of push down storage automata. Emphasize the role of automata as parsers of
languages specified by context free grammars.

5) Introduce the concepts of a generic grammar that can be instantiated either by regular expressions and
context-free grammars. Emphasize its role in constructing a generic automaton (scanner-parser).

6) Construct the generic automaton as a scanner.

7) Construct the generic automaton as a parser.

8) Introduce the concepts of the syntax directed translation. Emphasize the role of the translation schemes.

9) Consider the remaining compilation phases in their subsequent order. Extend the automaton as type-checker,
intermediate code generator and as code generator.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

135

The outlined framework is consistent with ACM’s Curriculum 2001. It is motivated by the strategies and the
teaching approaches suggested in (Aho, 2008; Waite, 2006). However, the proposed framework adopts a unified
approach for teaching theory and its practical application. Such unification is achieved by adopting a generic
grammar that can be either instantiated by context-free grammars or by regular definitions. Such grammar is
annotated by appropriate translation schemes. As such, the augmented grammar is then transformed into an
augmented generic automaton (AGA). The states and the transitions of AGA are defined based on combining
concepts from LR automata, finite automata, with embedded translation schemes (Aho et al., 2007). Hence, the
parsing behavior of AGA is generic. It simulates finite automata, shift–reduce automata and syntax directed
translator. However, AGA is a nondeterministic. It is efficiently transformed into a reduced one, called RAGA,
using a proposed subset construction approach. In addition, the subset construction produces parsing and
translation tables that specify the RGA parsing/ translation actions, respective a given state and each one of the
input symbols. A simulator is then constructed to simulate the run (scanner/parser/translator) of RGA on strings
derived from a generic grammar.

Our parsing approach is based on position parsing automata (PPA), as proposed in (Jabri, 2009, 2012). However, it
extends PPA to act as a scanner/parser/translator and uses different construction approach that handles recursion
by reduced stack activities in a way similar to the generalized bottom up parsers and the reduction-incorporated
parsers, as proposed in (Ayock, 2001; Johnstone & Scott, 2007; Scott & Johnstone, 2005) respectively. In addition,
it handles nondeterminism in a way similar to SLR parsing as proposed in (Jabri, 2012).

The remainder of this paper is organized as follows. Section 2 presents preliminaries. Section 3 presents the
proposed generic tool and the respective algorithms for its implementation. Section 4 presents experimental results,
followed by a discussion and a conclusion that are given in Section 5 and Section 6 respectively.

2. Preliminaries

For our further discussions, we assume the following definitions based on the ones given by Aho et al. (2007) and
by Jabri (2012). These definitions are used to specify the subsequent phases of a compiler as follows:

• The specification needed for lexical analysis and parsing are based on regular definition and context
free grammars as given in Definition 1 and Definition 2 respectively. A unified definition for both is
based on a generic grammar as given in Definition 3.

• The specification needed for the remaining compiler phases are based on syntax directed translation
schemes (Aho et al., 2007) where program fragments are embedded within the productions of the
generic grammar. These fragments are enclosed between braces ({...}) and denoted as translation
schemes.

Definition 1. Given an alphabet Σ, a regular expression (RE) is defined as a notation to describe all languages that
can be built from the symbols of Σ by applying the operations: union (|); concatenation (.) and exponentiation (*).
RE is then inductively defined as follows:

• The symbol ε is RE and if x ∈ Σ then x is RE.

• Let x, y be RE .Then RE is inductively defined as: xy is RE; x | y is RE; x* is RE and (X) is RE.

Definition 2. Given an alphabet Σ, a regular definition (RD) is a sequence of definitions of the form: RD1 → RE1,
RD2 → RE2,…, RDn → REn, where RDi∉ Σ and REi is defined over Σ∪ {RD1, RD2,…, RDi-1}.

Definition 3. An Action-annotated Generic Grammar is defined by the 5-tuple AGG = (Σ, N, P, S, TS) that is
either instantiated by a context free grammar (CFG) or by RD. In addition, it is annotated by translation schemes to
specify a particular translation as follows:

1) AGG is instantiated by CFG, if:

• Σ is an alphabet of terminal symbols.

• N is a finite set of nonterminal symbols, where S∈N is a starting symbol.

• P is a finite set of productions p having the form p: A → V, where A ∈N and V ∈(Σ∪ N).

• TS is set of translation schemes to specify particular translation phase, where the individual
productions are annotated by such schemes as in p: A → V:: { translation scheme}.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

136

2) AGG is instantiated by RD, if:

• Σ is an alphabet of symbols.

• N = {RD1, RD2,…, RDn, } ∪ OP, where{RD1, RD2,…, RDn,} is an ordered set of nonterminal
symbols ; S∈N is a starting symbol and OP are special nonterminals representing the operations:
|, (), (.) and *.

• P is a finite set of productions p having the form p: Ai → REi, where Ai ∈{RD1, RD2,…, RDn,}
and REi defined by applying OP over (Σ∪ {RD1, RD2,…, RDi-1}).

• TS is a set of translation schemes to specify the translation of lexical entities into appropriate
tokens as in p: Ai → REi :: { translation scheme }.

Subsequently, in our further discussion, we use a string as a generic term to either denotes strings, generated by RD,
or sentences generated by CFG. These strings are annotated by appropriate translation schemes.

Example 1. Let G = (Σ, N, P, S, TS) be AGG instantiated by RD, where: (a-z, 0-9, +, *)∈Σ, (Id, num, op, ws,
token, tokenlst) ∈ N , P = { letter → a | b|…|z, digit → 0|…|9, ws → blank, id → letter (letter | digit)*, num →
digit. digit*(.digit)*, op → + |*, token → id | num | op, tokenlst → tokenlst ws token} and TS is a set of
translation schemes. Examples for strings generated by G are: xy2z, 23.5 and 56.9. A possible annotation of G is as
follows:

id → letter (letter | digit)*::{ Return (ID)}, where ID is an encoding of a token of type id; num → digit.
digit*(.digit)*::{ Return (NUM)}, where NUM is an encoding of a token of type num and op → + |* ::{ Return

(OP)}, where OP is an encoding of a token of type op.

Example 2. Let G = (Σ, N, P, S, TS) be AGG grammar. It is instantiated by CFG as follows: Σ = {id, +, *}, N ={E,
T, F }, P ={ E → E + T | T, T → T*F | F, F → id }and TS is a set of translation schemes . Examples for strings
generated by G are: id*id, id, and id +id*id. A possible annotation of G for type checking is as follows:
F → id ::{ Type.F = Type.id} and E → E + T:: { Type.E = f (Type.E, Type.T)}.

3. The Proposed Generic Tool

Let G = (Σ, N, P, S, TS) be an AGG grammar. The proposed generic tool (GCT) is defined either as a scanner, if G
is instantiated by RD, or as a parser, if G is instantiated by CFG. In addition, GCT is defined in away that permit its
transformation to a translator respective to the translation schemes (TS), annotating the individual productions of
G. As such, GCT has the structure shown in Figure 1, where:

Figure 1. The structure of GCT

• AGA is a nondeterministic automaton defined and constructed as given by Definition 4 and Section 3.1.

• RGA is a reduced automaton obtained as a result of applying a subset construction on AGA as given in
Section 3.2

• A simulator for RGA constructed as given in Section 3.3. Such simulator acts either as a scanner/
translator or a parser/ translator.

• Once a string is fed as an input to RGA simulator, an output is then produced as consisting of a
respective sequence of AGG's production reductions and the results of the execution of the translation
schemes annotating the individual AGG's productions.

Definition 4. An Augmented Generic Automaton (AGA)

Let (Σ, N, P, S, TS) be AGG grammar. AGA is then defined by the 5-tuple ((Σ ∪ ε), Q, qin, qfin, TA), where:

• Σ represents strings generated by the AGG grammar.

• Each grammar symbol V∈ (Σ ∪ N) is represented by the pair (Vi, Vf}) to represent a prediction and
an acceptance of V in an assumed translation. Consequently, The GCCT states respective to each V∈
(Σ ∪ N) are defined as the set {(qi = Vi, qf = Vf)}, where: qi is an initial state instantiated by Vi and acts
as a predictor (scanner) for V. The state qf is a final one, instantiated by Vf and acts as its respective

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

137

acceptor. In addition and if V is associated with a translation scheme, the state qf is augmented by such
scheme as a translation action to be executed upon transition to qf. Hence, the set of AGA states is
defined as Q = {(qi = Vi, qf = Vf) | V∈ (Σ ∪ N)} where, each state is instantiated by a respective
grammar symbols.

• (qin = Si) and (qfin = Sf) are the initial and final states, instantiated by the symbols respective to the
starting grammar symbol of the AGG grammar.

• TA is a set of the translation actions of AGA. It consists of parsing actions annotated by translation
schemes. The parsing actions consist of move transitions and reductions. Upon transitions and
reductions, the action specified by such scheme is executed as an integral part of the parsing action. The
move parsing actions are defined by the set SPA = {σ (qi,, V) = (qj,) :: {translation scheme}},
whereσ (qi,, V) = (qj,) specifies a subsequent state qj∈ Q for a given state qi∈ Q and a given grammar
symbol V∈ T. Upon transitions, a program fragment is performed as indicated by the annotating
translation scheme. The reduce parsing actions are defined by the set RPA = {δ (q, V) = reduce(r)::
{translation scheme}}, whereδ (q, V) = reduce(r) defines a reduction rule (r), for every V ∈ N , q
∈ Q such that q has been instantiated by Vf and V is the LHS (r). RPA performs the indicated
{translation scheme}, If the reduction is associated with such scheme.

The states and the parsing actions of AGA are dependent on the production types; the types of the grammar
symbols and their respective positions in the individual productions of AGG, They are inductively constructed as
given in Section 3.1.

3.1 AGA Construction Approach

Let G = (Σ, N, P, S, TS) be an AGG grammar, where:

• G is either instantiated by CFG or RD. Respectively, the set of productions P is generic and is either
instantiated by grammar productions or regular definitions.

• The productions of CFG are classified into three types: simple productions, productions having
alternatives and productions having embedded recursion.

• Given p ∈ P, the grammar symbols V in p are classified into the following types: terminals, ranked
terminals, nonterminals, a recursive-head (V is LHS (p) and p is a production having embedded
recursion) and a recursive-instance (V ∈ RHS (p) and V is LHS(p)). In addition, each nonterminals
with repeated occurrences in RHS of different productions is classified as repeated–instance.

• The right hand side of RD are regular expressions on which the following operations are applied:
Concatenation; alternation; exponentiation.

• Considering a particular compilation phase, respective translation schemes (TS) are defined and used to
annotate the set P.

Assuming that the right hand sides (regular expressions) of RD are decomposed into their constituent sub
expressions, Algorithm 1 constructs AGA for RD (AGA (RD)) as well as for CFG (AGA(CFG)). The construction
of AGA (RD) or (AGA (CFG)) proceeds according to the same steps from which Algorithm 1 is composed.
However, the construction of AGA (RD) excludes the step covering embedded recursions, while the construction
of AGA (CFG) excludes the one covering exponentiation.

Algorithm 1: AGA Construction Algorithm

Input: An AGG grammar G = (Σ, N, P, S, TS).

Output: GA defined by the 5-tuple ((Σ ∪ ε), Q, qin, qfin, TA) and its respective transition graph.

Method:

Initially, the states of AGA are constructed as the set as Q = {(qi = Vi, qf = Vf) | V∈ (Σ ∪ N)}. AGA is then
inductively constructed as follows:

1) Basis:

 Let (qi , qf) ∈ Q be an arbitrary states, denoted as an initial state and a final one respectively,
AGA for the grammar symbol ε (AGA (ε)) is then constructed as shown in Figure 2.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

138

Figure 2. AGA (ε)

It constitutes an ε -transition (σ (qi,, ε) = (qf,) ::{ translation scheme}) between qi and qf,
associated with a translation scheme.

 Let V ∈ Σ , AGA (V) is then constructed as consisting of two states (Fig.3) with the following
transitions σ (qi, V) = (qf) :: { translation scheme}

Figure 3. AGA (V)

2) Induction:

2.1 Let p∈ P: LHS(p) → RHS(p) be either a simple production or a concatenation of sub
expressions; AGA (p) is then constructed as shown in Figure 4.

Figure 4. AGA (p)

where: qi is the initial state and qi the final state of AGA (p). AGA (RHS(p)) is an aggregation of
AGA1, …, and AGAn respective to the individual grammar symbols from which RHS (p) is composed.
Hence, it is constructed as shown in Figure 5.

Figure 5. AGA (RHS (p))

Each AGAi has qi
i and qi

f as an initial and final states respectively. AGA(p) has the following translation
actions :

SPA: σ (qi,, ε) = (q1
i) ::{ translation scheme},where q1

i is an initial state of AGA (RHS(p)).

SPA: σ (qn
f, ε) = (qf,) ::{ translation scheme} where qn

f
, is the final state of AGA (RHS(p)).

SPA: {σ (qi
f, ε) = (qi+1

i
,) ::{ translation scheme} | i=1,…, n-1 }.

RPA: δ (qf, LHS(p)) = reduce (LHS(p)) ::{ translation scheme}.

2.2 Let p∈ P: LHS(p) → RHS1(p) |…|RHSn(p) be either a production with alternative right hand
sides or alternative sub expressions RHS1(p), RHS2 (p),.., RHSn(p). AGA (p) is then constructed as
shown in Figure 6.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

139

Figure 6. AGA for a production with alternatives

Each alternative RHSi (p) has a respective AGA(RHSi (p)) with initial and final states qi

i and qi
f

respectively. The initial and the final states of AGA (p) are qi and qf . AGA(p) has the actions:

SPA: {σ (qi,, ε) = (qj
i
,) ::{ translation scheme} | j=1,..n},where qj

i is the initial state of AGAj.

SPA: {σ (qj
f, ε) = (qf,) ::{ translation scheme}| j=1,..n}, where qj

f is the final state of AGAj.

RPA: δ (qf, LHS(p)) = reduce (LHS(p)) ::{ translation scheme}.

2.3 Let p∈ P: LHS(p) → RHS(p) be a production having embedded recursion, where LHS(p) ∈
RHS(p) at position (i). AGA is constructed as shown in Figure 7.

Figure 7. AGA for a production with embedded recursion

AGA(p) consists of : the initial state qi, the final state qf and the AGA respective to (RHS(p)).

AGA(RHS(p)) has the states q1
i, …, qi-1

f, qri
i, qri

f, qi+1
i,…, qn

f, where q1
i and qn

f are the initial and final
states; qri

i and qri
f are the initial and final respective to the embedded recursion. AGA actions are as

follows:

SPA: σ (qi,, ε) = (q1
i
,) ::{ translation scheme}::{ recursion-initialization1}, where{recursion-

initialization}is a program segment, executed during parsing, that creates a stack (qi) initialized with the
symbolε at the top.

SPA: σ (qn
f, ε) = (qf,) ::{ translation scheme }

SPA: σ (qi-1
f, ε) = (qri

i
,) ::{ translation scheme }

SPA: σ (qri
i
,, ε) = (qi) ::{ translation scheme}::{ recursion-initialization2},

where{ recuersion-initialization2} is a program segment, executed during parsing, that initializes a
recursive path with a return address qri

f, pushed on the top of stack (qi).

RPA: δ (qf, LHS(p)) = reduce (LHS(p)) ::{ translation scheme} ∪ { recursion-termination},
where{ recursion-termination } is a program segment, executed during parsing, that terminates a
recursive path by performing anε -transition to the address at top of stack (qi), if top(stack (qi)) ≠ ε .

SPA: σ (qri
f
,, ε) = (qi+1

i) ::{ translation scheme}.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

140

2.4 Let {p∈ P: LHS(p) → RHS(p)} be a set of productions having (A∈N) ∈ RHS(p), where A
is classified as repeated-instance. AGA (A) is then constructed for a selected instance. An AGA for each
one of the other instance is constructed following the steps for embedded recursion.

2.5 Let p∈ P: LHS(p) → RHS(p) be a production (regular definition) having a sub expression r*
at position (i), where r*∈ RHS(p) at position (i). AGA (p) is constructed as shown in Figure 8.

Figure 8. AGA for regular definitions

AGA (p) consists of: the initial state q0, the final state qf and AGA (RHS (p))respective to (RHS (p)).
AGA (RHS (p)) has the states q1

i, …, qi-1
f, AGA(r*), qi+1

i,…, qn
f, where: qi

i and qi
f are the initial and final

states for AGA(r*) ; qri
i and qri

f are the initial and final respective to the exponentiation. AGA actions are:

SPA: σ (q0,, ε) = (q1
i
,) ::{ translation scheme}

SPA: σ (qn
f, ε) = (qf,) ::{ translation scheme }

SPA: σ (qi-1
f, ε) = (qri

i
,) :: { translation scheme }

SPA: σ (qri
i
,, ε) = (qi

i) ::{ translation scheme}

SPA: σ (qi
f
,, ε) = (qi

i) ::{ translation scheme}

SPA: σ (qi
f
,, ε) = (qri

f) ::{ translation scheme}

SPA: σ (qri
i
,, ε) = (qri

f) ::{ translation scheme}

SPA: σ (qri
f
,, ε) = (qi+1

i) ::{ translation scheme}

RPA: δ (qf, LHS (p)) = reduce (LHS(p)) ::{ translation scheme}

Example 3. Let G = (Σ, N, P, S, TS) be GAA grammar with simple productions. Where: (id, +, *)∈Σ, (E, T, F)
∈ N and P ={ E → E+T T, T → T*F F, F → id }. A nondeterministic automaton representing AGA respective
to G is shown in Figure 9.

Figure 9. AGA for the grammar of Example 3

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

141

Example 4. Let G = (Σ, N, P, S, TS) be GGA grammar instantiated by regular definitions as given in Example 1.
Fig. 10 shows a nondeterministic automaton representing AGA respective to the productions : letter → a | b|…|z;
digit → 0|…|9, id → letter (letter | digit)* ; token → id; and tokenlst → token.

Figure 10. AGA for the grammar of Example 4

3.2 RAGA Construction Approach

In this section, we propose a construction approach for the reduced automaton RAGA based on extension of the
subset construction algorithms given in (Aho et al., 2007; Jabri, 2012). Such extension is a twofold. First, it covers
a wider class of grammars including RD and CFG. Second, it has a deterministic behavior upon the RGAG reduce
actions, as well as upon return actions as determined by recursion-termination.

The constructed automaton in (Jabri, 2012) has multiple transitions and respective reductions. In contrast,
according to the proposed approach, the sets of follow symbols for the nonterminals are used to determine their
respective reduction in a deterministic way, similar to the one adopted for SLR parsers (Aho et al., 2007). Based on
such approach a proposed algorithm, denoted by Algorithm 2 is given below. Having the AGA states QGT and their
respective translation actions TAGA = {AGA.PAS, AGA.PAR} as an input, Algorithm 2 constructs RAGA
respective to the nondeterministic one. RAGA (G) is represented by its respective states QRGA and translation
actions TARGA. In its turn, two tables represent TARGA The first one constitutes a transition table (TRT), where
each entry (TRT [qo, Vi]) of such table specifies the transitions of type SPA. The second table RTT specifies the
reductions (RPA) and to the translation actions (as indicated by the translation schemes respective to SPA and
RPA) to be performed by RAGA (G) during its run on an input alphabet, generated from the grammar G. Thus,
Algorithm 2 computes QRGA using anε -closure function (Aho et al., 2007).This function closes the initial states
and the final states respective to the different grammar symbol types. However, it does not close the initial states
instantiated by grammar symbols of types recursive-instances (Vri

i, Vri
f) and repeated-instance. Algorithm 2

handles these symbols by creating respective states and transitions, including the translation schemes
{recursion-initialization} and {recursion-termination}.

Algorithm 2. RAGA Construction

Input: AGA automaton, defined by the 5-tuple: ((Σ ∪ ε), QGA, TAGA, qin, qfin).

Output: RAGA automaton, defined by the 5-tuple: ((Σ ∪ ε), QRGA, TARGA, qin, qfin).

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

142

Method:

Step1: Construct the set QRGA of RAGA states and a respective set TARGA of type shift as ε - closures of the
states in QGA and their respective transitions.

Step2: Complete the construction of the set TARGA and construct the respective transition and
reduction/translation tables, represented by the tables TRT and RTT.

Step1 of Algorithm 1 proceeds by executing the program segment as shown in Figure 11, where it starts by
constructing the initial state RAGA.qin and then repeatedly considers each constructed state q in QRGA to
constructs the subsequent states qi as ε - closure (σ (qpii , V)) such that qpii in q and (σ (qpii , V) ∈ TAGA.
The transitions TARGA respective to q are then constructed as σ (q, V) = qi). In addition, it registers the states
representing recursion and repetition and constructs ε - closures respective the states initialized by grammar
symbols of type qpif. Step2 of Algorithm 1 proceeds by executing the program segment as shown in Figure 12,
where: First, it constructs the transitions respective to the registered-heads as well as the states and transitions
respective to the registered-instances. Second, it constructs the reduce / translation actions respective RAGA
states and represents these actions (and the RAGA transitions) as entries in the tables RTT and TRT.

Example 5. Let G = (Σ, N, P, S) be a grammar with simple productions as given in Example 3. G is annotated by
translation schemes to translate expressions in infix notation into ones in postfix notation as given in (Aho et al.,
2007). The automaton representing RAGA (G) as constructed by Algorithm 2 is given in terms of its transition
graph and the tables TRT and RTT as shown in Figure 13 and Table 1 respectively.

Example 6. Let G = (Σ, N, P, S) be a generic grammar instantiated by regular definitions as given in Example
2.2 but annotated by translation schemes to produce recognized tokens. The automaton representing RAGA(G)
as constructed by Algorithm 2 is given in terms of its TNT and TRT as shown in Table 2.

Figure 11. The construction of RAGA states and transitions

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

143

Figure 12. The Construction of the RAGA reduce/ translation actions and its tables

Figure 13. The transition graph of RAGA for the grammar of Example 5

Table1. The transition/reduction tables of RAGA for the grammar of Example 5

TRT table RTT table

State
Input Symbols

Entry Action ε id + * $

q0 q2r
i, q3r

i q1 1 R (F → id, T → F, E → T), :: {(print(id)}, Accept

 2 3 1 2 R (F → id, T → F, E → T) ::{(print(id)), {(rec-termination)= q2r
f}

q2r
i q2r

i q1 4 4 4 3 R (F → id, T → F), S (print(id))::{ (rec-termination)= q3r
f}

q2r
f q4 4 { (recursion-initialization)}

q3r
i q3r

i q1 5 5 5 5 { (recursion-initialization)}

q3r
f q5 6 R (E → E+T)::{ (print(+))};Accept

q4r
i q3r

i q1 7 R (E → E+T)::{(print(+))::{(recursion-termination)= q2r
f }

q4r
f q1 7 8 6 8 R (E → E+T)::{(print(+))};{(recursion- termination}

q5 q6 9 R (F → id , T → T*F)::{ (print(id), {(print(*)};Accept

q6 10 11 9 10 R (F → id ,T → T*F)::{ (print(id)}, { (print(*)};{(recursion- termination)= q2r
f }

 11 R (F → id ,T → T*F)::{ (print(id), {(print(*)};{(recursion- termination)= q3r
f }

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

144

Table 2. The transition/reduction tables of RAGA for the grammar of Example 6

TRT table RTT table

State
Input Symbols

Entry Action ε + * L D other ws $

q0 q1r
i q3 q4 q7 q5 1 1 1 { (recursion-initialization) = q1r

f }

q1r
i q1r

i q3 q4 q7 q5 2 2 2 S (recursion-initialization) = q1r
f }

q1r
f q2 3 R (OP → +, T → OP, TL → T)::

q2 q3 q4 q7 q5 {(print(op,+)}, Accept

q3 4 3 4 R (OP → +, T → OP, TL → T)::

q4 6 5 {(print(op,+)}, { (recursion-termination)}

q5 q5 q5 q6 5 R (OP → *, T → OP, TL → T)::

q6 8 7 {(print(op,*)}, Accept

q7 q7 q7 q8 6 R (OP → *, T → OP, TL → T)::

q8 10 9 {(print(op,*)}, { (recursion-termination)}

3.3 RAGA Simulation

Let G be an AGG grammar, respective AGA(G) and RAGA(G) are constructed by Algorithm 1 and Algorithm 2.
The run of RAGA(G) on input strings generated by G is then simulated by Algorithm 3, as given below.

Algorithm 3. RAGA Simulator

Input: An input string (w$) and the RAGA(G) automaton, respective to a grammar G. RAGA(G) is
represented by two tables: the transition table TRT and the reduction-translation table RTT

Output: Set of reductions as they occur, if w L (G) Translation actions as indicated by parsing actions

Method:

Initially, the simulator is in its initial configuration, consisting from the RAGA(G) initial state qin and the input
string, represented as INPUT[] = w$. As the individual input symbols are read, the simulator performs their
respective parsing actions. This is achieved by executing the following program segment.

NextStates= NextStates ∪ {qin};

Create-simulation-path ({ qin });

For each recursive-head qr
i in NextStates

{ perform RTT [TRT[qr,-]].S (recursion-initialization)};

For i = 1 to MaxSize (INPUT)

{Subsequentstates= φ

 For each state q in NextStates

 { Movet-states =φ ; Reduce-states = φ ; Return-states =φ ;

 Shift-states = TRT [q, INPUT [i]];

 If (Shift-states = φ) { output(Error)}

 Elseif

 {For each state s in Shift-states

 {Movetstates = Movetstates ∪ s;

 Create-simulation-path (s, simulation-path(q));

 If (s =qr
i) { perform RTT[[TRT[s, -]].S (recursion-initialization)};

 If (Reduce-state (s))

 { Output (RTT[[TRT[s, LA]].R(reductions);

 Output (RTT[[[TRT[s, LA]].S (translation scheme)

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

145

 If (s= qr
i)

 { Return-states = Return-states ∪

 (perform RTT[[[TRT[s, LA]].S (recursion-termination)};

 }

 Subsequent-states = Subsequent-states ∪ Shift-states ∪Return-states;

 } NextStates = Subsequent-states;

 }

 If (NextStates ∩ qfin ε≠){ Accept (Input); }

Example 7. Let a * c be a string generated by the grammar of examples 2.2 and 3.4. The run of RAGA on such
string is shown in Table 3.

Example 8. Let id * id be a string generated by the grammar of examples 2.1 and 3.3. The run of RAGA on such
string is shown in Table 4.

Table 3. The run of RAGA simulator on a string

Current state Current input simulation action

q0; q1r
i a * b$ { (recursion-initialization)}

q7 * b$

q8 { (recursion-termination)}

 R (T → id), R(TL → T);
{(print(id,Value))}

q1r
f ; q1r

i * b$ { (recursion-initialization)}

q4 b$ { (recursion-termination)}

 R (OP → *), {(print(op,*)},
R(T → op)

q0; q1r
i b$ { (recursion-initialization)}

q7 $

q8 { (recursion-termination)

 R (T → id), R(TL → T);
{(print(id,Value)}

Table 4. The run of RGCCT simulator on a string

Current state Current input simulation action

q0; q1r
i a * b$ { (recursion-initialization)}

q7 * b$

q8 { (recursion-termination)}

 R (T → id), R(TL → T);
{(print(id,Value))}

q1r
f ; q1r

i * b$ { (recursion-initialization)}

q4 b$ { (recursion-termination)}

 R (OP → *), {(print(op,*)},
R(T → op)

q0; q1r
i b$ { (recursion-initialization)}

q7 $

q8 { (recursion-termination)

 R (T → id), R(TL → T);
{(print(id,Value)}

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

146

4. Experimental Results

To validate the correctness, the simplicity and the applicability of our proposed approach, and in addition, to
inspect how easily the transition from theory to practice can be made, the proposed GCT has been assigned as a
graduation project. Based on the GCT concepts and its implementation algorithms, the assignment is reduced to
the implementation of a version the can be used by students as tool for the construction of the different compiler's
phases. The parsing phase has been selected as representative one. As such, GCT has been implemented, using
Microsoft Visual C++ 6.0., by the program given in Figure 14, where:

• InteractionContext () is a method to input a AGG grammar defined by the 4-tuple G = (Σ, N, P, S). It is
implemented by the three functions: Terminals (); NonTerminals (); and Productions () to facilitate the
input of the terminal symbols (Σ), the nonterminal symbols (N) and the AGG productions (P)
respectively. The productions are entered one by one (p), where LHS(p) is entered first followed by the
symbols of RHS (p), from left to right. This enables automatic indexing of the grammar symbols by
their respective positions within each production. As the productions are entered they are mapped into
respective automaton (AGA) states (Q), where for each grammar symbol Vp, its corresponding initial
state qp

i ∈Q and final state qp
f ∈Q are created.

Figure 14. The GCT construction program

• Based on the construction algorithm, the method construct_aga() completes the construction of the

AGA automaton by creating the parsing actions respective to Q . Such construction is achieved using
the attached index of the individual states as indicator for the positions of their corresponding grammar
symbols within their respective productions. In addition, construct_aga() produces as an output the
transition graph respective to AGA.

• construct_raga () is a method to construct RAGA automaton according to the subset construction
algorithm. It produces as an output the parsing table respective to RAGA.

The outlined implementation of GCT and its use as a as scanner/parser/translator have been experimented by the
students from three sections of a compiler construction course over three semesters. Several grammars, annotated
by respective translation schemes have been used. Compared to previous semesters, the number of students
completed their assignments has been increased by 30%. The following is an example of such experiments.

Example 9. Considering the grammar G = (Σ, N, P, S), where: (d, b, c)∈Σ, (S, A, B, X) ∈ N and P ={ S → Ad,
A → BX, B → b, X → c }. It’s parsing using GCT proceeds as follows

The grammar G is inputted using an interaction context to enter Σ, N and P as shown in Figures 15 and 16
respectively.

The output produced by the method construct_aga () consists of a transition graph of AGA respective to the
inputted grammar as shown in Figure 17.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

147

The output produced by the method construct_raga () consists of the set of RAGA states and its representative
parsing and translation tables as shown in Figure 18, Figure 19 and Figure 20 respectively.

Figure 15. The GCT interaction context to input grammar symbols

Figure 16. The GCT interaction context to input grammar productions

Figure 17. A transition graph of AGA respective to the grammar (3.5) as produced by GCT

Figure 18. The set of RAGA states as constructed by GCT

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

148

Figure 19. The transition table of RAGA as constructed by GCT

Figure 20. The reduction-translation table of RAGA as constructed by GCT

5. Discussion

The proposed tool has been analyzed and experimented against the set objectives and in two directions. The first
one considers GCT as new compiler construction approach. The second direction considers GCT as a teaching
tool.

As a compiler construction approach, GCT has demonstrated the following properties: Generality and soundness
of its construction approach. GCT constructs a bottom up parsing automaton (RAGA) that simulates shift–reduce
one, but with reduced stack activities. In addition, regular definitions are recognizable by RAGA. Semantic action
can be inserted within grammar productions. As result, GCT can easily provide a syntax directed translator.

RAGA features the finite automata (Aho et al., 2007) in two aspects. The first one is the number of its states
transitions. The second aspect is the complexity of its subset construction algorithm. However, these aspects are
with additional overhead to handle recursion. Compared to LR parsers (Aho et al., 2007), RAGA has less number
of states and less parser size. This is due to the fact that it performs shift-reduce operations with stack activities
reduced to recursion handling. In addition, RAGA has no goto-transition on non terminals. Hence, their respective
computational overhead and the construction of the goto-part of the parsing table are not included in the subset
construction algorithm for RAGA.

RAGA is based on position parsing automata (PPA) as proposed in (Jabri, 2009) In addition, it handles recursion in
a similar way as the one in recursion incorporated generalized parsers (RI) (Galves et al., 2006; Johnstone & Scott,
2007; Scott & Johnstone, 2005). However, compared to such approaches RAGA is distinguished by its annotation
with translation schemes and the following properties:

(1) Compared to PPA, RAGA is considered as an extension since it handles left, embedded and direct right
recursion, while PPA handles the embedded ones only. Furthermore, their handling approach is different. PPA
handles recursion by state and transition instantiation while RAGA handles recursion by reduced stack
activities. Finally, the reduced version of PPA (Jabri, 2012) has non deterministic behavior while RAGA has
deterministic one. Such determinism is achieved by using look ahead symbols, upon the reduction actions of
RAGA.

(2) Compared to RI, RAGA handles left and right recursion while RI handles embedded ones and follows
different construction and parsing approach. In addition to stacks needed for recursion handling, in RI two
parsing stacks are used while in RAGA no parsing stacks are used.

As a teaching tool, GCT has been experimented and compared against existing ones. It has been shown that GCT is
distinguished by the following:

(1) GCT is based on concepts from finite and LR automata as well as syntax directed translation. Hence, it obeys
strictly to theory and facilitates a smooth transition to practice.

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

149

(2) Its use within the proposed teaching framework is consistent with the compiler construction phases and their
respective order. In contrast, the existing tools are based on a particular approach, for examples:

• The suggested tool in (Mallozzi, 2005) is based on recursive descent approach.

• The suggested one in (Demaille & Levillain, 2008) is an extension of the well-known Bison tool
(Corbett et al., 2003) and based on LALR grammar (Aho et al., 2007).

• A third tool suggested in (Morell & Middleton, 2003) follows recursive ascent approach that
simulates tabular-less bottom up parsers.

In contrast to such tools and a similar one (Pinaki et al., 2011), GCT simulates a generic bottom-parser and
maintains its inherent tables but with reduced size and overhead. Furthermore, compared to Lex and Yacc (Mason
& Brown, 1990) GCCT is a pedagogical tool. Its input features regular and context-free grammars. Its construction
approach is a direct mapping to an automaton. It produces as an output the transition graph and the parsing table
respective to the constructed automaton, associated with textual information. Furthermore, it enables more
experiments to be conducted by students within the framework of the compiler construction course. For example,
students were asked to construct a parser using the same grammar (Example 9) and following the proposed
approach as well as the SLR approach (Aho et al., 2007). It has been shown that the parser constructed according to
our approach requires less construction time and less states (8) as compared to the one constructed by SLR (15
states). Furthermore, the ease of use of GCT as automated tool is demonstrated by the fact that it use reduced to an
interaction context consisting of the textual representation of the context-free grammars without any modification.
A graphical, tabular and textual information representing GCT are then displayed as an output.

6. Conclusion

In this paper, we have proposed and implemented a tool for teaching compilers. The tool is based on a new
compiler construction approach that is characterized by its soundness, generality and efficiency. Having as an
input, a generic grammar (Regular definitions or context-free grams), annotated by translation schemes, the
proposed tool respectively reacts either as a scanner, a parser, or as a syntax directed translator. Such reaction
proceeds as follows. First, it constructs a nondeterministic bottom–up automaton (AGA). The states and the
transitions of AGA are defined based on concepts from the LR (0) items and the finite deterministic automata.
Second, AGA is transformed into a reduced one (RAGA) in efficient way. Such automaton simulates the parsing
behavior of the shift-reduce automata. Finally, the tool produces as an output the transition graph and the parsing /
translation tables respective to RAGA. The experiments and the analysis of the proposed approach for have shown
its superiority over similar ones, either in terms of its generality or in terms of its performance and ease of use. In
addition, the tool has proved its practical application within a compiler teaching framework and in a way that
tightly couples theory and practice. Since such experiments have emphasized the syntax analysis phase of
compilers, further experiments, as a future work, are to be conducted to demonstrate the capability of the proposed
tool in the subsequent compilation phases such as code generation.

References

Aho, A. V. (2008). Teaching the Compilers Course. ACM SIGCSE Bulletin, 40(4), 6-8.
http://dx.doi.org/10.1145/1473195

Aho, A. V., Sethi, M. L. R., & Ullman, J. D. (2007). Compilers Principles, Techniques, & Tools. Addison Wesely.

Ayock, J., Horspool, R. N., Janousek, J., & Melichar, B. (2001). Even faster generalized LR parsing. Acta
Infomtica, 37(9), 631-651.

Corbett, R., Stallman, R., & Hilfinger, P. (2003). Bison: GNU LALR(1) and GLR parser generator. Retrieved
from http//www.gnu.org/software/bison/bison.html

Demaille, A., Levillain, R., & Perrot, B. (2008). A set of tools to teach compiler construction, Proceedings of the
13th annual conference on innovation and technology in computer science (pp. 68-72). Madrid, Spain.
http://dx.doi.org/10.1145/1597849/1384291

Galves, J. F., Schmitz, S., & Faree, J., (2006). Shift-resolve parsing: Simple unbounded look ahead, linear time.
Lecture Notes in Computer Science, 4094, 253-264.

Jabri, R. S. (2009). Pattern Matching based on regular tree grammars. International Journal of Electrical and
Computer Engineering, 4(1), 25-34.

Jabri, R. S. (2012). A generic parser for strings and trees. Computer Science and Information Systems, 9(1),
380-409. http://dx.doi.org/10.2298/CSIS101109004J

www.ccsenet.org/cis Computer and Information Science Vol. 6, No. 2; 2013

150

Johnstone, A., & Scott, E. (2007). Automatic recursion engineering of reduction incorporated parsers. Science of
Computer Programming, 68, 95-110. http://dx.doi.org/10.1016/j.scico.2006.04.011

Mallozzi, J. S, (2005). Thoughts on and Tools for Teaching Compiler Design. Journal of Computing Sciences in
Colleges, 21(2), 177-184.

Mason, T., & Brown, D. (1990). Lex & Yacc (p. 216). O'Reilly &Associates, Inc. CA, USA.

Morell, L., & Middleton, D. (2003). Recursive-ascent parsing. Journal of Computing Sciences in Colleges, 18(6),
186-201.

Panaki, C., Shweta T., Saxena, P. C., & Katti, C. P. (2011). Teaching purpose compiler: an exercise and its
feedback. ACM Inrods, 2(2), 47-51. http://dx.doi.org/10.1145/1963533.1963549

Scott E., & Johnstone, A. (2005). Generalized bottom- up parsers with reduced stack activity. The Computer
Journal, 48(5), 565-587. http://dx.doi.org/10.1093/comjnl/bxh102

Waite, W. M. (2006). The compiler course in today's curriculum: three strategies. Proceedings of the 37th
SIGCSE technical symposium on Computer science education (pp. 87-91) Houston, Texas, USA.
http://dx.doi.org/10.1145/1121341.1121371

