
Computer and Information Science February, 2009

115

A Study on Query Optimization for Federated Database Systems
Xinhua Xu

Computer Science & Technology Division
Hubei Polytechnic Institute

Xiaogan City, Hubei 432000, China
E-mail: uxinua@gmail.com

Abstract
In this paper, we explore the design space for a query optimizer in this environment and demonstrate the need for
decoupling various aspects of the optimization process. We present minimum-communication decoupled variants of
various query optimization techniques, and discuss trade-offs in their performance in this scenario. We have
implemented these techniques in the Cohera federated database system and our experimental results, somewhat
surprisingly, indicate that a simple two-phase optimization scheme performs fairly well as long as the physical database
design is known to the optimizer , though more aggressive algorithms are required otherwise.
Keywords: Query Optimization, Federated database, Optimization Quality, Two-phase
1. Introduction
The need for federated database services has increased dramatically in recent years. Within enterprises, IT
infrastructures are often decentralized as a result of mergers, acquisitions, and specialized corporate applications,
resulting in deployment of large federated databases. Perhaps more dramatically, the Internet has enabled new
inter-enterprise ventures including Business-to-Business Net Markets (or Hubs) (L. Knight), whose business hinges on
federating thou-sands of decentralized catalogs and other databases. These decouplings are often forced by
administrative constraints, since federations typically span organizational boundaries; decoupling is also motivated by
the need to scale the administration and performance of a system across thousands of sites. Federated query processors
need to consider three basic decouplings:
Decoupling of Query Processing;
Decoupling of Cost Factors;
Decoupling of Cost Estimation.
In this paper, we consider a large space of federated query optimizer design alternatives and argue the need for taking
into consideration the high “cost of costing” in this environment. Accordingly, we present minimum-communication
decoupled variants of various well-known optimization techniques. We have implemented these algorithms in the
Cohera federated database system (J. M. Hellerstein, M. Stonebraker, & R. Caccia. 2003.) and we present experimental
results on a set of modified TPC-Hbenchmark queries.
Our experimental results, somewhat surprisingly, suggest that the simple technique of breaking the optimization process
into two phases (W. Hong andM. Stonebraker. 2001.)—first finding the best query plan for a single machine and then
scheduling it across the federation based on run time conditions — works very well in the presence of fluctuations in the
loads on the underlying data sources and the communication costs, as long as the physical database design is known to
the optimizer.
We also present a preliminary analysis explaining this surprising success of the two-phase optimizer for our cost model
and experimental settings later in the paper (Section 4.3). Our analysis suggests that this behavior may not merely be a
peculiarity of our experimental settings, but may hold true in general.
2. Architecture and Problem Definition
We base our system architecture on the Mariposa re-search system (A. Tomasic, R. Amouroux, P. Bonnet, O.
Kapitskaia,H. Naacke, & L. Raschid. 2007.), which provides the decouplings discussed in the earlier section through the

Vol. 2, No. 1 Computer and Information Science

116

use of an economic paradigm. The main idea behind the economic paradigm is to integrate the underlying data sources
into a computational economy that captures the autonomous nature of various sites in the federation. A significant and
controversial goal of Mariposa was to demonstrate the global efficiency of this economic paradigm, e.g., in terms of
distributed load balancing. For our purposes here, controversies over economic policy are not relevant; the long-term
adaptivity problem that Mariposa tried to solve is beyond the scope of this paper. The main benefit of the economic
model for us is that it provides a fully decoupled costing API among sources. As a result, each site has local autonomy
to determine the cost to be reported for an operation, and can take into account factors such as resource consumption,
response time, accuracy and staleness of data, admin- istrative issues, and even supply and demand for specialized data
processing.
For query optimization purposes, the most relevant parts of the system are the query optimizer in the middleware, and
the bidders at the underlying sites (Figure 1). As in a centralized database system, the query optimizer could use a
variety of different optimization algorithms, but the federated nature of the system requires that the cost estimates be
made by the underlying data sources or in our case, by the bidders. The optimizer and the bidder communicate through
use of two constructs: (1) Request for Bid (RFB) that the optimizer uses to request cost of an operation, and (2) Bid
through which a bidder makes cost estimates.
2.1 The Federated Query Optimization Problem
The federated query optimization problem is to find an execution plan for a user-specified query that satisfies an
optimization goal provided by the user; this goal may be a function of many variables, including response time, total
execution cost, accuracy and staleness of the data. For simplicity, we concentrate on two of these factors, response time
and total execution cost (measured in abstract cost units), though it is fairly easy to extend these to include other factors,
assuming they can be easily estimated. Since we assume that the only information we have about the costs of operations
is through the interface to the bidders, the optimization problem has to be restated as optimizing over the cost
information exported by the bidders. Before describing the adaptations of the known query optimization algorithms to
take into account the high cost of costing, we will discuss two important issues that affect the optimization cost in this
framework significantly.
2.2 Simplifying Assumptions
To simplify the discussion in the rest of the paper, we will make the following assumptions :
.Accurate Statistics: We assume that statistics regarding the cardinalities and the selectivities are available. This
information can be collected through standard protocols such as ODBC/JDBC that allow querying the host database
about statistics, or by caching statistics from earlier query executions .
.Communication Costs: We assume that communication costs remain roughly constant for the duration of optimization
and execution of the query, and that the optimizer can estimate the communication costs incurred in data transfer
between any two sites involved in the query.
.No Pipelining Across Sites : We assume that there is no pipelining of data among query operators across sites. The
main issue with pipelining across sites is that the pipelined operators tend to waste resources, especially space shared
resources such as memory (M. N. Garofalakis & Y. E. Ioannidis. 2005.).
3. Adapting the Optimization Techniques
In this section, we discuss our adaptations of various well-known optimization techniques to take into account the high
“cost of costing”. Aside from minimizing the total communication cost, we also want to make sure that the plan space
explored by the optimization algorithm remains the same as in the centralized version of the algorithm. In general, we
will break all optimization algorithms into three steps:
Step 1: Choose subplans that require cost estimates and prepare the requests for bids.
Step 2: Send messages to the bidders requesting costs.
Step 3: Calculate the costs for plans/subplans. If possible, decide on an execution plan for the query, other wise, repeat
steps 2 and 3.
Clearly we should try to minimize the number of repetitions of steps 2 and 3, since step 2 involves expensive
communication.
3.1 Exhaustive with Exact Pruning
An optimizer may be able to save a considerable amount of computation by pruning away subplans that it knows will
not be part of any optimal plan. A top-down approach is more suitable for this kind of pruning than the bottom-up
dynamic programming approach we described above, though it is possible to incorporate pruning in that algorithm as
well. Typically, these algorithms first find some plan for the query and then use the cost of this plan to prune away those
subplans whose cost exceeds the cost of this plan.

Computer and Information Science February, 2009

117

The main problem with using this kind of pruning to reduce the total number of bid requests made by the optimizer is
that it requires multiple rounds of messages between the optimizer and the data sources. The effectiveness of pruning
will depend heavily on the number of rounds of messages and as such, we believe that exact pruning is not very useful
in our framework..
3.2 Dynamic Programming with Heuristic Pruning
Since dynamic programming requires the costs for all the feasible joins, we can not reduce the number of bid requests
without compromising the optimality of the technique. Heuristic pruning techniques such as Iterative Dynamic
Programming (IDP) (D. Kossmann & K. Stocker. 2006.) can be used instead to prune sub-plans earlier so that the total
number of cost estimates required is much less. The main idea behind this algorithm is to heuristically choose and fix a
subplan for a portion of the query before the optimization process is fully finished.
We experiment with two variants of the iterative dynamicprogramming technique that are similar to the variants
described in (D. Kossmann & K. Stocker. 2006.), except that the bid requests are batched together to minimize the
number of rounds of messages:
IDP(k) : We adapt this algorithm as follows :
1) Enumerate all feasible k-way joins, i.e., all feasible joins that contain less than or equal to k base tables. K(n) is a
parameter to the algorithm.
2) Find costs for these by contacting the data sources using a single round of communication.
3) Choose one subplan (and the corresponding k-way join) out of all the subplans for these k- way joins using an
evaluation function and throw away all the other subplans.
4) If not finished yet, repeat the optimization procedure using this intermediate relation and the rest of the relations that
are not part of it.
IDP-M(k,m) : This is a natural generalization of the earlier variant . It differs from IDP in that instead of choosing one
-way join out of all possible k-way joins, we keep such joins and throw the rest away,where is another parameter to the
algorithm. The motivation behind this algorithm is that the first variant is too aggressive about pruning the plan space
and may not find a very good plan in the end.
Table 1 shows the number of bid requests required for different query graph shapes. The total cost of costing here also
depends on the number of rounds of communication required(n/k).
3.3 Two-phase Optimization
Two-phase optimization has been used extensively (M. N. Garofalakis & Y. E. Ioannidis. 2005.) in distributed and
parallel query optimization mainly because of its simplicity and the ease of implementation.
This algorithm works in two phases:
Phase 1: Find the optimal plan using a System R-style algorithm extended to search through the space of bushy plans as
well. This phase assumes that all the relations are stored locally and uses a traditional cost model for estimating costs. If
the physical database design is known (e.g., existence of indexes or materialized views on the underlying data sources),
then this information is used during the optimization process.
Phase 2: Schedule the optimal plan found in the first phase. This is done by first requesting the costs of executing the
operators at the involved data sources from the bidders and then finding the optimal schedule using an exhaustive
algorithm.
4. Experimental Study
In this section, we present our initial experimental results comparing the performance of various optimization
algorithms that we discussed above. The main goals of this experimental study are to motivate the need for dynamic
costing as well as to understand the trade-offs involved in the optimization process.
4.1 Experimental Setup
We have implemented the algorithms described earlier in a modified version of the Cohera federated database system, a
commercialization of the Mariposa research system. The experiments were carried out on a stand-alone Windows XP
machine running on a 466MHz Pentium with 256 MB of Memory. Both the optimizer and the underlying data sources
connect to a Microsoft SQLServer running locally on the same machine. A set of bidders was started locally as required
for the experiments. We simulate a net work by using the following message cost model: A mes-sage of size N bytes
takes + *N time to reach the other end, where is the startup cost and is the cost per byte. We experimented with two
different communication settings corresponding to a local area network (LAN) with =10ms, =0.001ms and a wide
area network (WAN) with =120ms, =0.005.

Vol

118

4.2
In t
mot
(E)(
3.3)
Figu
the
netw
man
Figu
que
han
pha
such
with
Figu
is n
vari
view
sub
4.3
As
IDP
algo
may
The
muc
opti
Ref
A.
sear
D.
AC
J. M
Eng
L.
http
M.
reso
W.

Tab

l. 2, No. 1

Optimization
this section, w
tivate the nee
(Section 3.1),
),IDP(4), IDP(
ure 2(i) shows
algorithms. W

work. As we c
ny cases it doe
ure 2(ii) show

eries, Query 1
nd, it performs
ase of the two-
h, they can be
h higher devia
ure 2(iii) show

not affected by
iants once aga
w, whereas ID

bplan of size 3
Discussion
we can see, th

P(4) performed
orithm of choi
y be hidden fro
e most surprisi
ch worse than
imizer.
ferences
Tomasic, R. A
rch componen
Kossmann &

CM TODS.
M. Hellerstein
gineering Bulle

Knight
p://www.netma
N. Garofalaki

ources. In VLD
Hong andM. S

ble 1. Number

Quality
we will see how
ed for better c
, Two-Phase
(3), IDP-M(4,5
sthe mean for t

We show only t
can see, thoug
es find the opti

ws the relative p
and Query 4,

s almost as we
-phase optimiz
e effectively pa
ations in some
ws the results f
y this view. As
in show unpre

DP-3 performs
makes it choo

he IDP variants
d better than th
ice in the fede
om the optimiz
ing fact that ar
n the exhaustiv

Amouroux, P.
nt (DISCO) and

K. Stocker. (2

n, M. Stonebra
etin.
t.(2006).
arketmakers.co
is & Y. E. Ioa
DB.
Stonebraker. (2

of Bid Reques

w the different
costing in the
(2PO)(Section

5) and IDP-M(
these scaled co
the results for
h the two-pha
mal plan.
performance o
2PO finds a m

ell as the optim
zer to search t
arallelized. Th
cases.

from this exper
s we can see,
edictable result

almost as bad
se the wrong p

s are quite sens
he two-phase o
erated environm
zer.
rises from our
ve algorithm f

Bonnet, O. K
d the world wi
2006). Iterativ

aker, & R. Ca

“the
om/documents
annidis. (2005)

2001). Optimiz

sts

t optimization
optimization

n 3.4) and f
(3,5).
osts as well as
a wide-area ne

ase algorithm p

of these optimi
much worse p
mal plan. The
through bushy
he IDP variants

riment for que
2PO consisten
ts with IDP-4 p
d as two-phase
plan.

sitive to their p
optimizer. Thi
ment, especial

experiments is
for total cost o

Kapitskaia, (20
de web. In SIG

ve dynamic pr

accia. (2003).

e-market
s/perspective1.
). Parallel quer

zation of parall

algorithms per
process. The

four variants

s the standard
etwork since th
performs some

ization algorith
lan than the o
main reason f

y plans as well
s perform alm

ries Q1 and Q
ntly produces a
performing ver
e optimizer, sin

parameters, bu
s suggests that
lly when the p

s that the two-p
optimization if

07). H. Naack
GMOD.
rogramming: a

Independent,

maker
pdf, 2006.
ry scheduling

lel queryexecu

 Co

rform under v
e algorithms th

of Iterative

deviation for t
he trends obse
e what worse t

hms in this cas
optimal plan. F
for this is that
l, it finds bush

most the same a

2. The results
a plan much w
ry well, since
nce the restric

ut in almost all
t a hybrid of tw

physical design

phase optimiza
f the physical

ke, & L. Rasc

a new class of

open enterpr

revolutio

and optimizat

ution plans in x

omputer and In

various circums
hat we compa
Dynamic Pro

these 40 rando
erved are simil
than the exhau

se. As we can
For queries 2 a
since we have

hy plans for th
as the earlier e

for Q3 were s
worse than the
it is able to tak

ction of choosi

cases, at least
wo such algor
ns of the under

ation algorithm
database desig

hid. The distr

f query optimi

rise data integ

n”, dat

tion with time

xprs. In PDIS.

nformation Sci

stances and fu
are are Exhau
ogramming(Se

om runs for eac
lar in the local
ustive algorithm

see, for two o
and 3, on the o
e extended the
hese queries an
experiment, th

imilar, wherea
e optimal plan.
ke advantage o
ing the lowest

t one of IDP(3)
rithms might b
rlying data sou

m does not per
gn is known to

ributed inform

ization algorit

gration. IEEE

taquest

- and space-sh

ience

urther
ustive
ction

ch of
l area
m, in

of the
other

e first
nd as

hough

as Q4
. IDP
of the
t cost

) and
be the
urces

rform
o the

mation

thms.

Data

inc.

hared

Computer and Information Science February, 2009

119

Figure 1. System Architecture

Figure2(i) Total cost optimization

Vol. 2, No. 1 Computer and Information Science

120

Figure2 (ii) Response time optimization under uncertain load conditions

Figure 2 (iii) Total cost optimization in presence of materialized views

