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Abstract 
In this paper, we explore the design space for a query optimizer in this environment and demonstrate the need for 
decoupling various aspects of the optimization process. We present minimum-communication decoupled variants of 
various query optimization techniques, and discuss trade-offs in their performance in this scenario. We have 
implemented these techniques in the Cohera federated database system and our experimental results, somewhat 
surprisingly, indicate that a simple two-phase optimization scheme performs fairly well as long as the physical database 
design is known to the optimizer , though more aggressive algorithms are required otherwise. 
Keywords: Query Optimization, Federated database, Optimization Quality, Two-phase
1. Introduction 
The need for federated database services has increased dramatically in recent years. Within enterprises, IT 
infrastructures are often decentralized as a result of mergers, acquisitions, and specialized corporate applications, 
resulting in deployment of large federated databases. Perhaps more dramatically, the Internet has enabled new 
inter-enterprise ventures including Business-to-Business Net Markets (or Hubs) (L. Knight), whose business hinges on 
federating thou-sands of decentralized catalogs and other databases. These decouplings are often forced by 
administrative constraints, since federations typically span organizational boundaries; decoupling is also motivated by 
the need to scale the administration and performance of a system across thousands of sites. Federated query processors 
need to consider three basic decouplings: 
Decoupling of Query Processing; 
Decoupling of Cost Factors;  
Decoupling of Cost Estimation. 
In this paper, we consider a large space of federated query optimizer design alternatives and argue the need for taking 
into consideration the high “cost of costing” in this environment. Accordingly, we present minimum-communication 
decoupled variants of various well-known optimization techniques. We have implemented these algorithms in the 
Cohera federated database system (J. M. Hellerstein, M. Stonebraker, & R. Caccia. 2003.) and we present experimental 
results on a set of modified TPC-Hbenchmark queries. 
Our experimental results, somewhat surprisingly, suggest that the simple technique of breaking the optimization process 
into two phases (W. Hong andM. Stonebraker. 2001.)—first finding the best query plan for a single machine and then 
scheduling it across the federation based on run time conditions — works very well in the presence of fluctuations in the 
loads on the underlying data sources and the communication costs, as long as the physical database design is known to 
the optimizer.  
We also present a preliminary analysis explaining this surprising success of the two-phase optimizer for our cost model 
and experimental settings later in the paper (Section 4.3). Our analysis suggests that this behavior may not merely be a 
peculiarity of our experimental settings, but may hold true in general.  
2. Architecture and Problem Definition 
We base our system architecture on the Mariposa re-search system (A. Tomasic, R. Amouroux, P. Bonnet, O. 
Kapitskaia,H. Naacke, & L. Raschid. 2007.), which provides the decouplings discussed in the earlier section through the 
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use of an economic paradigm. The main idea behind the economic paradigm is to integrate the underlying data sources 
into a computational economy that captures the autonomous nature of various sites in the federation. A significant and 
controversial goal of Mariposa was to demonstrate the global efficiency of this economic paradigm, e.g., in terms of 
distributed load balancing. For our purposes here, controversies over economic policy are not relevant; the long-term 
adaptivity problem that Mariposa tried to solve is beyond the scope of this paper. The main benefit of the economic 
model for us is that it provides a fully decoupled costing API among sources. As a result, each site has local autonomy 
to determine the cost to be reported for an operation, and can take into account factors such as resource consumption, 
response time, accuracy and staleness of data, admin- istrative issues, and even supply and demand for specialized data 
processing. 
For query optimization purposes, the most relevant parts of the system are the query optimizer in the middleware, and 
the bidders at the underlying sites (Figure 1). As in a centralized database system, the query optimizer could use a 
variety of different optimization algorithms, but the federated nature of the system requires that the cost estimates be 
made by the underlying data sources or in our case, by the bidders. The optimizer and the bidder communicate through 
use of two constructs: (1) Request for Bid (RFB) that the optimizer uses to request cost of an operation, and (2) Bid 
through which a bidder makes cost estimates. 
2.1 The Federated Query Optimization Problem 
The federated query optimization problem is to find an execution plan for a user-specified query that satisfies an 
optimization goal provided by the user; this goal may be a function of many variables, including response time, total 
execution cost, accuracy and staleness of the data. For simplicity, we concentrate on two of these factors, response time 
and total execution cost (measured in abstract cost units), though it is fairly easy to extend these to include other factors, 
assuming they can be easily estimated. Since we assume that the only information we have about the costs of operations 
is through the interface to the bidders, the optimization problem has to be restated as optimizing over the cost 
information exported by the bidders. Before describing the adaptations of the known query optimization algorithms to 
take into account the high cost of costing, we will discuss two important issues that affect the optimization cost in this 
framework significantly. 
2.2 Simplifying Assumptions 
To simplify the discussion in the rest of the paper, we will make the following assumptions : 
.Accurate Statistics: We assume that statistics regarding the cardinalities and the selectivities are available. This 
information can be collected through standard protocols such as ODBC/JDBC that allow querying the host database 
about statistics, or by caching statistics from earlier query executions . 
.Communication Costs: We assume that communication costs remain roughly constant for the duration of optimization 
and execution of the query, and that the optimizer can estimate the communication costs incurred in data transfer 
between any two sites involved in the query. 
.No Pipelining Across Sites : We assume that there is no pipelining of data among query operators across sites. The 
main issue with pipelining across sites is that the pipelined operators tend to waste resources, especially space shared 
resources such as memory (M. N. Garofalakis & Y. E. Ioannidis. 2005.). 
3. Adapting the Optimization Techniques 
In this section, we discuss our adaptations of various well-known optimization techniques to take into account the high 
“cost of costing”. Aside from minimizing the total communication cost, we also want to make sure that the plan space 
explored by the optimization algorithm remains the same as in the centralized version of the algorithm. In general, we 
will break all optimization algorithms into three steps: 
Step 1: Choose subplans that require cost estimates and prepare the requests for bids. 
Step 2: Send messages to the bidders requesting costs. 
Step 3: Calculate the costs for plans/subplans. If possible, decide on an execution plan for the query, other wise, repeat 
steps 2 and 3. 
Clearly we should try to minimize the number of repetitions of steps 2 and 3, since step 2 involves expensive 
communication. 
3.1 Exhaustive with Exact Pruning 
An optimizer may be able to save a considerable amount of computation by pruning away subplans that it knows will 
not be part of any optimal plan. A top-down approach is more suitable for this kind of pruning than the bottom-up 
dynamic programming approach we described above, though it is possible to incorporate pruning in that algorithm as 
well. Typically, these algorithms first find some plan for the query and then use the cost of this plan to prune away those 
subplans whose cost exceeds the cost of this plan. 
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The main problem with using this kind of pruning to reduce the total number of bid requests made by the optimizer is 
that it requires multiple rounds of messages between the optimizer and the data sources. The effectiveness of pruning 
will depend heavily on the number of rounds of messages and as such, we believe that exact pruning is not very useful 
in our framework.. 
3.2 Dynamic Programming with Heuristic Pruning 
Since dynamic programming requires the costs for all the feasible joins, we can not reduce the number of bid requests 
without compromising the optimality of the technique. Heuristic pruning techniques such as Iterative Dynamic 
Programming (IDP) (D. Kossmann & K. Stocker. 2006.) can be used instead to prune sub-plans earlier so that the total 
number of cost estimates required is much less. The main idea behind this algorithm is to heuristically choose and fix a 
subplan for a portion of the query before the optimization process is fully finished. 
We experiment with two variants of the iterative dynamicprogramming technique that are similar to the variants 
described in (D. Kossmann & K. Stocker. 2006.), except that the bid requests are batched together to minimize the 
number of rounds of messages: 
IDP(k) : We adapt this algorithm as follows : 
1) Enumerate all feasible k-way joins, i.e., all feasible joins that contain less than or equal to k base tables. K( n) is a 
parameter to the algorithm. 
2) Find costs for these by contacting the data sources using a single round of communication. 
3) Choose one subplan (and the corresponding k-way join) out of all the subplans for these k- way joins using an 
evaluation function and throw away all the other subplans. 
4) If not finished yet, repeat the optimization procedure using this intermediate relation and the rest of the relations that 
are not part of it. 
IDP-M(k,m) : This is a natural generalization of the earlier variant . It differs from IDP in that instead of choosing one 
-way join out of all possible k-way joins, we keep such joins and throw the rest away,where is another parameter to the 
algorithm. The motivation behind this algorithm is that the first variant is too aggressive about pruning the plan space 
and may not find a very good plan in the end. 
Table 1 shows the number of bid requests required for different query graph shapes. The total cost of costing here also 
depends on the number of rounds of communication required(n/k). 
3.3 Two-phase Optimization 
Two-phase optimization has been used extensively (M. N. Garofalakis & Y. E. Ioannidis. 2005.) in distributed and 
parallel query optimization mainly because of its simplicity and the ease of implementation. 
This algorithm works in two phases: 
Phase 1: Find the optimal plan using a System R-style algorithm extended to search through the space of bushy plans as 
well. This phase assumes that all the relations are stored locally and uses a traditional cost model for estimating costs. If 
the physical database design is known (e.g., existence of indexes or materialized views on the underlying data sources), 
then this information is used during the optimization process. 
Phase 2: Schedule the optimal plan found in the first phase. This is done by first requesting the costs of executing the 
operators at the involved data sources from the bidders and then finding the optimal schedule using an exhaustive 
algorithm. 
4. Experimental Study 
In this section, we present our initial experimental results comparing the performance of various optimization 
algorithms that we discussed above. The main goals of this experimental study are to motivate the need for dynamic 
costing as well as to understand the trade-offs involved in the optimization process. 
4.1 Experimental Setup 
We have implemented the algorithms described earlier in a modified version of the Cohera federated database system, a 
commercialization of the Mariposa research system. The experiments were carried out on a stand-alone Windows XP 
machine running on a 466MHz Pentium with 256 MB of Memory. Both the optimizer and the underlying data sources 
connect to a Microsoft SQLServer running locally on the same machine. A set of bidders was started locally as required 
for the experiments. We simulate a net work by using the following message cost model: A mes-sage of size N bytes 
takes + *N time to reach the other end, where is the startup cost and is the cost per byte. We experimented with two 
different communication settings corresponding to a local area network (LAN) with =10ms, =0.001ms and a wide 
area network (WAN) with =120ms, =0.005. 
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Figure 1. System Architecture 

Figure2(i) Total cost optimization 
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Figure2 (ii) Response time optimization under uncertain load conditions 

Figure 2 (iii) Total cost optimization in presence of materialized views 




