
Vol. 2, No. 1 Computer and Information Science

12

Model Checking the Inconsistency and Circularity

in Rule-Based Expert Systems
Desheng Xu (Corresponding author)

Department of Computer science and technology
 University of Science and Technology Beijing

106 mailbox 30#Xueyuan Road, Haidian District, Beijing 100083, China
Tel: 86-10-6239-0097 E-mail: xudesheng98@163.com

Kejian Xia
Department of Computer science and technology

University of Science and Technology Beijing
30#Xueyuan Road, Haidian District, Beijing 100083, China

Dezheng Zhang
Department of Computer science and technology
 University of Science and Technology Beijing

30#Xueyuan Road, Haidian District, Beijing 100083, China

Huangsheng Zhang
Department of Computer science and technology

University of Science and Technology Beijing
30#Xueyuan Road, Haidian District, Beijing 100083, China

The research is financed by the National High-Tech Research and development Plan of China (863) under Grant
(No.2007AA01Z170); the Beijing Natural Science Foundation of China under Grant (No.4062022)

Abstract
In the past several years, various techniques were proposed to analyze various types of structural errors, such as
inconsistency (conflict rules), and circularity (circular depending rules), of rule-based systems. Model checking is a
technique for the verification of temporal logic specifications in state transition systems. In this paper, we model the
rule-based systems as finite state transition systems and express consistency and acyclic as Linear Temporal Logic (LTL)
logic formula and then use the technique of model checking to detect inconsistency and circularity in Rule-Based
Systems with the model checker NuSMV.
Keywords: Model checking, Inconsistency, Circularity, Rule
1. Introduction
Expert systems have been widely used in many real world applications. The central part of an expert system is a rule
base that codifies the knowledge from domain experts in the form of inference rules. Often these inference rules are
built into a rule base incrementally over years and subject to frequent refinements. Due in part to the above construction
process of a rule base and in part to the different and even conflict views provided by domain experts, a rule base can
contain many structural errors. According to (D.L. Nazareth. 1989), the typical types of structural errors include

Computer and Information Science February, 2009

13

inconsistency (conflict rules), incompleteness (missing rules), redundancy (redundant rules), and circularity (circular
depending rules).But we just focus on the inconsistency and circularity in this paper.
Many different techniques have been proposed to detect the above structural errors in rule-based systems (a quite
comprehensive list of references can be found in (M. Ramaswamy, et al., 1997)). Earlier work mainly focused on
detecting structural errors by checking rules pair-wisely. Recent work aimed at detecting structural errors caused from
applying multiple rules in longer inference chains. The majority of the recent verification techniques involve using
some graphical notation such as Petri nets and graphs. Several of the above approaches cannot detect structural errors
accurately and report spurious errors when compound antecedent clauses overlap. The approach in (D. Zhang and D.
Nguyen,1994) could only detect structural errors matching a set of pre-defined syntactic patterns. The approaches in (G.
Valiente,1993) and(S. J.H. Yang, et al.1998)did not address inconsistency errors. In (M. Ramaswamy, S. Sarkar, and Y.S.
Chen, 1997), an adjacency matrix technique was used, which has a higher computational cost both in terms of space
(the sparseness of typical adjacency matrices) and time (the number of addition and multiplication involved in matrix
operations).
Model checking (William Chan,1998) is a technique for the verification of temporal logic specifications in state
transition systems. In this paper, we present a model to model the rule set of rule-based systems as state-transition
systems and express consistency and acyclic as LTL logic (A.Pnueli . 1981) formula and then use the technique of
model checking to detect inconsistency and circularity in Rule-Based Systems with the model checker NuSMV. This
technique is simple, efficient, and automated. We highlight the unique features of this new approach and demonstrate its
application through an example by the model checker NuSMV.
2. Model checking
Model checking (William Chan,1998) is an automatic approach to formal verification based on state exploration. This
verification is performed by software tools, which given a state transition system and a property, model checking
algorithms exhaustively explore the state space to determine whether the system satisfies the property. Fig. 1 is a
schematic of the process of model checking, a model of the specification and a property are fed to a model checker. The
result is either a claim that the property is true or else a counterexample (a sequence of states from some initial state)
falsifying the property. In practice, counterexamples often provide valuable debugging information, and can be used by
the user to modify the model, or the property checked. This iterative process is inherent in our work. In this context the
model is a state transition system and the specification is formalized with temporal logic which pinpoints desired
behavior over paths and states in the model.
In the rest of Section 2, we give an overview of the basics of LTL model checking and NuSMV, the model checker that
we used.
2.1 The LTL Model Checking Problem
In temporal-logic model checking, we are given a state transition system, which models a software or hardware system,
and a property specified as a formula in a certain temporal logic, and determine whether the system satisfies the formula.
A common logic for model checking is the Linear Temporal Logic (LTL), which extends propositional logic with
certain temporal operators. Typical formulas include the following(The symbol “p” is an atomic proposition,):

F p : p holds eventually or sometime in the future.
G p : p holds globally or always in the future.

Formally, a state transition system <P, R, I> consists of a set of states P, a state transition relation R P P, and a set
of initial states I P. A path is an infinite sequence of states such that each consecutive pair of states is in R. The set of
states P is often encoded by a set of state variables, such that each state corresponds to some valuation for the variables
and no distinct states correspond to the same valuation (that is, the mapping of P to the variable valuations is
one-to-one).
For simplicity we discuss just a subset of LTL, namely the subset with only the temporal operators F and G, which are
sufficient to understand our examples. We can recursively define this restricted class of LTL formulas as follows: We
say that a proposition is any Boolean combination of predicates on the state variables. A formula is either a proposition,
a Boolean combination of formulas, or of the form F f, G f, where f is a formula. And we use the symbolic “! ”, “| ”, “&”
to denote the logic NOT, OR, AND , respectively. Each formula is evaluated at some state q. A proposition holds at q if
q satisfies the proposition.
The system satisfies a formula if the formula holds at all initial states. If not, a model checker typically attempts to find
a counterexample. For example, if the formula !(F P5=1 & F P5=0) is false, a counterexample is a finite path starting at
some initial state sometime satisfies the proposition P5=1 and sometime P5=0.
Readers familiar with temporal-logic model checking may notice that, although a LTL formula is usually interpreted
over a Kripke structure which is a model for the representation of a finite-state concurrent system. The model consists of

Vol. 2, No. 1 Computer and Information Science

14

the set of states, transition relation and labeling (which gives semantics to the structure). In our definition, a state is not
explicitly labeled, but can be thought as being labeled implicitly by its corresponding state-variable valuations. This
more restricted formulation is sufficient for our presentation.
2.2 NuSMV
Verification of the inconsistency and circularity problem in Rule-Based Systems has been carried out by the symbolic
model checker NuSMV(R. Cavada, et al.2005) that originated from reengineering, reimplementation and extension of
CMU SMV, the original BDD-based model checker developed at CMU. NuSMV allows for the representation of
specifications expressed in CTL and Linear Temporal logic(LTL) using BDD-based and SAT-based model checking
techniques. The primary purpose of the NuSMV input language is to describe the transition relation of a finite Kripke
structure. The input file describes both the model and the specification (with possible fairness constraints). The states
are defined by a collection of state variables, which may be of Boolean or scalar type. The transition relation of the
Kripke structure is determined by a collection of parallel assignments, which are introduced by a keyword ASSIGN.
The semantics of assignment in NuSMV is similar to that of a single assignment data flow languages. A program can be
viewed as a system of simultaneous equations, whose solutions determine the next state. When a set is assigned to a
variable, the result is a nondeterministic choice among elements of the set. The case statements of NuSMV are
evaluated from the top down: if several expressions to the left of a “:” are true, then the command corresponding to the
first, top-most true expression will be executed.
3. Inconsistency and circularity problem in Rule-Based Systems and our method
3.1 Model the Rule Base
An inference rule (clause) has the following general form (William Chan, et al. 1998): P Q, or IF P THEN Q, where
P and Q are called premise and conclusion respectively. P (or Q) can be an atomic propositional logic formula (a
proposition or its negation) or a compound propositional logic formula containing multiple propositions and logical
connectives: ,). In the following discussion, we use lower case letters to denote atomic formulas and capital letters
to denote compound formulas. We assume that all the inference rules in a rule base are syntactically valid propositional
logic formulas (syntax errors are easily detected by a parser). Furthermore, we assume that P and Q are in conjunctive
normal form P1 … Pm and Q1 … Qn respectively, in which each Pi (1 i m) (or Qj (1 j n)) is a disjunction
of propositional symbols and their negations, i.e. p1 … pk.. The above assumption does not limit the error detecting
capability of our approach since any propositional logic formula can be easily and mechanically transformed into a
semantically equivalent conjunctive or disjunctive normal form. The following example is modified from an example in
[11]. A rule base R is defined as follows:.
R={ r1: p1 p2 p5
r2: p2 p5
r3: p3 p1 p2
r4: p1 p4 p5
r5: p5 p4 }
Formally, we model the rule-based system we describe as above as a finite-state transition system <P, R, I> consists
of a set of states P, a state transition relation R P P, and a set of initial states I P, where P is a set of state variables
{p1,p2,…pn}(n is the number of atomic propositions) which correspond to the atomic propositions appear in the rule
base, and all of these variables of enumeration type {1, 0, neither}.When variables pi=1, it means pi is true, and when
pi=0,it means pi is true, if pi=neither, it means neither pi nor pi is true. In our definition, a state transition relation is not
explicit presentation. The initial states I is also not explicit presentation. We use the variable InitTrue of enumeration
type {r1, r2,…rm, neither}(m is the number of rules in the rule base) to denote the initial state implicitly, when InitTrue
= ri, it indicates that the premise of rule ri is true. Initially, the initial value of state variables pi is neither, and the initial
value of InitTrue is a nondeterministic choice among elements of the set {r1,r2……rm }. If InitTrue = ri, it indicates that
rule ri is enable (Doing this is similar to the procedure we input some facts enable rule ri), and then we start the
reasoning to change the values of state variables according to the rules in the rule base. If the value of state variable pi is
non-neither and there no other rules assign 1 or 0 to it, then we reset pi to neither. And we also set the subsequent value
of InitTrue to be neither. This is the state transition relation of this model. For the rule base R in Fig.1, suppose the
initial value of InitTrue is r3, then the state transition is illustrated in Fig.4.This is the way how we model the rule-based
system as a finite-state transition system.
3.2 Inconsistency
Inconsistency results in conflict facts and must be resolved for correct functioning of an expert system. There are two
cases of contradiction.

Computer and Information Science February, 2009

15

Case 1: When we start reasoning from a rule, sometime pi is true and some time pi is true, then the contradiction
occurs. So, if there exists both pi and pi in the rule base, we should check whether the LTL formula !(F pi =1 & F pi=0)
be satisfied or not in the model. For the instance we presented in Fig.1 , initially, we enable rule r1,then p5 and p2 is
valued to 1. and then rule r2 is fired by p2, as the result, p5 is evaluated to 0.This results a contradiction.
Case 2 : If there are some rules make pi true and some make pi true, then the premises make pi true and pi true
respectively should not be true at the same time. So we use LTL formula !F((p4=1| p1=1) & (p2=1)) to check the
example we given whether satisfies this property.
3.3 Circularity
Circularity occurs when several inference rules have circular dependency. Circularity can cause infinite reasoning and
must be broken. An example of circularly dependent rules is as follows:
 r1: p q
 r2: q p
If a rule is a part of a circle, then the state variables such as pi form the rule will be assigned to 1 or 0 infinite often. So,
if there no circularity in the rule set, then all of state variables pi should always equal to neither in the future. We use the
LTL formula F G(p1=neither & p2=neither & ……& pn=neither) to express this property. If this formula can’t be
satisfied, we conclude there must be some circularity occurs.
4. The experiment about the example presented in 3.1
We use the NuSMV to check the example presented in 3.1,the source code we used as below:
MODULE main
 VAR
 p1:{0,1, neither};
 ……
 p5:{0,1, neither };
 InitTrue:{r1,r2,r3,r4,r5, neither };
 ASSIGN
 init(p1) := neither;
 ……
 init(p5) := neither;
 init(InitTrue):={r1,r2,r3,r4,r5};

 next(InitTrue):= neither;
 next(p1):= case
 InitTrue=r1 | InitTrue=r4 | p3=1 : 1 ;
 p1 != neither : neither;
 1 : p1;
 esac;

 next(p2):= case
 InitTrue=r2 | p1=1 | p3=1: 1 ;
 p2 != neither : neither;
 1: p2;
 esac;

 next(p3):= case
 InitTrue=r3 : 1 ;
 p3 != neither : neither;

Vol. 2, No. 1 Computer and Information Science

16

 1: p3;
 esac;
 next(p4):= case
 InitTrue=r4 | p5=1 : 1 ;
 p4 != neither : neither;
 1: p4;
esac;

 next(p5):= case
 InitTrue=r5 | p4=1 | p1=1 : 1 ;
 p2=1 : 0;
 p5 != neither : neither;
 1: p5;
 esac;
 LTLSPEC !(F p5=1 & F p5=0);
 LTLSPEC !F((p4=1| p1=1) & (p2=1));
 LTLSPEC F G(p1=neither & p2=neither & p3=neither & p4=neither & p5=neither);
The NuSMV shows that all the three LTL formulas are false, and produce the counterexamples as Fig.2 indicates rule r2
is inconsistent with rules r1 and rules {r3,r4}, rules r4 and r5 are in self-loop.
5. Conclusion and future work
In this paper we have proposed a finite-state transition system model which can be used for describing the behaviors of
the rule-based system. We have focused on the inconsistency and circularity problem of a given rule base, and identified
two sorts of inconsistency problems and circularity problem. We also present two kinds of LTL formulas and a kind of
LTL formula for checking the consistency and circularity of the rule base respectively, and carry a experiment to explain
our method. Our technique has the following advantages:
(1) It is general and is capable to detect all potential inconsistency and circularity errors without imposing any
restrictions on the form of rules;
(2) It can produce the results automated, The result is easy to understand and we can locate the errors easily with the
help of the counterexamples;
(3) It is easily extensible to predicate forms such that each pi is a predicate instead of simple proposition. Although
describing of transition relation between states becomes more complicated and requires more careful.
But since the conversion from rules to the model we input into the model checker is manual work, we will develop a
software tool to implement the method we proposed automatic in the future. And from theoretical point of view, to
check the Inconsistency and circularity in rule base, we have to check the validity of each possible state space. The
possible state spaces in our method is 3n (n is the number of state variables), which is exponential. So, unfortunately, the
size of the state space is exponential in the size of the rule base, resulting in the state explosion problem. But since many
methods were proposed to deal with this problem, we still can do some research when the rule base is too huge to apply
the method proposed in this paper directly.
References
A.Pnueli . (1981). A temporal logic of programs. Theoretical Computer Science, 13:45-60, 1981.
D. Zhang and D. Nguyen, (1994). “PREPARE: A Tool for Knowledge Base Verification,” IEEE Trans. On Knowledge
and Data Engineering, vol. 6, no., 6, Dec. 1994, 983-989.
D.L. Nazareth and M.H. Kennedy, (1991). “Verification of Rule-Based Knowledge Using Directed Grphs”, Knowledge
Acquisition, vol. 3, 1991, 339-360.
D.L. Nazareth, (1993).“Investigating the Applicability of Petri Nets for Rule-Based System Verification,” IEEE Trans.
on Knowledge and Data Engineering, vol. 4, no., 3, 1993, 402-415.
D.L. Nazareth. (1989), “Issues in the Verification of Knowledge in Rule-Based Systems,” Int’l J. of Man-Machine
Studies, vol. 30, 1989, 255-271.

Computer

G. Valient
Int’l J. of E
M. Ramas
IEEE Tran
R. Agarwa
Int’l J. of M
R. Cavada
S. J.H. Ya
Internation
William C
(1998). M
498-520, J
X. He, W.
and Softwa

and Informati

te, (1993). Ver
Expert Systems
wamy, S. Sark

ns. on Knowled
al and M. Tann
Man-Machine
a, A. Cimatti, E
ang, A.S. Lee
nal Computer a
han, Richard J

Model checking
July 1998.

Chu, and H. Y
are Technology

ion Science

rification of K
s, vol. 6, no. 3
kar, and Y.S. C
dge and Data E
niru, (1992). “
Systems, vol.3

E. Olivetti, M.
e, W.C. Chu, a
and Software A
J. Anderson, P
g large softwa

Yang. (2003).
y, vol. 45, no.1

Figure 2

Specifi

Mo

Knowledge Ba
, 1993, 341-35

Chen, (1997). “
Engineering, v

“A Petri Net Ba
36. 1992, 447-4
Pistore, and M
and H. Yang,(
Application Co

Paul Beame, St
are specificatio

“A New Appr
10, 2003, 663-

Figure 1. M

2. One of the co

fication

odel

ased Redundan
55.
“Using Directe
vol. 9, no., 2, 1
ased Approach
468.

M. Roveri. (200
(1998).“Rule
onference (CO
teve Burns, Fra
ons. In IEEE

roach to Verify
670.

Model checking

ounterexample

Model
checker

ncy and Subsu

ed Hypergraph
1997, 221-237.
h for Verifying

05).NuSMV 2.
Base Verificat

OMPSAC’98),
ancesmary Mo
Transactions

fy Rule-Based

g at a glance.

es produced by

Tr
Fals

Count

umption Using

hs to Verify Ru
.
g the Integraity

.4 User Manua
tion Using Pe
Vienna,Austri

odugno, David
on Software E

Systems using

y NuSMV.

rue or
se with a
erexample

 Feb

g Graph. Trans

ule-Based Expe

y of Productio

al, 2005.
etri Nets”, Pro
ia, 1998.
Notkin, and J

Engineering 2

g Petri Nets”,

bruary, 2009

17

sformations,

ert Systems,”

n Systems”,

oc. Of 22nd

on D. Reese.
24(7), pages

Information

