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Abstract 
Fuzzy State Space Model (FSSM) is a new modeling technique, which was developed for solving inverse problems in 
multivariable control systems. In this approach, the flexibility of fuzzy modeling is incorporated with the crisp state 
space models proposed in the modern control theory. The vagueness and uncertainty of the parameters are represented 
in the model construction, as a way of increasing the available information in order to achieve a more precise model of 
reality.  Some important properties and characteristics of FSSM were also investigated. In this paper, our discussion is 
focused on the formulation of the FSSM that provides algorithms for optimization of input parameters directly. The 
effectiveness of this modeling approach is illustrated by implementing it to the state space model of a furnace system of 
a combined cycle power plant. The results obtained in this application demonstrate that the proposed new modeling 
approach is reasonable and provides an innovative tool for decision-makers. 
Keywords: Fuzzy state space model, Inverse problems, Uncertainty, Fuzzy number 
1. Introduction 
The design of mathematical models of complex real-world systems is essential in many fields of science and engineering.  
A common approach is to assume that the structure of the model is given directly as a parameterized mathematical 
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function, which is based on physical principles.  However, for many real-world systems a great deal of information is 
provided by human experts, who describe the system verbally through vague, uncertain or imprecise statements.  The 
fact that humans are often able to manage complex tasks under significant uncertainty has stimulated the search for 
alternative modeling and control paradigms. A typical example of techniques that make use of human knowledge and 
deductive processes is fuzzy modeling.  Even then, most of the systems considered in literatures are single-input 
single-output (SISO) or multi-input single-output (MISO) systems. 
Due to the complexity of most practical multivariable or multi-input multi-output (MIMO) control systems, it is 
necessary to develop a mathematical model of the systems by simplifying and idealizing the processes involved.  
Control system analysis normally addresses forward problems.  However, disturbance in power systems motivate 
analysis questions that are classed as inverse problems (Hensel, 1991). Traditionally, such inverse problems have been 
addressed by repeated simulation of forward problems, for example Ordys et al (1994), Ram & Patel (1998). Thus, the 
objective of this paper is to present the formulation of a new modeling technique, known as Fuzzy State Space Model 
(FSSM). FSSM provides an algorithm that address inverse problems in multivariable control systems directly. In this 
approach, the flexibility of fuzzy modeling is incorporated with the crisp state space models proposed in the modern 
control theory. The state space formulation has been a convenient basis for the development of advanced multivariable 
controller design methodologies (Ogata, 1997). This is because the underlying time-domain models, which are the most 
natural description of most problems of interest, can address a more general class of problem definition. Besides, the 
state variable model of a system includes a description of the internal status of the system, in addition to the 
input-output behavior. To take into account the uncertainties in the model, the uncertain value parameters of the system 
to be controlled are represented by fuzzy numbers (Kaufmann & Gupta, 1985) with their membership function derived 
from expert knowledge. 
The paper is organized as follows. After this introduction, section 2 describes the approaches in constructing the FSSM 
of multivariable control system which consider the mental, verbal and mathematical models. The development of the 
FSSM is described in section 3. The formulation of the Fuzzy State Space algorithm for determining the optimal 
parameter estimation is explained in Section 4. The validity of this algorithm is shown by implementing it to the state 
space model of a furnace system with three input parameters, which is presented in section 5. Finally, section 6 draws 
some conclusions from the presented work. 
2. Approaches in model construction 
A critical step in the application of model-based control algorithm is the development of a suitable model of the process 
dynamics. To effectively develop models, we need to blend information of different nature: experience of experts and 
operators, measurements and first principle knowledge formulated by mathematical equations. Thus, in the 
knowledge-based construction of the FSSM, the three different kinds of models considered are the mental model, verbal 
model and the mathematical model.  From experience, intuition and expert knowledge, we build mental model in our 
mind. The verbal model is then formulated using “If…then…” rules, which is a very common means of description in 
everyday life.  The verbal model can also be formulated based on fuzzy or uncertain descriptions such as “about 15”, 
“almost 40”, “around 600”.  The uncertain value parameters of the system are represented by triangular fuzzy numbers 
(TFN) that are used to analyze and manipulate approximate numeric values. TFN are used as they have an intuitive 
appeal and are easily specified by experts (Pedrycz, 1994). Thus, fuzzy sets serve as a smooth interface between 
qualitative variables and numerical domains of the inputs and outputs of the model. 
For system analysis and engineering purposes, mathematical models are often constructed, for instance based on algebraic 
and differential or difference equations which are derived from physical laws. For well-defined systems, these standard 
mathematical tools lead to good models, even though the modeling process is often very tedious. However, most of the 
real-world systems are complex and nonlinear. Analytical approach for such systems is available only to a very limited 
extend (Bossel, 1994). On the other hand, a well-developed set of analytical tools is readily available for linear systems.  
Thus, linearization of nonlinear systems into linear state space model plays an important role. The most important 
advantage of the crisp state space model is that the system dynamic properties are condensed in the model (Cao & Rees, 
1995). The system model gives both the external and its internal behaviour of the system. Therefore, FSSM can be seen as 
a modeling framework for blending information of different nature, qualitative as well as quantitative. It can adequately 
process not only the given data, but also the associated uncertainty. 
There are two important facts that make this modeling approach intuitively appealing. Firstly, there are always uncertain 
factors affecting the system in a real-world modeling situation. This indicates that a complete physical model can hardly 
be constructed. However, uncertain factors can be taken care by employing sufficiently flexible model. Secondly, the 
restriction on the flexibility to comply with the prior knowledge is allowed in the modeling procedure. 
3. Development of fuzzy state space model 
In developing Fuzzy State Space Model (FSSM), the advantages of the white-box and black-box modeling approach are 
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combined. This means that the known parts of the system are modeled using physical knowledge, and the unknown or 
less certain parts are approximated using process data and black-box modeling structures with suitable approximation 
properties. Hence, FSSM exhibits some properties of the grey-box techniques. However, a great deal of information for 
many real-world systems, are provided by human experts who describes the system verbally through vague, uncertain 
or imprecise statements. Thus, the concepts from fuzzy sets (Zadeh, 1965) are used in the specification of the system’s 
parameters, in which the parameters are fuzzy numbers instead of crisp numbers. It is interesting to note that, in this 
approach the input parameters can be described as approximately as desired at the early stages of the control process. 
This is an advantage as any early decision can restrict the set of available alternatives. The approximate description in 
term of uncertain input parameters is used to calculate the corresponding approximate characterization of relevant 
output parameters, which is then utilized to determine the optimal input parameters. 
It is assumed that the multivariable dynamic system can be transformed into a solvable state space model. In state space 
model, the system dynamics properties are condensed in the model, which reflects its most important advantage. 
Besides that, it is also assumed that there is no direct transmission between the input parameters and the output 
parameters. Thus, FSSM of a multivariable dynamic system is defined as follows: 
Definition: A Fuzzy State Space Model of a multivariable dynamic system is defined as  
SgF :  x& (t)  =  A x(t) + B u~ (t) 
     y~ (t)  =  C x(t)       
where u~  denotes the fuzzified input vector [u1, u2,…,un]T  and  y~  denotes the fuzzified output vector [y1, y2,…,ym]T  
with initial conditions as t0 = 0 and x0 = x(t0 ) = 0. The elements of state matrix ppA × , input matrix npB × , and output 
matrix pmC ×  are known to a specified accuracy. 
The development of the algorithm for FSSM is based on three phases of a fuzzy system. Figure 1 shows these phases as 
fuzzification, fuzzy environment and defuzzification. In the first phase, each of the uncertain input parameters is 
fuzzified by specifying its α-cuts. For each α-cut, the possible combinations of the endpoints interval are used to 
calculate the induced performance parameters and the desired output parameters. All these parameters are processed by 
the Zadeh’s extension principle (Klir & Yuan, 1995) in the second phase, to determine the associated fuzzy value that is 
represented by the intersection between the induced performance parameters and the desired output parameters. In the 
final phase, the fuzzy value is defuzzified in order to obtain the valid combination of the input parameters.  
Subsequently, the optimal combination of the input parameters is determined by the Extension of Optimized 
Defuzzified Value Theorem. 
<<Figure 1. Phases in developing fuzzy algorithm>> 
4. Formulation of fuzzy state space algorithm 
According to Babuska and Verbruggen (1996), MIMO systems can be represented in a decomposed form as a set of 
coupled MISO models. Thus, the global modeling problem can be reduced to the development of fuzzy MISO models 
with n inputs and one output.  This idea is undertaken by the formulation of the FSSM for MISO systems (Ismail et al., 
2004).  However, the MIMO fuzzy model which is constructed based on a group of MISO fuzzy models, will result in 
an increased burden of computation time (Wang, 1994). Efforts in developing a model for solving a MIMO system 
directly will certainly be an advantage, especially in terms of time and cost. For this reason, the Fuzzy State Space 
algorithm for a MISO system is enhanced to accommodate a MIMO system.   
Given an input ui that takes values in set Ii , and let preferences for different values of ui be expressed by a fuzzy set  
FIi on Ii .  For each iIx∈ , the value FIi (x) designates the degree of desirability of using the particular value x within 
the given set of values Ii.  Thus, set FIi  is referred to as the set of desirable values of parameter Ii, and FIi(x) is viewed 
as the grade of membership of value x in this set. Index i is used here to distinguish different input parameters. 
The fuzzy sets expressing preference for all input parameters are employed for calculating the associated fuzzy sets for 
performance parameters. The target values of performance parameters are specified by functional requirements.  
Performance parameters, resulting from calculations with imprecise or vague input parameters, will also be represented 
by fuzzy preference functions. Similarly, each of the output parameters is represented by a range and a preference 
function. It is assumed that all the fuzzy sets FIi expressing preferences of all input parameters )( ℵ∈ℜ⊂∈ iIu ii  are 
determined, normalized and convex. I is a close interval of real numbers. SgF  is a performance parameter based on the 
FSSM whereby all input parameters are considered as its variables and can be presented within a fuzzy set FSgF. The 
algorithm to determine Find , a fuzzy set that is induced on the performance parameters SgF  has the following steps:  
Step 1: Let  mn

gFS ℜ→ℜ: .  SgF  is the performance parameter based on FSSM such that   
),...,,,()...,,,,( 321321 ngFm uuuuSrrrr =   

Step 2: Select appropriate values for α-cut such that  α1, α2, α3,…,αk  ∈ [0, 1] which are equally spaced.  
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Step 3: To fuzzify the input, determine all the αk-cuts for all  FIi )( ℵ∈i . 
Step 4: Generate all  2n combinations of the endpoints of intervals representing  αk-cuts for all  FIi )( ℵ∈i . Each 
combination is an n-tuple (u1, u2, u3,…, un ). 
Step 5: Determine

ii ngFm uuuuSrrrr αα = ),...,,,()...,,,,( 321321 for each n-tuple and for all i = 1, 2,…, k. 
Step 6: With respect to αi ,  find  )()min( (min)ijj rr

i
α=α  and  )()max( (max)ijj rr

i
α=α  

Set  ])max(,)[min()(
iii jjind rrF ααα =  where i = 1, 2,…, k and j = 1,2,…, m. 

Step 7: Determine all the αk-cuts for all the desired performance parameter FSgF. 

Step 8: Generate all  2m combinations of the endpoints of intervals representing αk-cuts for all FSgF .  Each 
combination is an m-tuple. In this case, m = 2. 
Step 9: Set [Find ∧ FSgF ] . 
Step 10: Determine  fj

*
 = sup[Find ∧ FSgF ]  for all j and find  SgF

*, the SgF  value of fj
*. 

Step 11: Find the endpoints of interval for each input FIi  where  i = 1, 2, 3,…, n. 
Step 12: Generate all 2n combinations of the endpoints of intervals representing f *- cuts for all FIi )( ℵ∈i  . Each 
combination is an n-tuple (u1

*, u2
*, u3

*,…,un
*).  

Step 13:  Determine  rj
*  =  SgF* (u1, u2, u3,…,un) f j*(opt)  by using the Extension of Optimized  Defuzzified Value 

Theorem; which is stated below 
Let mn

gFS ℜ→ℜ:  where SgF   is a performance parameter based on the FSSM.   
(a) If 

jjgF rrS max** ==   such that  ** )( fr j =μ   for all indj Ffr ∈)( *
, , then ),...,,(max **

2
*

1
**

ngFgFj uuuSSr ==   
where **)( fui =μ  for i = 1, 2, 3, …, n.  
(b) If 

jjgF rrS min** ==   such that  ** )( fr j =μ   for all indj Ffr ∈)( *
, , then   ),...,,(min **

2
*

1
**

ngFgFj uuuSSr ==   
where **)( fui =μ  for i = 1, 2, 3, …, n.  
The theorem indicates that if the fuzzy preferred or desired parameter intersects on the maximum side of the fuzzy 
induced parameter, then the set of optimized parameters is the set for the maximum norm of the induced values. On the 
other hand, if the fuzzy desired parameter intersects on the minimum side of the fuzzy induced parameter, then the set 
of optimized parameters is the set for the minimum norm of the induced values. Thus, this theorem enables the 
decision-maker to identify the best-optimized value from predicated results in the final phase of the algorithm. It has 
been shown that all normal and convex fuzzy sets FIi, expressing preferences of all input parameters )( NiRIg ii ∈⊂∈ +  
are mapped by the FSSM into the normal and convex induced fuzzy sets (Ismail et al., 2002). 
5. Implementation to a furnace system 
To illustrate the implementation of the Fuzzy State Space algorithm for MIMO system, we refer to the state space model 
of the furnace system developed in Ismail et al., (2005). We consider the two output parameters of the furnace system, 
Qes (heat transferred to the economizers in J/s) and pG  (furnace air pressure in Pa). Qes and pG  are also the output 
parameters for the boiler system of the combined cycle power plant  (Ordys et al., 1994). The implementation of the 
Fuzzy State Space algorithm with MIMO structure is discussed according to the three phases of fuzzy system, that is, 
fuzzification of parameters, processing of fuzzified parameters in the fuzzy environment and defuzzification of results.  
Phase 1: Fuzzification 
Each of the input parameter of the furnace system is fuzzified. The desired value for each input parameter has a value α = 
1 whereas the domain or the extreme values are specified as α = 0 as shown in Table 1.  
<<Table 1: Input parameters specification>> 
In this illustration, α-cuts with increment of 0.2 are used to calculate Find , the fuzzy values of induced output or 
performance parameters. Based on the steady state operating data (Ordys et al., 1994), each output parameters can be 
expressed as a linear combination of the input parameters. Using similar domain and desired values of the input 
parameters, each of the input parameter is fuzzified. α-cuts with increment of 0.2 are used to calculate Find , the fuzzy 
values of induced output or performance parameters. Combinations of the endpoints of intervals for all input parameters 
with respect to each particular value of α-cut are determined. The number of combinations increases with a smaller 
value of the α-cut. The induced performance parameter FSg is determined by taking the maximum and minimum value 
of each performance parameter. These values are used to plot the graph of FSg. 
Similarly each of the desired output parameter is set to the values published in Ordys et al. (1994), which are obtained 
through forward calculations. The values for the output parameters are  
 Qes = [1.2 × 106; 1.2465 × 106 

; 1.4 × 106] and PG = [9.0 × 104; 1.013 × 105
; 1.2 × 105] 
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These values are used to calculate the preferred performance parameters. α-cuts with an increment of 0.2 as in the 
fuzzification of input parameters are used to calculate FSgF, the fuzzy values of preferred or desired output parameters. 
Phase 2: Fuzzy environment 
The intersection of the fuzzy preferred output parameter and the fuzzified performance parameter is determined by 
superimposing the two graphs in order to obtain the f*- value as shown in Figure 2. The largest fuzzy membership value, 
f j*, is taken if there are more than one intersection points.  
Phase 3: Defuzzification 
For output parameters Qes and pG  of the furnace system, the fuzzy value is computed to be f * = 0.8141. With the  f *- 
value obtained, the steps in the defuzzification process are carried out to calculate the best possible combination of the 
input parameters in order to accommodate the constraints defined in the process of fuzzification. With three imprecise 
or uncertain input parameters, there are eight possible combinations of the endpoints of interval. Each of these 
combinations is then substituted in the performance parameter.. The optimized input parameters are determined by 
using the Extension of Optimized Defuzzified Value Theorem   
<<Figure 2. Fuzzy value for Furnace system (Qes and pG )>> 
The results of implementation the Fuzzy State Space algorithm for a MIMO furnace system are shown in Table 2, where 
the optimal input parameters estimation are wF = 12.7436 kg/s, wA = 65.9296 kg/s and  wG = 22.5577 kg/s. These 
values differ from the desired values with an error of about 6.19%, 1.43% and 2.53% respectively.  Using this 
calculated input values, the percentage error for the output parameters of the furnace system, Qes and pG, is computed to 
be 2.21% and 2.07% respectively. It is interesting to note that the calculated values obtained using this algorithm are 
very close to the desired target values of the system.   
<<Table 2. Optimized input parameters>>  
Subsequently, a comparison is made between the optimal input parameters obtained using the Fuzzy State Space 
algorithm and the result obtained through simulation carried out in Ordys et al. (1994). The percentage error is 
calculated and tabulated in Table 3. The aim of this comparison is to highlight the difference between inverse modeling 
by utilizing fuzzy sets and a widely accepted forward modeling based on simulation. With the TFN used in modeling 
the uncertainty, the obtained result should have the same value as the result in Ordys et al. (1994) with no uncertainty 
consideration. It is observed that the values of the input parameters wF (fuel flow to the furnace in kg/s), wA (air flow to 
the furnace in kg/s), and wG (exhaust gas flow from the gas turbine in kg/s) differ with an error of 9.51%, 2.86% and 
2.63% respectively. The determination of the optimal input parameters subjected to the desired output parameters can be 
obtained in a few computer runs, as compared to several hundreds computer runs that is required for the commonly 
accepted forward simulation approach.  In order to properly model the uncertainties and further improve the results, 
the parameters of the fuzzy numbers which are used to model uncertainties in this study, need to be adjusted based on 
the historical data or human experience. For a better resolution, α-cuts with much smaller increment can be used.   
The good results obtained in this application show that this approach may become an interesting tool for 
decision-makers. Besides, it is relatively easy to take into account experts knowledge and considerations for 
establishing the membership functions.  
6. Conclusion  
The formulation of the FSSM for multivariable control system was presented. The construction of this model involved 
the integration of three different kinds of models, namely mental model, verbal model, and mathematical model. TFN 
are used to represent imprecise or uncertain parameters in the model, with their membership function derived from 
expert knowledge. The procedure in the Fuzzy State Space algorithms involved fuzzification of all the input parameters 
to create fuzzy environment. This is then processed to produce the induced output parameters. The best input 
parameters were extracted through defuzzification using an important theorem, Extension of Optimized Defuzzified 
Value Theorem.   
Although we have illustrated the implementation of FSSM for the furnace system of combined cycle power plant, it can 
be applied to any multivariable control system as long as the mathematical model of the system can be expressed in 
state space representation. The influence of the initially assumed uncertainties on the overall solution of the problem is 
reflected in the results. The determination of the optimal input parameters estimation subjected to the desired output 
parameters can be obtained in a few computer runs, as compared to several hundred computer runs that are required for 
the commonly accepted forward simulation approach. Besides that, the performance of these algorithms can be further 
improved by changing the initial input parameters or by reducing the α-cut increment. In general, this new technique for 
determination of optimal input parameters gives a broader and useful information and provides a faster and innovative 
tool for decision-makers.  
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Table 1. Input parameters specification 

input parameters α  =  0 α  =  1 α  =  0 

wF 10  12 16 
wA 60  65 70 
wG 20  22 25 

 
Table 2. Optimized input parameters 

f* = 0.8141 Calculated Values Desired Values Error (%) 

wF 12.7436 12 6.19 
wA 65.9296 65 1.43 
wG 22.5577 22 2.53 

 
Table 3. Comparison of optimized input parameters 

Input Parameters Ismail’s Ordys et al.  difference (%) 

wF 12.7436 14.083 9.51 

wA 65.9296 64.093 2.86 

wG 22.5577 23.168 2.63 
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