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Abstract 

Multi-threading is a methodology that has been extremely used. Modern software depends essentially on 
multi-threading. Operating systems, famous examples, are based on multi-threading; a user can write his 
document, play an audio file, and downloading a file from internet at the same time. Each of these tasks called a 
thread. A common problem occurs when implementing multi-threaded programs is a data-race. Data race occurs 
when two threads try to access a shared variable at the same time without a proper synchronization. A detector is 
software that determines if the program contains a data-race problem or not. In this paper, we develop a detector 
that has the form of a type system. We present a type system which discovers the data-race problems. We also 
prove the soundness of our type system. 

Keywords: multi-threaded programs, type systems, data-race, semantics of programming languages 

1. Introduction 

Developing and debugging software that depends on multi-threading is a tricky mission because of ingrained 
concurrency and indeterminism. There are many bugs occur according to these properties. Detecting and 
preventing these bugs are important areas of research. Bugs have several forms. The most extensively studied 
one is data-race: two concurrent threads accessing the same shared variable without proper synchronization. 
Data-race detector is a tool that determines whether a program is a data-race free or not. Two approaches are 
followed when developing detectors: static approach, and dynamic approach. Static detectors determine whether 
a program produce a data-race regardless of inputs of the program. Apart from static detectors, dynamic 
detectors determine whether a program produce a data-race of a given inputs at execution of the program. 

The advantages of static detectors are the consideration of different execution paths (more elaborate), and the 
soundness of detector, i.e. proving the bug-freeness of programs. Examples of static detectors (Kahlon, Sinha, 
Kruus, & Zhang, 2009; Kahlon, Yang, Sankaranarayanan, & Gupta, 2007; Naik, Aiken, & Whaley, 2006; Voung, 
Jhala, & Lerner, 2007). On the other hand, dynamic detectors like (Savage, Burrows, Nelson, Sobalvarro, & 
Anderson, 1997; Wang, Kelly, Kudlur, Lafortune, & Mahlke, 2008; Yu, Rodeheffer, & Chen, 2005) track 
program execution and report a data-race problem if the program follow a certain concurrency order. These tools 
produce relevant result, according to order of execution or program inputs, and can not cover all execution paths; 
so are not sound. 

Type systems can infer and gather information about programs as well as achieving program analysis. The merits 
of using type systems are attesting and rationalization of properties of programs directed by their phrase 
structures. Type systems are actually sufficient frameworks for describing data flow analysis. A general method 
for producing such description was presented (Laud, Uustalu, & Vene, 2006). Type systems are used as a 
framework for analyzing multi-threaded programs as well as imperative programs. In (El-Zawawy, 2011), type 
systems were used as a framework for pointer analysis for multi-threaded programs. In (El-Zawawy & Nayel 
2011) type systems were used as a framework for eliminating redundancies in multi-threaded programs. 

In this paper we present a static detector. We introduce a type system that detects data-race problem for 
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multi-threaded programs of a simple language m-while. We also prove the soundness the proposed type system. 

The rest of this paper is organized as follows. We outline the related work in Section 2. Section 3 presents the 
language, a motivation example, and an operational semantics for the language. Read type system and the proof 
of its soundness are introduced in Section 4. In Section 5, we introduce safety type system and a proof for its 
soundness. Future works are outlined in Section 6. 

2. Related Work 

Multi-threading is a promising area of research. The most efficient challenging areas are compilation and 
program analysis (El-Zawawy, 2012a; Knoop & Steffen, 1999; Midkiff & Padua, 1990). The field of program 
analysis aims at collecting information about programs (Nielson, Nielson, & Hankin, 1999). Analyzing may 
concentrate on whole program, or focuses on each program point. There are many aspects of analyzing 
multi-threaded programs: pointer analysis (El-Zawawy, 2012a; El-Zawawy, 2011; El-Zawawy, 2011a; 
El-Zawawy, 2011b; Rugina & Rinard, 2003), optimization uses (El-Zawawy & Nayel, 2011; Knoop & Steffen, 
1999; Knoop, Steffen, & Vollmer, 1996; Lee, Midkiff, & Padua, 1998; Lee, Padua, & Midkiff, 1999), data race 
detection (Cheng, Feng, Leiserson, Randall, & Stark, 1998; Rugina & Rinard, 2005 ), and deadlock detection 
(Blieberger, Burgstaller, & Scholz, 2000; Koskinen & Herlihy, 2008; Wang, Kelly, Kudlur, Lafortune, & Mahlke, 
2008). 

A data race occurs very often in multi-threaded programs. It occurs when two threads try to access the same 
location without proper synchronization, and one of them is write (Henzinger, Jhala, & Majumdar, 2004). The 
data race always causes program bugs. The output of program depends on scheduling of accessing memory. 
Detecting data race is a promising area of research, it has been studied extensively (Cheng, Feng, Leiserson, 
Randall, & Stark, 1998; Flanagan et al., 2002; Kahlon, Yang, Sankaranarayanan, & Gupta, 2007; Permandla, 
Roberson, & Boyapati, 2007; Voung, Jhala, & Lerner, 2007). The first methodology to detect data races is the 
static race detection (Flanagan et al., 2002). Detectors, in this strategy, determine whether a program will ever 
produce a data race when run on all possible inputs. The second methodology is dynamic race detection, where 
potential races are detected at runtime by executing the program on a given input (Savage, Burrows, Nelson, 
Sobalvarro, & Anderson, 1997; Wang, Kelly, Kudlur, Lafortune, & Mahlke, 2008). In many detectors, data race 
and deadlock bugs are bundled together. Some static detectors, like Warlock (Sterling, January 1993), depends 
on the annotations formed by programmers to detect data races and deadlock problems. Using Theorem provers 
to detect many bugs including data race is the idea of extended static checker for Java (Flanagan et al., 2002; 
Leino, Saxe, & Stata, 1999). Some dynamic detectors are developed in the scientific parallel programming 
community (Cheng, Feng, Leiserson, Randall, & Stark, 1998; Dinning & Schonberg, 1991). Others detectors 
detects data race in Java-like programs (Choi et al., 2002; Praun & Gross, 2001). Eraser (Savage, Burrows, 
Nelson, Sobalvarro, & Anderson, 1997), as a dynamic detector, monitors programs during execution and looks 
for data race bugs. In general, dynamic detectors have the advantage that they can check un-annotated programs. 

Type systems are known to be a good framework for analyzing programs (Laud, Uustalu, & Vene, 2006; 
El-Zawawy & Daoud, 2012). Type systems have been extensively used in pointer analysis for both imperative 
and multi-threaded programs (El-Zawawy, 2011; El-Zawawy, 2011b). Type systems have been used to detect the 
memory safety of multi-threaded programs (El-Zawawy, 2011; El-Zawawy, 2011b; El-Zawawy, 2011a). Type 
systems are used in code optimization. Partial redundancy elimination was performed via type systems for 
imperative programs (Saabas & Uustalu, 2009), and for multi-threaded programs (El-Zawawy & Nayel, 2011). 
Type systems also are used to prevent data race and dead lock in a specific Java language (Permandla, Roberson, 
& Boyapati, 2007). 

Mathematical domains and maps between domains can be used to mathematically represent programs and data 
structures. This representation is called denotation semantics of programs (El-Zawawy & Jung, 2006; 
El-Zawawy, 2007). One of our directions for future research is to translate concepts of race detection to the side 
of denotation semantics. Doing so provides a good tool to mathematically study in deep race detection. Then 
obtained results can be translated back to the side of programs and data structures. 

3. Motivation 

In this section, we will present a simple example that demonstrates our motivations for this research. Firstly we 
define a simple language, called m-while, that supports the multi-threading concepts. In this language, statements 
s Stm, arithmetic expression a AExp, and b BExp are defined over a set of program variables xVar in 
the following way: 

    l  ::=  x | n 
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    a  ::=  l | l0+l1 | l0*l1 |....... 

    b  ::=  l0 = l1 | l0 < l1 |...... 

    s  ::=  x := a | skip | s0;s1 | if b then st else sf | while b do st | fork {s1},{s2},…..{sn} endfork   

The following segment of a program motivates our work: 

a := 4; 

b := 6; 

x := a + b; 

fork 

{ y := a + b ; z := b + 5; }, 

{ a := a + 5 ; w := a + b;}, 

{ x := x + 4;}, 

endfork; 

This code shows that the variable a accessed by two threads; in the first thread with read operation (y := a + b;) 
and the other thread with write operation (a := a + 5;). In this case the data-race problem occurs. 

3.1 Operational Semantics 

The semantics is given in terms of states. A state is a pair,  = (R,M), where R is a set of variables accessed by 
read operations, and M is a store. A store is a mapping from variables to integers M Store =df VarZ. The 
Boolean and arithmetical expressions are interpreted as truth values and integers according to stores by the 
semantic function [|-|] AExpBExpStoresZ. For arithmetic expression a AExp, [|a|] denotes the 
arithmetic evaluation of a in the state  . For Boolean expression b  BExp, [|b|] denotes the truth value of b 
in the state . We write | b to mean that [|b|] = tt. We note that FV(a) is the set of free variables of 
expression a. The operational semantics of m-while are given in Figure 1. The rules show that the assignment 
statement actually changes the state; the free variables of the expression that has been evaluated are added to 
read variables, and the store assigns new value for the variable being assigned a new value. The rules for 
imperative statements skip, sequence, if, and while changing the pre-state as usual for their classical meaning. 
The last rule (fork statement), that characterizes the multi-threading, describes that the fork statement changes a 
state using the states of each thread. One can see that our specific description of states helps in proving the 
soundness of our proposed type systems. 
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Figure 1. The operational semantics of m-while language 
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4. Read Type System 

In this section, we introduce read type system. At each program point, the read type system determines the 
variables that have been accessed with a read operation. This type system acts as a flag to discover the 
overlapping of read type system and the concurrent modified set. A program point has type r Var, if all 
variables in r are accessed by read operations (from beginning of the program to this point). The sub-typing is 
the set inclusion, i.e. r r1 if r r1. The rules of read type system are given in Figure 2. The first rule (:=r) adds 
the free variables of the computed expression to the pre-type. The rules skipr, sequencer, ifr, and whiler affect 
pre-type as expected considering their classical meaning. The rule (conseqr) is important for weakening the 
pre-type and strengthen the post-type. For the rule (forkr) which characterizes the multi-threading, the post-type 
of fork statement is the union of all post-types of different threads. 
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Figure 2. The rules of read type system of m-while language 

 
4.1 Soundness of Read Type System 

In this section, we prove the soundness of read type system. Firstly, the following definition is introduced:- 

Definition 1. 

For a state  = (R, M), we say that entails r, where rVar is a read type set, if rR. This is written as 
follows  | r   rR. 

The soundness of the concerned type systems is introduced in the following theorem. 

Theorem 1. 

If s : '   and s :r r' , then | r ' | r'    . 

Proof: 

The proof is by structural induction on rules, we demonstrate some cases:- 

 Case :=r  

We use the operational rule :=os . Let | r   rR. Hence we have  

r' = r   FV(a)R   FV(a)   R'  ' | r'   

 Case forkr  

We use the operational rule forkos . From premises the following are satisfied:- 

( i ) is : r r  , and ( i ) is :  = (R, Mi) i 1  = (Ri, Mi+1). i.e. 

i i 1 i| r | r     or equivalently r R  ri Ri. It is enough to prove that:- 

1 n 1 i
i

| r | r      

But, 1 |  r  r   R 

               ri   Ri 

                ri    Ri 
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              n 1 i| r   . 

5. Safety Type System 

In this section, we introduce the safety type system. Each program point has a type d{true, false}, where true 
means that the program is safe at this point, and false means that the program is unsafe at this point. In the 
following C(s) denotes the concurrent modified set of the statement s introduced in (El-Zawawy & Nayel, 2011), 
and p1 p2 denotes the logical conjunction of Boolean variables p1 and p2. The following definition is needed:- 

Definition 2. 

The truth value of a set A is defined as follow:- 

Tr(A) = true   if   A =    and    false   if  A   

For any two sets A and B the following properties are satisfied 

Tr(A)  Tr(B) = Tr(AB) 

and 

Tr(A) Tr(B) = Tr(AB) 

The rules of safety type system are defined in Figure 3. The first rule := checks the overlapping of concurrent 
modified set and the read set. All other rules are straightforward. In general we conclude that, the program is safe 
if each program point has a type true otherwise the program is unsafe. 
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Figure 3. The rules of safety type system of m-while language 

 

5.1 Soundness of Safety Type System 

Firstly we define the entailment of a type d in state  (R, M) with respect to set A as follow:- 

A| d   d = Tr(RA) 

The following theorem states and proves the soundness of the safety type system. 

Theorem 2 

Let s : '  , and s : d d ' . Then C( s ) C( s )| d ' | d '     

Proof: 

The proof is by structural induction on rules, we present some cases:- 

 Case := 

Suppose x := a : '  , and x := a : r   r', where   (R, M), '  (R', M'), r' = rFV(a), and 
R' = RFV(a). 

From premises, r  R   r'  R'. 

Let C( x: a )|  d. Then d = Tr(RC(x := a)) 

Now   d' = d  Tr (r'   C(x := a)) 

        = Tr(R   C(x :=a))Tr (r'   C(x := a)) 

        = Tr((R   C(x :=a))  (r'   C(x := a))) 

        = Tr((R   r') C(x := a)) 
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        = Tr((R   r   FV(a))   C(x := a)) 

        = Tr((R   FV(a))   C(x := a)) 

        = Tr(R'  C(x := a))  

         C( x: a )' |  d' 

i.e., C( x: a )|  d  C( x: a )' |   d' which completes the proof. 

 Case seq 

We use the operational semantic rule seqos. From premises we have:- 

0 0C( s ) C( s )| d '' | d ''    , and 
1 1C( s ) C( s )'' | d '' ' | d '     

From the definition of concurrent modified function given by (El-Zawawy & Nayel, 2011), we can 
conclude that for a sequence of statements s0;s1 the following issatisfied:- 

C(s0) = C( s1 )= C(s0;s1) 

i.e., 
0 1 0 1C( s ;s ) C( s ;s )| d '' | d ''    , 

and 

0 1 0 1C( s ;s ) C( s ;s )'' | d '' ' | d '     

then we can conclude that 
0 1 0 1C( s ;s ) C( s ;s )| d ' | d '    . 

 Case fork 

To prove this rule we can consider the fork statement as the following sequence of statements fork 
{s1},{ s1},…..{ sn} endfork = )()2()1( ;......; nsss  . Now applying the sequence rule produces the 
proof. 

5.2 Implementation 

We implemented a detector based on our type system. This program checks any program of m-while language for 
safety. For a program of m-while language, the detector computes the modified sets of each program point and 
computes read sets for each program point. Then the intersection of these two sets is calculated. 

6. Conclusion and Future Work 

In this paper we present a static data race detector. We use type systems as a framework to implement this 
detector. Firstly, we present read type system which computes the variables accessed by read operations. 
Secondly, we present safe type system. This type system is based on read type system and decides if a program 
contains data race problems or not. The soundness of these type systems are discussed in this paper as well. For 
future work we plan to use type systems as a tool to solve more complicated problems (like deadlock, pointer 
dangling,). We expect type systems to be an amenable and trustable framework to deal with static analyses. We 
also plan to improve our work in many directions including extending our language to support the 
object-oriented concepts. 
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