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Abstract 

Evolutionary algorithms have (EAs) been an alternative class of powerful search techniques. They have been 
widely applied to solve multi-objective optimization problems from scientific community and engineering fields. 
The aim of designing EAs for multi-objective optimization is to obtain a well-converged and well-distributed set 
involving multiple Pareto-optimal solutions in a single simulation run. Accordingly, improving the convergence 
speed and preserving the diversity of solutions are identically important during the search of EAs. In EAs, an 
effective fitness assignment approach is beneficial to improve the convergence speed and simultaneously guide 
the search of EAs towards optimal regions; an effective fitness sharing technique can improve the diversity of 
solutions in order to avoid the premature convergence. Additionally, the search capability of evolving operators 
themselves plays an important role in solving multi-objective optimization problems. This paper introduces two 
alternative fitness assignment approaches based on Pareto ranking to guide the search towards optimal regions, 
develops three alternative pruning techniques (i.e., specific fitness sharing techniques), and incorporates a 
dynamic mutation operator into EAs in order to enrich the diversity of solutions. Experimental results show that 
these approaches are effective. The purpose of this study is to gain a specific and important insight into 
well-established techniques and encourage their usage in further empirical studies. 

Keywords: Evolutionary algorithm, Multi-objective optimization, Differential evolution, Fitness assignment, 
Diversity-preserving, Convergence 

1. Introduction 

Many real-world optimization problems often involve multiple conflicting objectives, namely multi-objective 
optimization problems (David A. et al., 2000). Without loss of generality, a single-objective optimization 
problem has a particular global optimum. For a multi-objective optimization problem, there exists a set of 
solutions. These solutions are also called Pareto-optimal solutions or trade-off solutions (David A. et al., 2000). 
Without further knowledge, they are identically important. Usually, it is more difficult to solve a multi-objective 
optimization problem than to solve a single-objective optimization problem. This is because the search space of a 
multi-objective optimization problem is often more complex and larger than that of a single-objective 
optimization problem. Compared with the traditional methods, evolutionary algorithms (EAs) can exhibit more 
advantages such as gaining a solution set in a single simulation run and often being less susceptible to the 
characteristics of problems when applied to solve multi-objective optimization problems (Carlos M. et al., 1995; 
E. Mezura-Montes, et al., 2008). Currently, EAs have been widely applied to solve multi-objective optimization 
problems from scientific community and engineering fields (C. A. Coello Coello, 2006). 

The aim of designing EAs is to gain a well-converged and well-distributed set approximation to the true 
Pareto-optimal front of problem in a single simulation run (C. A. Coello Coello, 2006). Hence, it requires to 
improve the convergence speed and perverse the diversity of solutions during the search of EAs. Accordingly, 
EAs employ corresponding fitness assignment approaches (E. Zitzler, et al., 1999; 2002) and 
diversity-preserving mechanisms (J. Horn, et al., 1994; N. Srinivas, et al., 1995; J. Horn, et al., 1993; C. Igel, et 
al., 2007; D. E. Goldberg, et al., 1987) to achieve their two intentions, respectively. In EAs, the fitness 
assignment approaches are utilized to guide the search of EAs towards optimal regions, and the representatives 
of these approaches involve Goldberg’s Pareto ranking (D. E. Goldberg, 1989) and Fonseca and Fleming’s 
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Pareto ranking (C. M. Fonseca, et al., 1993); while diversity-preserving mechanisms are utilized to enrich the 
population and avoid the premature convergence, and in the diversity-preserving mechanisms, the effective 
fitness sharing techniques can improve the diversity of solutions. This paper first introduces two alternative 
fitness assignment approaches, i.e., Goldberg’s Pareto ranking and Fonseca and Fleming’s Pareto ranking, and 
develops three alternative pruning techniques. In order to implement these pruning techniques and prune excess 
individuals more effectively, a fast and effective density-estimating technique without using parameters is 
employed (K. Deb, 2002). Then, through combining these approaches and techniques, several differential 
evolution (R. Storn, et al., 1997) algorithms for multi-objective optimization are given. Numerical experiments 
are conducted on a test set involving seven scalable multi-objective optimization problems to be minimized. The 
experimental results indicate the relative performances between two alternative Pareto ranking approaches and 
among three alternative pruning techniques, respectively. Finally, in order to further enrich the diversity of 
solutions, a dynamic mutation operator (Z. Michalewicz, 1996) is introduced. 

This paper is organized as follows: First, we introduce two alternative fitness assignment approaches based on 
Pareto ranking in Section 2. Then, we develop three pruning techniques in Section 3 and introduce a fast and 
effective technique for estimating the individual crowded density in Section 4. Next, we present the experimental 
results, compare different fitness assignment approaches, and contrast different pruning techniques in Section 5. 
Finally, some conclusions and future work are given in Section 6. 

2. Two Alternative Fitness Assignment Approaches 

2.1 Goldberg’s Pareto Ranking 

Based on the concept of Pareto optimality (David A., 2000), Goldberg (D. E. Goldberg, 1989) first proposed the 
basic idea of Pareto ranking to determine the individual rank for each individual in the current population. 
According to these ranks and a certain selection strategy, some individuals with better ranks have the relatively 
bigger probabilities to be selected into the next generation population. The procedure of Goldberg’s Pareto 
ranking is described as follows (D. E. Goldberg, 1989): First, the current population is sorted by the concept of 
Pareto optimality, some non-dominated individuals are obtained and assigned rank 1, then remove these 
individuals from the current population and the remaining individuals constitute the current population; 
Repeatedly, first, the current population is sorted by the concept of Pareto optimality, some non-dominated 
individuals are obtained and assigned rank 2, then remove these individuals from the current population and the 
remaining individuals constitute the current population; Continue to the above steps till the current population 
becomes empty when all individuals have certain ranks. The basic idea of Pareto ranking can be illustrated in 
Figure 1. 

2.2 Fonseca and Fleming’s Pareto Ranking 

Based on the concept of Pareto optimality, Fonseca and Fleming (Fonseca & Fleming, 1993) proposed another 
alternative Pareto ranking. According to the basic idea of Fonseca and Fleming’s Pareto ranking, the individual 

)(txi  from the tht  generation population )(tP  is assigned rank )(tRi , where the rank function )(tRi  is 
defined by )(1)( tptR ii  , )(tpi  is the number of individuals which are dominated by the individual )(txi  
in the population )(tP . The basic idea of the Fonseca and Fleming’s Pareto ranking can be illustrated in Figure 
2. 

3. Three Alternative Pruning Techniques 

Let )(tP  and )(tQ  be the tht  generation population with size N  to be pruned and its resulting population, 

respectively. Before implementing three alternative pruning techniques (i.e., three alternative fitness sharing 
techniques), first, the tht  generation population )(tP  is sorted according to Pareto ranking, and we can 
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in . In order 

to prune the ( NtPtQ
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, three alternative pruning 

techniques are introduced as follows: 1) We directly first calculate the individual density for each individual in 
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the thi  subpopulation )(tP
in , then remove ( NtPtQ

in  |)(||)(| ) individuals from the thi  subpopulation 

)(tP
in . The basic idea of the first pruning technique is illustrated in Figure 3; 2) We first calculate the individual 

density for each individual from the union of the thi  subpopulation )(tP
in  and the th)1-(i  subpopulation 

)(
1

tP
in 

, then remove ( NtPtQ
in  |)(||)(| ) more crowded individuals from the thi  subpopulation )(tP

in
. 

The basic idea of the second pruning technique is illustrated in Figure 4; 3) We calculate the individual density 

for each individual from the union of the thi  subpopulation )(tP
in  and the intermediate population )(tQ , 

then remove ( NtPtQ
in  |)(||)(| ) more crowded individuals from the thi  subpopulation )(tP

in . The basic 

idea of the third pruning technique is illustrated in Figure 5. 
4. Estimating the Individual Crowded Density 

In order to maintain the diversity of solutions more effectively, some individuals which are located in the more 
crowded regions will be removed when the number of individuals in the population is larger than a predefined 
constant value. The crowding-distance estimating approach provides a fast and effective measuring technique for 
estimating the individual crowded density for each individual in the population. The basic idea of estimating the 
individual crowding-distance is described as follows (K. Deb, et al., 2002): First, along the thK  dimensional 

direction in the objective space, the thK  distance between the individual ix  and the individual jx  from the 

population P  is calculated as )(|)()(|),( minmax
KKjKiKjiK ffxfxfxxd  ; Then along the thK  

dimensional direction in the objective space, the shortest distance sum 

)},({min)},({min),( iriK
Px

iliK
Px

iK xxdxxdPxD
rirlil 

  of the individual ix  near to two individuals located at 

each side of the individual ix  is calculated, where PPxP ril  }{ , rl PP  , li Px   and ri Px  , 

lPx , )()( xfxf KiK   and rPx , )()( xfxf KiK  . In order to further enrich the diversity of 

solutions and retain the individuals located at the extreme positions, if ( max)( KiK fxf  or min)( KiK fxf  ) then 

let ),( PxD iK ; Finally, the crowding-distance  


M

K iKi PxDPxD
1

),(),(  of the individual ix  in the 

population P  is obtained, where M  is the number of objectives, max
Kf  and min

Kf  are the maximum 

objective value and the minimum objective value along the thK  dimensional direction in the objective space, 
respectively. The basic idea of estimating the individual crowding-distance is illustrated in Figure 6. 

5. Experimental Studies 

5.1 Benchmark Test Functions and Performance Metrics 

In order to gain a specific and important insight into existing approaches, through combining these approaches, 
we give several differential evolution algorithms for multi-objective optimization. Numerical experiments are 
conducted on a test set of multi-objective optimization problems (K. Deb, et al., 2001; S. Huband, et al., 2006). 
These multi-objective optimization problems are scalable and to be minimized. They have been widely used to 
valid the performances of evolutionary algorithms for multi-objective optimization. The details of these 
multi-objective optimization problems are described in Appendix A. 

In order to measure the performances including convergence, diversity as well as convergence and diversity of 
obtained solution set, let Z  and *PF  be the obtained solution set and the true Pareto-optimal front (typically, 

*PF  is produced by uniformly sampling), then convergence metric  , diversity metric   as well as 

convergence and diversity metric IGD  can be correspondingly defined in the following. 
Definition 1 (convergence metric  ) Let the convergence metric ),( *PFZ  be used to measure the closeness 

of the obtained solution set Z  to the true Pareto-optimal front *PF . This metric can be calculated by 

 


ZzZ PFzzzPFZ }','min{),( *
||

1*                     (1) 

Obviously, the smaller the value of ),( *PFZ  is, the closer the distance from Z  to *PF  is, and the value of 

),( *PFZ  is equal to zero, if and only if *PFZ  . 
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Definition 2 (diversity metric  ) (R. Storn, and K. Price, 1997; T. Okabe, et al., 2003) Let the diversity metric 
  be used to measure the distribution of diversity of Z  and the spread along the true Pareto-optimal front 

*PF . This metric can be calculated by 

dZZdd
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                   (2) 

where *PFE   is the set involving all extreme points in *PF , the function ),( Sxd  can be defined by 

yxSxd
Sy




min),( , where d  is the arithmetic mean of all ),( Zzd , Zz . yx   denotes the Euclidean 

distance between two points x  and y . A smaller value of ),( *PFZ  represents a well-distributed diversity 

of Z  along the true Pareto-optimal front *PF . If the obtained solution set Z  is well distributed and involves 

the extreme points in *PF , then ),( *PFZ  is equal to zero. 

Definition 3 (convergence and diversity metric IGD ) (T. Okabe, et al., 2003; Q. Zhang, et al., 2008) Let the 

convergence and diversity metric IGD  be used to measure the average distance from *PF  to Z . This 
metric can be calculated by 

||

),(
),(

*
* *

PF

Zzd
PFZIGD PFz                          (3) 

where ),( Zzd  is the minimum Euclidean distance from the point z  in *PF  to all points in Z . If || *PF  

is large enough to represent the true Pareto-optimal front, ),( *PFZIGD  is used to measure the convergence and 

diversity of the obtained solution set Z . A smaller value of ),( *PFZIGD  indicates a significant quality of 

Z . 
5.2 Investigating Two Alternative Pareto Ranking Approaches 

In this study, we first investigate the relative contributions of two alternative Pareto ranking approaches to the 
quality of obtained solutions. According to Goldberg’s Pareto ranking and Fonseca and Fleming’s Pareto ranking, 
we give two corresponding differential evolution algorithms called PR and SP. The parameter settings for all 
problems (Set A) are listed in Table 1. Experimental Parameters utilized by differential evolution algorithms are 
given in Table 2. Table 3 gives the convergence results over 20 runs; Table 4 gives the diversity results over 20 
runs; Table 5 gives the convergence and diversity results over 20 runs. 

According to Table 1, we give the corresponding Pareto-optimal set (PS) and Pareto-optimal front (PF) for each 
problem in Figure 7 to Figure 13. For DTLZ4, it is not easy to sample the true Pareto-optimal set and the true 
Pareto-optimal front. Figure 10 might only stand for the part of the true Pareto-optimal set and the true 
Pareto-optimal front of DTLZ4. 

In order to more intuitively observe the experimental results, we present the obtained Pareto-optimal front for 
each problem in terms of two alternative differential evolution algorithms PR and SP in Figure 14 to Figure 20. 
According to Figure 14 to Figure 20, we can observe that SP and PR can find an approximation set to the true 
Pareto-optimal front for each problem above in a single simulation run. 

According to Table 3, we can find that for all problems, the best results obtained by SP are slightly better than 
those obtained by PR in terms of convergence. For DTLZ1, DTLZ5, and DTLZ6, the mean results obtained by 
SP are slightly better than those obtained by PR, while for DTLZ2, and DTLZ7, the mean results obtained by SP 
are slightly worse than those obtained by PR. It is interesting to note that for DTLZ3, SP can find an 
approximation set for each run out of 20 runs. Unfortunately, PR failed to find an approximation set for each run 
out of 20 runs. At the same time, for most of problems DTLZ1, DTLZ2, DTLZ5, and DTLZ6, the worst results 
obtained by SP are slightly worse than those obtained by PR, while for DTLZ3 and DTLZ7, the worst results 
obtained by SP are slightly superior to those obtained by PR. It signifies that SP outperforms PR when applied to 
solve more complex problems. 

According to Table 4, we can observe that for all problems, SP and PR can obtain the approximate mean, best, 
worst, std (standard deviation) results. It is worthy of noting that for DTLZ3, although PR failed to find an 
approximation set for each run out of 20 runs, the obtained approximation set keeps the better diversity of 
solutions. 
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According to Table 5, for DTLZ1, DTLZ3, DTLZ5, and DTLZ7, the mean results produced by SP are slightly 
superior to those produced by PR, while for other problems, the mean results produced by SP are worse than 
those produced by PR. For DTLZ1-DTLZ5, we can find that the best results produced by SP are slightly worse 
than those produced by PR, while for other problems, the best results produced by SP are slightly better than 
those produced by PR. For DTLZ1~ DTLZ2, and DTLZ4~ DTLZ7, the worst results obtained by SP are 
approximate to those obtained by PR. In general, the mean performance of SP is superior to that of PR. 

5.3 Investigating Three Alternative Pruning Techniques 

In this section, we continue to further investigate the relative contributions of three alternative pruning 
techniques to the quality of obtained solutions. According to the first pruning technique, the second pruning 
technique, and the third pruning technique, we create three corresponding differential evolution algorithms called 
DPA, DPB, and DPC. They all employ Fonseca and Fleming’s Pareto ranking approach. The parameter settings 
for all problems (Set B) are listed in Table 6. Experimental Parameters utilized by DPA, DPB, and DPC are 
given in Table 7. Table 8 gives the convergence results over 10 runs; Table 9 gives the diversity results over 10 
runs; Table 10 gives the convergence and diversity results over 10 runs. 

In the process of experimental simulation, we find that for two problems DTLZ1 and DTLZ3, each algorithm 
DPA, DPB, or DPC has a certain possibility of getting struck in local Pareto-optimal fronts in a single simulation 
run. In order to more intuitively observe the shapes of local Pareto-optimal fronts, Figure 21 illustrates two 
different local Pareto-optimal fronts obtained in two independent simulation runs with respect to DTLZ1; Figure 
22 illustrates two different local Pareto-optimal fronts obtained in two independent simulation runs with respect 
to DTLZ3. Seen from Figure 21 and Figure 22, these local Pareto-optimal fronts still exhibit better diversity and 
profile. It indicates that diversity-preserving mechanisms employed in these algorithms are effective.  

According to Table 8, for four problems DTLZ2, DTLZ5, DTLZ6, and DTLZ7, the mean and best results 
obtained by three algorithms DPA, DPB, and DPC are approximate. For DTLZ1, The mean performance of DPA 
is superior to those of DPB and DPC, the best and std (standard deviation) results obtained by these algorithms 
are slightly different, and the worst result of DPB is the worst among three algorithms. For DTLZ3, three 
algorithms DPA, DPB, and DPC failed to find an approximation set for each run out of 10 runs, and they 
perform approximately. 

According to Table 9, for each problem, each algorithm can obtain the approximate performances with respect to 
the mean, best, worst, and std experimental results. 

According to Table 10, for most of problems DTLZ1, DTLZ2, DTL3, DTLZ5, and DTLZ7, the mean 
performance of DPC is superior to that of DPA or DPB. The initial results indicate that the third pruning 
technique is more effective than the first pruning technique, and the second pruning technique. 

5.4 Improving the Search Abilities by Incorporating Other Search Techniques 

In this section, in order to improve the search capability and avoid the premature convergence, we introduce a 
dynamic mutation operator, which can be described as follows (Storn and Price, 1997): 









otherwise ),,),(()(

5.0 if ),,),(()(
)('

bTttxLtx

bTttxUtx
tx

ii

ii
i 


                     (4) 

where the mutated individual vector )(' txi  is generated by the target individual vector )(txi ,   is a random 

number from the interval [0, 1], U  and L  are the upper and lower bounds of the target individual vector 

)(txi , respectively. The function   is defined as bTtybTty )1(),,,(   , where t  and T  are the 

generation number and the maximum generation number, respectively. The parameter b  is often predefined as 
2 or 3. 

Next, let )(tQ  denote the offspring population of the tht generation population )(tP ; let )(tR  denote the 

mutated population of the tht  generation population )(tP  according to Equation (4). After generating the 

offspring population )(tQ  and the mutated population )(tR  of the tht  generation population )(tP  , let 

)()()()( tRtQtPtP  , and select N  better individuals from the union population )(tP  into the 

th)1( t  population )1( tP , where N  is the population size. We call this modified version H-DPC of DPC. 
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The parameter settings for two problems DTLZ1 and DTLZ3 are referred to Table 6; Experimental parameters 
for two differential evolution algorithms DPC and H-DPC are referred to Table 7. Finally, Table 11 gives the 
convergence results over 10 runs with respect to DTLZ1 and DTLZ3; Table 12 gives the diversity results over 10 
runs with respect to DTLZ1 and DTLZ3; Table 13 gives the convergence and diversity results over 10 runs with 
respect to DTLZ1 and DTLZ3. 

For DTLZ1 and DTLZ3, Table 11 shows that the convergence performances of H-DPC are obviously superior to 
those of DPC; Table 12 shows that the diversity performances of H-DPC are approximate to those of DPC; Table 
13 shows that the convergence and diversity performances of H-DPC are obviously better than those of DPC. It 
indicates that an effective search operator can improve the performance of an evolutionary algorithm. 

6. Conclusions and Future Work 

This paper introduces two alternative fitness assignment approaches based on Pareto ranking to guide the search 
of EAs towards optimal regions, three alternative diversity-preserving pruning techniques (i.e., three alternative 
fitness sharing techniques), and incorporates a dynamic mutation operator into differential evolution algorithms 
in order to enrich the diversity of solutions to premature convergence. Through combining these approaches 
and/or techniques, we present several specific differential evolution algorithms for multi-objective optimization, 
and compare and contrast these algorithms. 

As to future work, some research directions will be considered as follows: On the one hand, during the search, 
how to identify better individuals more effectively is still our research work. As shown in Figure 23, the 
individual (white circle) is easier to be rejected than any other individuals (back circles) in the population. In fact, 
the individual is a potential solution. On the other hand, we will also further introduce more effective fitness 
assignment approaches to improve the convergence speed, and more effective fitness sharing techniques and 
diversity-preserving mechanisms to enrich the diversity of solutions. 
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Table 1. Parameter settings for all problems (Set A) 

function k  M  n  

DTLZ1 5 3 7 

DTLZ2 10 3 12 

DTLZ3 10 3 12 

DTLZ4 10 3 12 

DTLZ5 10 3 12 

DTLZ6 10 3 12 

DTLZ7 20 3 22 
 
 
Table 2. Parameter settings for all algorithms (Set A) 

population size generation number  scaling factor crossover probability 

200 200 0.5 0.2 
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Table 3. Experimental results (over 20 runs) with respect to convergence   (Set A) 

function method mean best worst Std 

DTLZ1 
SP 2.031838e-03 1.863285e-03 2.181295e-03 6.637889e-05 

PR 2.044266e-03 1.994832e-03 2.131832e-03 3.951647e-05 

DTLZ2 
SP 5.302748e-03 5.014488e-03 5.597901e-03 1.440265e-04 

PR 5.282749e-03 5.017556e-03 5.442548e-03 1.264624e-04 

DTLZ3 
SP 6.517009e-03 5.536080e-03 8.646826e-03 7.061516e-04 

PR 5.649878e-02 5.775278e-03 1.002519e+00 2.226712e-01 

DTLZ5 
SP 3.825585e-03 3.629720e-03 4.041557e-03 9.096097e-05 

PR 3.838241e-03 3.640095e-03 3.983132e-03 9.261637e-05 

DTLZ6 
SP 3.853767e-03 3.630669e-03 4.041242e-03 8.849952e-05 

PR 3.854559e-03 3.703397e-03 3.978090e-03 6.777661e-05 

DTLZ7 
SP 1.702500e-02 1.454956e-02 1.909859e-02 1.321462e-03 

PR 1.698686e-02 1.517265e-02 2.215507e-02 1.665180e-03 
 
Table 4. Experimental results (over 20 runs) with respect to diversity   (Set A) 

function method mean best worst std 

DTLZ1 
SP 5.628245e-01 5.164370e-01 6.309867e-01 2.977525e-02 

PR 5.698309e-01 5.202605e-01 6.146444e-01 2.722818e-02 

DTLZ2 
SP 4.593718e-01 3.945783e-01 5.550712e-01 4.088541e-02 

PR 4.500276e-01 3.685823e-01 5.054371e-01 3.789337e-02 

DTLZ3 
SP 4.579975e-01 3.597210e-01 5.151380e-01 4.486129e-02 

PR 4.664997e-01 3.893994e-01 5.467750e-01 4.116880e-02 

DTLZ5 
SP 2.971913e-01 2.587800e-01 3.335140e-01 2.117458e-02 

PR 2.987648e-01 2.507607e-01 3.271258e-01 1.898881e-02 

DTLZ6 
SP 2.573789e-01 2.245677e-01 2.881078e-01 1.506331e-02 

PR 2.501997e-01 2.223664e-01 2.818551e-01 1.608989e-02 

DTLZ7 
SP 6.185258e-01 5.000880e-01 7.281582e-01 6.870801e-02 

PR 6.094301e-01 4.828956e-01 7.533552e-01 6.973806e-02 
 
Table 5. Experimental results (over 20 runs) with respect to IGD  (Set A) 

function method mean best  worst std 

DTLZ1 
SP 1.571187e-02 1.535013e-02 1.627591e-02 2.925840e-04 

PR 1.592578e-02 1.513805e-02 1.662548e-02 3.659530e-04 

DTLZ2 
SP 4.312730e-02 4.190519e-02 4.593635e-02 1.116948e-03 

PR 4.270037e-02 4.107839e-02 4.369294e-02 8.510555e-04 

DTLZ3 
SP 4.296872e-02 4.138649e-02 4.461358e-02 8.296723e-04 

PR 9.129606e-02 4.095235e-02 1.004348e+00 2.149135e-01 

DTLZ5 
SP 2.223213e-03 2.033885e-03 2.519202e-03 1.399678e-04 

PR 2.256304e-03 1.995968e-03 2.446413e-03 1.197079e-04 

DTLZ6 
SP 2.209367e-03 1.879349e-03 2.459724e-03 1.462624e-04 

PR 2.198635e-03 1.981355e-03 2.385968e-03 1.078765e-04 

DTLZ7 
SP 5.332914e-02 4.986150e-02 5.970970e-02 2.642792e-03 

PR 5.502353e-02 5.035829e-02 6.624393e-02 3.781681e-03 
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Table 6. Parameter settings for all problems (Set B) 

function k  M  n  

DTLZ1 25 3 27 

DTLZ2 50 3 52 

DTLZ3 50 3 52 

DTLZ4 50 3 52 

DTLZ5 50 3 52 

DTLZ6 50 3 52 

DTLZ7 100 3 102 
 
 
Table 7. Parameter Settings for all algorithms (Set B) 

population size generation number scaling factor crossover probability 

200 5000 0.5 0.2 
 
 
Table 8. Experimental results (over 10 runs) with respect to convergence   (Set B) 

function method mean best worst std 

DTLZ1 

DPA 3.552232e-02 1.918474e-03 3.370166e-01 1.059343e-01 

DPB 1.752185e-01 1.892351e-03 1.064024e+00 3.419406e-01 

DPC 1.723846e-01 1.976512e-03 6.988795e-01 2.433958e-01 

DTLZ2 

DPA 5.294251e-03 4.929414e-03 5.508555e-03 1.764598e-04 

DPB 5.343427e-03 5.111571e-03 5.725184e-03 1.711851e-04 

DPC 5.246948e-03 5.014469e-03 5.456907e-03 1.367266e-04 

DTLZ3 

DPA 1.209321e+01 2.998505e+00 4.371778e+01 1.184372e+01 

DPB 1.049958e+01 1.999012e+00 3.199647e+01 8.827131e+00 

DPC 9.462961e+00 2.387961e+00 2.899799e+01 8.186345e+00 

DTLZ5 

DPA 3.795862e-03 3.694258e-03 3.968720e-03 9.612101e-05 

DPB 3.797401e-03 3.711054e-03 3.886041e-03 6.180404e-05 

DPC 3.787637e-03 3.677604e-03 3.872392e-03 6.411970e-05 

DTLZ6 

DPA 3.834440e-03 3.739174e-03 3.965775e-03 6.633829e-05 

DPB 3.810799e-03 3.722204e-03 3.893788e-03 4.598090e-05 

DPC 3.875848e-03 3.773779e-03 4.016359e-03 9.165353e-05 

DTLZ7 

DPA 1.664319e-02 1.486735e-02 1.808948e-02 1.026120e-03 

DPB 1.666665e-02 1.551426e-02 1.734761e-02 5.933660e-04 

DPC 1.664920e-02 1.491465e-02 1.806811e-02 8.770764e-04 
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Table 9. Experimental results (over 10 runs) with respect to diversity   (Set B) 

function method mean best worst std 

DTLZ1 

DPA 5.566587e-01 5.108032e-01 5.824428e-01 2.455997e-02 

DPB 5.558897e-01 5.045916e-01 5.976209e-01 3.756563e-02 

DPC 5.380164e-01 4.872395e-01 6.010286e-01 3.407660e-02 

DTLZ2 

DPA 4.772971e-01 4.237429e-01 5.058848e-01 2.250187e-02 

DPB 4.743576e-01 4.285477e-01 5.064148e-01 2.186255e-02 

DPC 4.609011e-01 4.044574e-01 5.553018e-01 4.102087e-02 

DTLZ3 

DPA 4.971516e-01 4.719587e-01 5.368933e-01 2.540926e-02 

DPB 5.185695e-01 4.844420e-01 5.654886e-01 2.181079e-02 

DPC 5.215294e-01 4.602714e-01 5.553033e-01 2.878796e-02 

DTLZ5 

DPA 2.695051e-01 2.457427e-01 2.882001e-01 1.288009e-02 

DPB 2.715688e-01 2.488244e-01 2.933755e-01 1.491894e-02 

DPC 2.757213e-01 2.569387e-01 2.973063e-01 1.372642e-02 

DTLZ6 

DPA 2.476024e-01 2.308133e-01 2.748538e-01 1.286597e-02 

DPB 2.460156e-01 2.326828e-01 2.669019e-01 1.147593e-02 

DPC 2.583052e-01 2.417108e-01 2.793733e-01 1.172258e-02 

DTLZ7 

DPA 6.301640e-01 5.438537e-01 6.967074e-01 6.211428e-02 

DPB 6.389495e-01 5.964780e-01 7.413489e-01 4.192206e-02 

DPC 6.444901e-01 5.515701e-01 7.427199e-01 5.680151e-02 

 
Table 10. Experimental results (over 10 runs) with respect to IGD  (Set B) 

function method mean best worst std 

DTLZ1 
DPA 4.343832e-02 1.490991e-02 2.910798e-01 8.701401e-02 
DPB 1.563178e-01 1.572475e-02 8.683551e-01 2.751596e-01 
DPC 1.547967e-01 1.526067e-02 5.790862e-01 1.977196e-01 

DTLZ2 
DPA 4.353963e-02 4.164419e-02 4.510119e-02 1.198702e-03 
DPB 4.350591e-02 4.182151e-02 4.583749e-02 1.269912e-03 
DPC 4.287316e-02 4.190607e-02 4.468166e-02 9.172470e-04 

DTLZ3 
DPA 1.209452e+01 2.999916e+00 4.371899e+01 1.184367e+01 
DPB 1.050092e+01 2.000648e+00 3.199767e+01 8.827054e+00 
DPC 9.463143e+00 2.377364e+00 2.899937e+01 8.187449e+00 

DTLZ5 
DPA 2.192472e-03 2.044215e-03 2.394160e-03 1.241114e-04 
DPB 2.241719e-03 1.998765e-03 2.450419e-03 1.523540e-04 
DPC 2.157124e-03 2.021991e-03 2.297052e-03 7.612698e-05 

DTLZ6 
DPA 2.159979e-03 1.976232e-03 2.429575e-03 1.212622e-04 
DPB 2.161228e-03 1.928455e-03 2.321165e-03 1.084079e-04 
DPC 2.250094e-03 2.028662e-03 2.499558e-03 1.607380e-04 

DTLZ7 
DPA 5.377720e-02 5.013285e-02 5.810569e-02 2.837050e-03 
DPB 5.551391e-02 4.991557e-02 6.214196e-02 3.621382e-03 
DPC 5.268983e-02 4.952584e-02 5.693206e-02 2.681996e-03 
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Table 11. Experimental results (over 10 runs) with respect to convergence   (for DTLZ1 and DTLZ3 in Set B) 

function method mean Best Worst std 

DTLZ1 
DPC 1.723846e-01 1.976512e-03 6.988795e-01 2.433958e-01 

H-DPC 2.047708e-03 1.889407e-03 2.126142e-03 6.480516e-05 

DTLZ3 
DPC 9.462961e+00 2.387961e+00 2.899799e+01 8.186345e+00 

H-DPC 5.280089e-03 4.861896e-03 5.432715e-03 1.851809e-04 
 
 
Table 12. Experimental results (over 10 runs) with respect to diversity   (for DTLZ1 and DTLZ3 in Set B) 

function method mean Best worst std 

DTLZ1 
DPC 5.380164e-01 4.872395e-01 6.010286e-01 3.407660e-02 

H-DPC 5.861069e-01 5.289829e-01 6.659675e-01 4.112187e-02 

DTLZ3 
DPC 5.215294e-01 4.602714e-01 5.553033e-01 2.878796e-02 

H-DPC 4.729079e-01 4.228091e-01 5.414467e-01 3.814277e-02 
 
 
Table 13. Experimental results (over 10 runs) with respect to convergence and diversity IGD  (for DTLZ1 and 
DTLZ3 in Set B) 

function method mean best worst std 

DTLZ1 
DPC 1.547967e-01 1.526067e-02 5.790862e-01 1.977196e-01 

H-DPC 1.608508e-02 1.558558e-02 1.645429e-02 2.549915e-04 

DTLZ3 
DPC 9.463143e+00 2.377364e+00 2.899937e+01 8.187449e+00 

H-DPC 4.356007e-02 4.241451e-02 4.467135e-02 7.600018e-04 
 
 

  

Figure 1. Goldberg’s Pareto ranking Figure 2. Fonseca and Fleming’s Pareto ranking 
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Figure 3. The first pruning technique Figure 4. The second pruning technique 

 

  

Figure 5. The third pruning technique Figure 6. The density-estimating technique 

 

       

Figure 7. PS (left) and PF (right) of DTLZ1 

 

       

Figure 8. PS (left) and PF (right) of DTLZ2 
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Figure 9. PS (left) and PF (right) of DTLZ3 

 

        

Figure 10. PS (left) and PF (right) of DTLZ4 

 

      

       

Figure 11. PS (left) and PF (right) of DTLZ5 
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Figure 12. PS (left) and PF (right) of DTLZ6 

 

         

Figure 13. PS (left) and PF (right) of DTLZ7 

 

         

Figure 14. Pareto-optimal fronts of DTLZ1 obtained by SP (left) and PR (right) 
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Figure 15. Pareto-optimal fronts of DTLZ2 obtained by SP (left) and PR (right) 

 

        

Figure 16. Pareto-optimal fronts of DTLZ3 obtained by SP (left) and PR (right) 

 

         

Figure 17. Pareto-optimal fronts of DTLZ4 obtained by SP (left) and PR (right) 

 

        

Figure 18. Pareto-optimal fronts of DTLZ5 obtained by SP (left) and PR (right) 
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Figure 19. Pareto-optimal fronts of DTLZ6 obtained by SP (left) and PR (right) 

 

       

Figure 20. Pareto-optimal fronts of DTLZ7 obtained by SP (left) and PR (right) 

 

       

Figure 21. Local Pareto-optimal front of DTLZ1 obtained in a single simulation run 

 

       

Figure 22. Local Pareto-optimal front of DTLZ3 obtained in a single simulation run 
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Figure 23. The individual (white circle) is easier to be rejected than any other individuals (black circles) 

 

Appendix A: Benchmark test functions 

1) DTLZ1 Function: 

Minimize  




1

11 ))(1(5.0)(
M

i ixxgxf  

Minimize  

 
mM

i imMMm xxxgxf
111:2 )1))((1(5.0)(  

Minimize )1))((1(5.0)( 1xxgxfM   

Subject to nixi ,...,2,1,10   

Where ])))5.0(20cos()5.0(([100)(
1

2 


n

kni ii xxkxg  . The total number of variables is 

1 kMn . A value of 5k  is suggested. The Pareto-optimal solution corresponds to 5.0ix , 

nknkni ,....,2,1  , and the objective function values lie on the linear hyper-plane  


M

m mf1
5.0 . 

The search space has )111( k  local Pareto-optimal fronts. 

2) DTLZ2 Function: 

Minimize  




1

11 )5.0cos())(1()(
M

i ixxgxf   

Minimize  

 
mM

i imMMm xxxgxf
111:2 )5.0cos()5.0sin())(1()(   

Minimize )5.0sin())(1()( 1xxgxfM   

Subject to nixi ,...2,1,10   

Where 
2

1
)5.0()(  


n

kni
xxg . The total number of variables is 1 kMn . A value of 10k  is 

suggested. The Pareto-optimal solution corresponds to 5.0ix , nknkni ,....,2,1  , and all objective 

function values satisfy  


M

m mf1

2 1. 

3) DTLZ3 Function: 
Minimize  




1

11 )5.0cos())(1()(
M

i ixxgxf   

Minimize  

 
mM

i imMMm xxxgxf
111:2 )5.0cos()5.0sin())(1()(   

Minimize )5.0sin())(1()( 1xxgxfM   

Subject to nixi ,...2,1,10   

Where ])))5.0(20cos()5.0(([100)(
1

2 


n

kni ii xxkxg  . The total number of variables is 

1 kMn . A value of 10k  is suggested. The above g  function has )13( k  local Pareto-optimal 
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fronts, and the global Pareto-optimal front satisfies  


M

m mf1

2 1 , corresponding to 5.0ix , 

nknkni ,....,2,1  . 

4) DTLZ4 Function: 

Minimize  




1

11 )5.0cos())(1()(
M

i ixxgxf   

Minimize  

 
mM

i imMMm xxxgxf
111:2 )5.0cos()5.0sin())(1()(    

Minimize )5.0sin())(1()( 1
xxgxfM   

Subject to nixi ,...2,1,10   

Where 
2

1
)5.0()(  


n

kni
xxg . The total number of variables is 1 kMn . A value of 10k  is 

suggested. The parameter 100  is suggested. All variables 1x  to 1Mx  are varied in the range [0, 1]. The 

global Pareto-optimal solution corresponds to 0* g  and  


M

m mf1

2 1. 

5) DTLZ5 Function: 

Minimize  




1

11 )5.0cos())(1()(
M

i ixgxf   

Minimize  

 
mM

i imMMm xgxf
111:2 )5.0cos()5.0sin())(1()(   

Minimize )5.0sin())(1()( 1xgxfM   

Subject to nixi ,...2,1,10   

Where 11 x , ))(1(2
)(21
xg

xxg
i

i


 , 1,...,3,2  Mi , and 

2

1
)5.0()(  


n

kni
xxg . The total number of 

variables is 1 kMn . A value of 10k  is suggested. 

6) DTLZ6 Function: 
Minimize  




1

11 )5.0cos())(1()(
M

i ixgxf   

Minimize  

 
mM

i imMMm xgxf
111:2 )5.0cos()5.0sin())(1()(   

Minimize )5.0sin())(1()( 1xgxfM   

Subject to nixi ,...2,1,10   

Where 11 x , ))(1(2
)(21
xg

xxg
i

i


 , 1,...,3,2  Mi , and  


n

kni ixxg
1

1.0)( . The total number of variables is 

1 kMn . A value of 10k  is suggested. 

7) DTLZ7 Function: 

Minimize mMm xxf  )(1:1  

Minimize ))(,,...,,())(1()( 121 xgfffhxgxf MM   

Where  


n

kni ik xxg
1

91)( ,  

and    
M

i ixg
xf

M xfMxgfffh i

1 )(1
)(

121 )))](3sin(1([))(,,...,,(   

Subject to nixi ,...2,1,10  . 

The total number of variables is 1 kMn . A value of 20k  is suggested. This problem has 12 M  
disconnected Pareto-optimal regions in the search space. The global Pareto-optimal solutions correspond to 

0ix , nknkni ,....,2,1  . 

 

 


