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Abstract 

Narrowing down the computational space is a key factor in improving the efficiency of an association rule 
mining system. One approach to achieve this is to let the user guide the association rule mining process by 
enabling the user to specify the types of association rules that he/she might be interested in. Instead of computing 
all that can be computed, the system limits its association rule mining process to the discovery of only the 
association rules that may be of interest to the user, therefore, reducing the computational space and complexity. 
In this paper, we introduce a new approach for achieving this by using a new structure called lattice intension 
structure.  

Keywords: Association rules, Data mining, Frequent itemsets, Lattice traversal 

1. Introduction 

Mining association rules is a complex, time-consuming process. One of the reasons behind this complexity can 
be attributed to the fact that the mining process aims at finding all possible association rules that satisfy 
minimum support and confidence values in a given database. Since the number of association rules is potentially 
extremely large, this results in poor system performance. Numerous algorithms have been introduced in the 
literature for improving the performance of association rules mining (Wang, 2005; Xin, 2005; Rozenberg, 2006; 
Nadimi-Shahraki, 2008; Lucchese, 2006; Moonestinghe, 2006; Ma, 2008; Liu, 2003; Gouda, 2005). This paper 
presents a new approach for association rule mining, where we introduce a new structure called lattice intension 
structure that enables the user to guide the association rule mining process. The lattice intension structure gives a 
user the option to determine the type of association rules that are of interest. Instead of trying to discover all 
possible association rules, the system restricts its discovery process to only the association rules that are of 
interest to the user.  

Briefly, our approach works as follows. Each node in the lattice intension structure represents a combination of 
attributes. The lattice intension structure helps the user in selecting a specific attribute combination that is of 
interest by selecting a node from the structure. The system uses the selection made by the user as a guiding 
directive. As a result, the system restricts its processing to the attribute combination selected by the user. 
Furthermore, when a user selects a node representing an attribute combination, the underlying system can 
present the user with the list of possible association rule intensions that involve these attributes, and the user may 
choose to further reduce the computational space by selecting one or more of the association rule intensions that 
appear on the list. The role of the data mining process becomes, simply, to find the association rules that are of 
interest to the user and that satisfy a minimum support and confidence values if the user provides such 
minimums. 

This paper builds on our earlier work presented in (Alashqur, 2008) and (Alashqur, 2010). In (Alashqur, 2008), 
we introduced the concepts of itemset intension and association rule intension and distinguished them from 
itemset extension and association rule extension. In this paper, we introduce a new structure called lattice 
intension structure along the lines of itemset intension and association rule intension. Furthermore, we describe 
how the lattice intension structure is used to enable the user to guide the data mining process. In (Alashqur, 
2010), we introduced an algorithm that is based on SQL and that makes use of the itemset intension and 
extension structures for mining relational databases and discovering all frequent itemsets. Based on our approach 
described in (Alashqur, 2010), in this paper we demonstrate how SQL can be used in association rule mining in 
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the case when the user is given the ability to guide the mining process and restrict it to the discovery of some 
(instead of all) itemsets. In addition, we introduce an approach in which SQL can be used to compute association 
rules and their confidence in addition to computing itemsets. 

The remainder of this paper is organized as follows. In section 2, we briefly summarize the definitions of itemset 
intension and extension and association rule intension and extension, to provide the necessary background for 
what is covered in the remaining sections of this paper. The detailed description of such structures can be found 
in (Alashqur, 2008). In Section 3, we introduce the concept of lattice intension and distinguish it from lattice 
extension. We show in Section 4 how a lattice intension structure can be used to facilitate user-guided association 
rule mining and how the system can narrow-down its SQL-based computations depending on the user’s guidance. 
Conclusions are given in Section 5. 

2. Background 

In this section, we provide the background necessary for introducing the material covered in Section 3 and 
Section 4. We briefly describe the concepts of itemset extension, itemset intension, association rule extension, 
and association rule intension. A detailed description can be found in (Alashqur, 2008). The relation shown in 
Table 1, which is extracted from Alashqur (Alashqur, 2008), is used as a basis to describe these concepts.  

The relation of Table 1 contains data pertaining to ex-members of a gym club, which represents the data that is 
kept in the database for members who terminate their membership. This data includes AGE, GENDER, 
MEMBERSHIP_DURATION (how long a member maintained a valid membership in the club), 
HOME_DISTANCE (how far a member’s residence is from the club location), and HOW_INTRODUCED (how 
a member was originally introduced to the club such as by referral or by seeing an advertisement in a newspaper). 
Table 1 shows this relation as populated with sample data. In real life situations, a large club, with many 
branches, may have millions of ex-members, thus millions of tuples may exist in such a relation.  

2.1 Itemsets 

In our approach, we define an itemset as a set of items such that no two items belong to the same attribute (i.e, 
no two items are drawn from the same attribute domain, where a domain represents the set of valid values 
defined for an attribute). For example, in Table 1, {m, short, far} is a valid itemset (IS) while {m, short, far, close} 
is not a valid IS since ‘far’ and ‘close’ are two items that belong to the same attribute, which is 
HOME_DISTANCE. Stated formally, the following is the definition of a valid itemset. 

{I1, I2,... In} is valid IS iff (¬∃Ij) (¬∃Ik) (j≠ k ∧ (Attr (Ij) = Attr (Ik)) 

Where I is an item from the relation (i.e. an attribute value) and Attr (I) is a function that returns the attribute 
name of item I. Logical AND is represented by “∧”. 

In Table 1, the domains of attributes are assumed, for simplicity, to be mutually exclusive. If these domains are 
not mutually exclusive, then one must qualify attribute values by their attribute names. Therefore, in this case, an 
itemset like {short, news_paper} needs to be written as {MEMBERSHIP_DURATION.short, 
HOW_INTRODUCED.news_paper}. Note that, for clarity, throughout this paper, we use upper case letters for 
attribute names and lower case letters for attribute values. An itemset that contains k items is referred to as 
k-itemset.  

The interestingness of an itemset is measured by the percentage of tuples in the relation that contain the itemset. 
This measure is referred to, in data mining literature, as support. In other words, the support is the probability P 
that the itemset exists in the relation. 

100)()( 
tuplesofNumberTotal

itemsetcontainingtuplesofNum
itemsetPitemsetSupport  

The support count, on the other hand, is the absolute number of occurrences of an itemset in the relation.  

As an example, based on the database state shown in Table 1, the support count of the 3-itemset {young, f, 
referral} is 1 since there is only one tuple that contains this itemset. Its support = (1/13) X 100 = 7.7%. The 
support can be zero in case if the itemset does not exist at all in the relation, such as {m, long}. Normally, the 
user of a data mining tool supplies a minimum support value minsup. The data mining tool then finds itemsets 
whose support is equal to or greater than minsup. Itemsets that satisfy the minimum support are referred to as 
frequent itemsets.  
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2.2 Itemset Intension 

Following the terminology of the relational data model, the definition of itemset intension (ISI) was introduced in 
(Alashqur, 2008), and is summarized here. An itemset intension (ISI) is a subset of the attributes of a relation. 
For example, in Table 1, {HOME_DISTANCE, MEMBERSHIP_DURATION} is an ISI. The itemsets that 
consist of actual attribute values belonging to these two attributes are instantiations of this itemset intension and 
are referred to as itemset extensions or simply itemsets (itemsets are described in Section 2.1). In Table 1, the 
itemsets that are instantiations of the ISI {HOME_DISTANCE, MEMBERSHIP_DURATION} are as follows: 

{close, long}, {far, long}, {close, short}, {far, short}. 

An itemset IS is said to be an instantiation of an itemset intension ISI if the cardinality of IS is the same as the 
cardinality of ISI and each item in IS is drawn from a domain of an attribute in ISI. Let the symbol “ᄃ” denote 
“instantiation of” and let CAR (S) be a function that returns the cardinality of set S. We formally define the 
relationship between an itemset and its itemset intension as follows. 

IS ᄃ ISI iff CAR (IS) = CAR (ISI) AND (∀Ij ∈ IS) (Attr (Ij) ∈ ISI) 

“I” is an item in the itemset IS and Attr (I) returns the attribute name of item I. Note that the formal definition of 
itemset, as described in Section 2.1, prevents any two values in an itemset from belonging to the same attribute. 

2.3 Association Rules 

The association patterns among attribute values can be represented as association rules, where an association rule 
is an implication of the form: 

lhs  rhs, 

Each of the left had side (lhs) and right hand side (rhs) is a set of attribute values, provided that no attribute value 
exists in both lhs and rhs, i.e., 

lhs ∩ rhs =  . 

For instance, {referral}  {long} is an association rule relating the attribute value 
EMBERSHIP_DURATION.long to the attribute value HOW_INTRODUCED.referral. Each association rule has 
two metrics to measure its interestingness, support and confidence. The support of an association rule is the 
support of the itemset that contains all items in the rule, that is, the itemset containing the union of the items of 
the lhs and rhs. In other words,  

Support (lhs  rhs) = support (lhs ∪ rhs) = P (lhs ∪ rhs) 

where P denotes probability. As an example, to find the support of the rule {referral}  {long}, we note that 5 
out of 13 tuples in the relation of Table 1 contain both referral and long, therefore,  

Support (referral  long) = Support {referral, long} = (5/13) X 100 = 38.5% 

We define the confidence of the rule (lhs  rhs) as the percentage of tuples that contain rhs from those that 
contain lhs. In other words, confidence is the conditional probability P(rhs | lhs). Confidence can be expressed in 
terms of support as follows: 

100)( 



s)support(lh

rhs)ssupport(lh
rhslhsConfidence  

In addition to specifying a minsup, a minconf (minimum confidence) can also provided to the data mining 
process, which then discovers association rules that satisfy minsup and minconf. 

2.4 Association Rule Intension 

In addition to introducing the concept of Itemset Intension in (Alashqur, 2008), we also introduce the concept of 
Association Rule Intension. Association Rule intension is a rule template that is shared by multiple association 
rules. Similar to an itemset intension, an association rule intension is expressed in terms of attribute names 
instead of actual data values. For example,  

AGE  MEMBERSHIP_DURATION 

is an association rule intension. The following six association rules are possible instantiations of the above rule 
intension.  

young  long      young  short          middle  long 

middle  short      senior  long          senior  short 
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Generally, an association rule intension can be written as LHS RHS where each of LHS and RHS represents a 
set of attribute names (hence, they are written in upper-case letters), provided that LHS ∩ RHS = . An 
association rule of the form lhs  rhs (written in lower case letters) is said to be an instantiation of (ᄃ) an 
association rule intension of the form LHS  RHS if lhs ᄃ LHS AND rhs ᄃ RHS (the symbol “ᄃ” which 
stands for “instantiation of” is described in Section 2.2). In this case, we say that (lhs rhs) ᄃ (LHS  RHS). 
In other words, 

(lhs rhs) ᄃ (LHS  RHS) iff (lhs ᄃ LHS) ∧ (rhs ᄃ RHS) 

3. Lattice Intension vs. Lattice Extension 

In this section, we introduce two new lattice structures that we refer to as lattice intension and lattice extension, 
along the lines of itemset intension and itemset extension, which are described in Section 2.  

A lattice intension is simply a lattice structure that represents all possible combinations of attributes in a given 
relation, where each node in the lattice structure represents an attribute combination.  

Table 2 shows a sample relation R with three attributes X, Y, and Z along with an ID attribute that serves as a key 
of the relation. If we assume that the ID attribute is a sequential number, it makes sense to exclude it from any 
itemset and association rule computations. Therefore, the attributes to be considered for computing the support 
of itemsets are X, Y, and Z. We represent the different possible combinations of these attributes in the form of a 
lattice structure as shown in Figure 1. This lattice structure consists of combinations of attribute names, therefore 
we refer to it as lattice intension. The order of attributes in a lattice intesion structure is not important. On the 
other hand, we refer to a lattice structure that consists of attribute values as lattice extension. 

The lowest level in Figure 1 contains combinations of attributes consisting of only one attribute, the next level 
contains combinations consisting of two attributes, and so on. Each node in the lattice intension represents an 
itemset intension (see Section 2 for a description or itemset intension) 

The number of levels in a lattice intension is equal to the number of attributes. The size of the lattice intension 
(i.e., the total number of nodes where each node represents an itemset intension) grows exponentially with the 
number of attributes that are considered. Let N be the number of itemset intensions (i.e., number of nodes) in a 
lattice intension, then 

N = (2A
 – 1) 

where A represents the number of attributes. In the above lattice intension, there are three attributes X, Y, and Z. 
Therefore the number of itemset intensions is: 

N = 23 - 1 = 7 

Figure 2 shows the lattice intension representation for a relation that has five attributes A, B, C, D, and E. The 
number of nodes in this case is:  

N = 25 - 1 = 31 

We define a lattice extension as an instantiation of a lattice intension, just like an itemset extension is considered 
an instantiation of an itemset intension as described in Section 2. In other words, the nodes of a lattice extension 
consist of itemsets as opposed to itemset intensions. A set of attributes can be represented by only one lattice 
intension but may have multiple lattice extensions. A lattice extension can be obtained by substituting the data 
items (attribute values) for the attribute names in a lattice intension. The number of lattice extensions depends on 
the number of tuples in the relation. 

Figure 3 shows a lattice extension based on the data of Table 2. This lattice extension is obtained by substituting 
the values x5, y3, and z3 for the attributes X, Y, and Z in the lattice intension of Figure 1. The number shown next 
to the colon at each node represents the support count of the itemset based on the data of Table 2.  

Similarly Figure 4 shows another lattice extension based on the data of Table 2. This lattice extension is obtained 
by substituting x3, y1, and z1 for the attributes X, Y, and Z in the lattice intension of Figure 1. The zeroes next to 
the colon shown on some nodes of the lattice extension of Figure 4 indicate that the number of tuples in the 
relation of Table 2 that contain the itemset extension is zero. For example, there are no tuples in Table 2 that 
contain <x3, z1>. 

The number of lattice extensions can be computed if we know the number of distinct values of each of the 
relation’s attributes. Let R be a relation with n attributes A1, A2, … An. Let the number of distinct values of 
attribute Ai be denoted by |Ai|. The number of lattice extensions (NLE) can be computed as follows. 
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To compute the number of lattice extensions for the relation R of Table 2, we note that there are three distinct 
values of attribute Z, namely z1, z2, and z3. Similarly, there are four distinct values of attribute Y and six distinct 
values of attribute X. Substituting in the above equation, we can compute the total number of lattice extensions 
for the data of Table 2. 

NLE = 6 * 4 * 3 = 72 

Two of those lattice extensions are the ones shown in Figure 3 and Figure 4. 

4. Guiding the Mining Process 

In this section, we introduce our approach of using the lattice intension structure as a vehicle to aid the user in 
guiding the association rule mining process. The use of a lattice structure and its traversal techniques as a 
representation framework for association rule mining is known in the literature (Zaiane, 2005; Loo, 2002). 
However, existing approaches use the equivalent of a lattice extension. In our approach, we use a lattice 
intension structure since it is a more compact and efficient representation especially for very large relational 
databases. Furthermore, a lattice intension structure suites better our model of inter-attribute mining (Alashqur, 
2010). Therefore, we use such a structure to facilitate user-guided association rule mining. 

The main idea of our approach is to display the lattice intension and let the user select the node(s) that is 
considered important from his/her perspective. The node selected by the user represents a specific combination 
of attributes. It indicates that the user is interested in discovering association rules among attribute values of 
attributes that belong to the selected node. The underlying data mining system would then restrict the mining 
process to only those attributes, instead of mining the entire space of possible attribute combinations.  

Consider the STUDENT relation shown in Table 3 that stores students’ information in a college database. This 
relation stores the average grade in a letter format (a, b, etc.) that a student obtained in High School 
(HIGH_SCHOOL_AVERAGE), the family income range (FAMILY_INCOME) of the student’s family, the 
college average grade of the student (COLLEGE_AVERAGE), and the range in which the SAT score of the 
student falls (SAT_SCORE_RANGE). The relation is populated with sample data as shown. 

To keep the lattice intension structure simple, we represent each attribute with the first letter of its name. Thus ‘H’ 
is used for HIGH_SCHOOL_AVERAGE, ‘F’ for FAMILY_INCOME, ‘C’ for COLLEGE_AVERAGE, and ‘S’ 
for SAT_SCORE_AVERAGE. The ID attribute is ignored since it is not included in the mining process. Figure 5 
shows the lattice intension structure for this relation. 

In a system built based on our approach, the lattice intension structure would be presented on the screen for the 
user to explore. The user then selects a node of interest. Assume that the user clicks on the node HCS as the node 
of interest for association rule mining. This implies that association rules among the three attributes 
HIGH_SCHOOL_AVERAGE, COLLEGE_AVERAGE, and SAT_SCORE_RANGE are to be discovered by the 
system along with their support and confidence values. The nodes that come under HCS are highlighted as 
shown in Figure 6, thus forming a sub-lattice structure.  

The number of possible association rule intensions that can be constructed from N attributes, can be computed by 
the following formula: 

Number of Association Rule Intensions = 2N – 2 

There are three attributes represented by the selected node HCS. Therefore, the number of association rule 
intensions that can be constructed from these three attributes is: 

Number of Association Rules = 23 – 2 = 6 

These six association rule intensions are as shown below. (In theory, association rules consisting of only one 
attribute in the lhs and one attribute in the rhs can also be presented to the user for selection, provided that these 
attributes exist in the selected lattice node.) 

1) HIGH_SCHOOL_AVERAGE, COLLEGE_AVERAGE  SAT_SCORE_RANGE 

2) HIGH_SCHOOL_AVERAGE  COLLEGE_AVERAGE, SAT_SCORE_RANGE 

3) COLLEGE_AVERAGE , SAT_SCORE_RANGE  HIGH_SCHOOL_AVERAGE 
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4) COLLEGE_AVERAGE  SAT_SCORE_RANGE, HIGH_SCHOOL_AVERAGE 

5) SAT_SCORE_RANGE, HIGH_SCHOOL_AVERAGE  COLLEGE_AVERAGE 

6) SAT_SCORE_RANGE  HIGH_SCHOOL_AVERAGE, COLLEGE_AVERAGE 

In a system built based on our approach, after a user selects a node in the lattice, he/she would be presented by 
the list of possible association rule intensions similar to the list shown above. The user can then further narrow 
down the search space by selecting one or more of the association rule intensions and supply minsup and 
minconf values. The system then generates all association rule extensions whose intensions have been selected 
by the user and that satisfy the minsup and minconf constraints.  

To demonstrate how the computation process is performed, assume that the user selects the association rule 
intension number 5 from the above list. This means that the user is interested in discovering the impact of the 
combination of SAT score and high school average on the college average grade for students. To compute the 
confidence of association rules of this type, we need to compute the support of 3-itemsets that are instantiations 
of the itemset intension {SAT_SCORE_RANGE, HIGH_SCHOOL_AVERAGE, COLLEGE_AVERAGE}, then 
we need to compute the support of 2-itemsets whose itemset intension is {SAT_SCORE_RANGE, 
HIGH_SCHOOL_AVERAGE}, which represents the lhs of the selected association rule intension. By dividing 
the support of a 3-itemset over the support of the corresponding 2-itemset representing the lhs, we obtain the 
confidence. 

To perform the support computation, we follow the approach described in (Alashqur, 2010), where we 
introduced a SQL-based algorithm named RDB-Miner for computing the support of itemsets. The algorithm 
computes the support of all possible itemsets. In this paper, however, we use a similar approach, with the 
difference that SQL is used to compute the support of only the itemsets needed based on the user guidance. 

The SQL statement that computes the support count of the 3-itemsets for association rule number 5 (i.e., the 
association rule intension selected by the user) is shown below. 

SELECT   SAT_SCORE_RANGE, HIGH_SCHOOL_AVERAGE,  

      COLLEGE_AVERAGE, COUNT (*) AS SUP_COUNT 

FROM   STUDENT 

GROUP BY  SAT_SCORE_RANGE, HIGH_SCHOOL_AVERAGE, 

     COLLEGE_AVERAGE 

The result of the above query is shown in Table 4. On the other hand, the SQL statement to compute the support 
of 2-itemsets whose intension is {SAT_SCORE_RANGE, HIGH_SCHOOL_AVERAGE}, which represent the 
lhs of association rule intension number 5, is shown below. 

SELECT     SAT_SCORE_RANGE, HIGH_SCHOOL_AVERAGE,  

COUNT (*) AS SUP_COUNT 

FROM   STUDENT 

GROUP BY  SAT_SCORE_RANGE, HIGH_SCHOOL_AVERAGE 

The result is shown in Table 5. As described in Section 2, the confidence of extensional association rules that are 
instantiations of association rule intension number 5 can be computed from the data in Table 4 and Table 5, by 
dividing the support count from Table 4 over the corresponding support count from table 5. The following is an 
example. 

Confidence (‘500-599’, c  b) = (support (‘500-599’,c,b)) / (support (‘500-599’, c)) = 0.5 = 50% 

Where the nominator is taken from the first row of Table 4 (i.e. the row that has the three items “c, b, 500-599”). 
The denominator is taken from first row of Table 5, which represents the lhs component (i.e., “c, 500-599”). 

Below, we show all association rule extensions based on the data of Table 2, that are instansiations of association 
rule intension number 5. The confidence, which is shown next to each association rule, is computed in the way 
described above from the values in Table 4 and Table 5. 

‘500-599’, c  b       conf. = (1/2) = 50%  

‘500-599’, c  c  conf. = (1/2) = 50% 

‘600-699’, b  b  conf. = (2/2) = 100% 
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‘700-799’, a  a  conf. = (2/3) = 67% 

‘700-799’, a  b  conf. = (1/3) = 33% 

If the user supplies a minsup and minconf values, then only the association rules from the above list that satisfy 
these conditions are actually returned to the user. 

Below, we go beyond what is presented in (Alashqur, 2010), and show that SQL can be used not only to compute 
the support of itemsets, but also to compute the confidence of association rules. For example, to return the above 
association rule extensions whose association rule intension is: 

SAT_SCORE_RANGE , HIGH_SCHOOL_AVERAGE  COLLEGE_AVERAGE 

the following SQL statement can be executed against Table 4 and Table 5. 

SELECT   T4.HIGH_SCHOOL_AVERAGE     AS H_LHS1, 

T4.COLLEGE_AVERAGE      AS C_LHS2, 

T4.SAT_SCORE_RANGE      AS S_RHS, 

(T4.SUPP_COUNT/T5.SUPP_COUNT)   AS CONFIDENCE 

FROM   Table_4 T4, Table_5 T5  

WHERE    T4. HIGH_SCHOOL_AVERAGE = T5.HIGH_SCHOOL_AVERAGE 

             AND T4.SAT_SCORE_RANGE = T5.SAT_SCORE_RANGE 

The above statement returns four columns. The first two represent the lhs of each rule extension, namely 
H_LHS1 and C_LHS2, that represent the two attributes HIGH_SCHOOL_AVERAGE and 
COLLEGE_AVERAGE, respectively. The third column, S_RHS, represents the right hand side (rhs) of rule 
extensions, namely SAT_SCORE_RANGE. The forth column represents the confidence value of the rule. The 
returned result is shown in Table 6. 

5. Conclusion 

In this paper, we introduced a new approach for user-guided association rule mining. In our approach, a user is 
presented with a lattice intension structure that encodes the different possible attribute combinations. By 
selecting a node from the structure, the user identifies the attribute combination of interest. This selection directs 
the system to discover any association rules among data values that belong to the attributes represented by the 
selected node. Furthermore, the user may be presented with a list of possible association rule intensions 
corresponding to the selected node. He/she would then be prompted to select one or more of these association 
rule intensions. The system attempts to discover the association rules that have been identified as important from 
the user’s perspective. This approach simplifies the data mining process specially in very large databases and 
makes it more user-oriented and interactive. This is, of course, in addition to improving the performance. 
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Table 1. Relation GYM_EX_MEMBERS 

ID AGE GENDER MEMBERSHIP 

DURATION 

HOME_ 

DISTANCE 

HOW_ 

INTRODUCED 

1 young f Long close News_paper 

2 middle m Short far News_paper 

3 senior f Long close referral 

4 senior f Long close referral 

5 young f Long far News_paper 

6 middle m Short close News_paper 

7 senior m Short far News-paper 

8 senior f Long close referral 

9 young f Long close referral 

10 middle f Long far News_paper 

11 middle m Short far News_paper 

12 senior f Long close referral 

13 senior m Short far referral 
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Table 2. Relation R 

ID X Y Z 

1 x1 y1 z1 

2 x2 y2 z1 

3 x3 y1 z2 

4 x4 y2 z2 

5 x1 y1 z1 

6 x2 y2 z1 

7 x3 y1 z2 

8 x4 y2 z2 

9 x5 y1 z1 

10 x5 y3 z3 

11 x5  z3 

12 x6 y4  

 

Table 3. Relation STUDENT 

ID HIGH 

SCHOOL 

AVERAGE 

FAMILY 

INCOME 

COLLEGE 

AVERAGE 

SAT SCORE 

RANGE 

100 c 20k – 30k b 500-599 

101 b 20k – 30k b 600-699 

102 a 30k – 40k a 700-799 

103 b 40k – 50k b 600-699 

104 a 20k – 30k a 700-799 

105 a 50k – 60k b 700-799 

106 c 30k - 40k c 500-599 

 
Table 4. Support Count of 3-itemsets 

HIGH_SCHOOL_AVERAGE COLLEGE_AVERAGE SAT_SCORE_RANGE SUP_COUNT 

c B 500-599 1 

b B 600-699 2 

a A 700-799 2 

a B 700-799 1 

c C 500-599 1 

 
Table 5. Support Count of 2-itemsets representing the LHS 

HIGH_SCHOOL_AVERAGE SAT_SCORE_RANGE SUP_COUNT 

c 500-599 2 

b 600-699 2 

a 700-799 3 
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Table 6. Association Rules and their Confidence 

H_LHS1 C_LHS2 S_RHS CONFIDENCE 

500-599 c b 0.50 

500-599 c c 0.50 

600-699 b b 1.00 

700-799 a a 0.67 

700-799 a b 0.33 

 

 

 

Figure 1. Lattice Intension 

 

 
Figure 2. Lattice Intension for Five Attributes 
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Figure 3. A Lattice Extension                  Figure 4. Another Lattice Extension 

 

 

 

 

 
Figure 5. Lattice intension for the attributes of Table 3 

 

 

Figure 6. Highlighted Sub-Lattice Structure 
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